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ABSTRACT. For a fixed z ∈ C and a fixed k ∈ N, let σ(k)
z (n) denote the sum of z-th powers

of those divisors d of n whose k-th powers also divide n. This arithmetic function is a
simultaneous generalization of the well-known divisor function σz(n) as well as the divisor
function d(k)(n) first studied by Wigert. The Dirichlet series of σ(k)

z (n) does not fall under
the purview of Chandrasekharan and Narasimhan’s fundamental work on Hecke’s functional
equation with multiple gamma factors. Nevertheless, as we show here, an explicit and elegant
Voronoı̈ summation formula exists for this function. As its corollaries, some transformations
of Wigert are generalized. The kernel H(k)

z (x) of the associated integral transform is a new
generalization of the Bessel kernel. Several properties of this kernel such as its differential
equation, asymptotic behavior and its special values are derived. A crucial relation between
H

(k)
z (x) and an associated integral K(k)

z (x) is obtained, the proof of which is deep, and
employs the uniqueness theorem of linear differential equations and the properties of Stirling
numbers of the second kind and elementary symmetric polynomials.
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1. INTRODUCTION

The summation formulas of Poisson, Voronoı̈, Lipschitz as well as the Euler-Maclaurin
and Abel-Plana summation formulas have been studied for a long time in view of their
enormous applications in the mathematical sciences. Out of these, the Voronoı̈ summation
formula is the pierre angulaire of number theory because of its use in estimating the summatory
functions of certain arithmetic functions and, in particular, due to the instrumental role that
it plays in the Gauss circle problem and the Dirichlet divisor problem.

The celebrated result of Voronoı̈ [55] associated with d(n), the number of divisors of n, is
given by ∑′

n≤x
d(n) = x(log x+ (2γ − 1)) +

1

4

+
√
x
∞∑
n=1

d(n)√
n

(
−Y1(4π

√
nx)− 2

π
K1(4π

√
nx)

)
. (1.1)

Here, Yν(ξ) and Kν(ξ) denote the Bessel and modified Bessel functions of the second kind
of order ν /∈ Z respectively defined by [58, p. 64, 78, eq. (6)]

Yν(ξ) :=
Jν(ξ) cos(πν)− J−ν(ξ)

sinπν
, (1.2)

Kν(ξ) :=
π

2

I−ν(ξ)− Iν(ξ)

sinπν
, (1.3)

where

Jν(ξ) :=
∞∑
m=0

(−1)m(ξ/2)2m+ν

m!Γ(m+ 1 + ν)
, |ξ| <∞, (1.4)

Iν(ξ) :=

{
e−

1
2
πνiJν(e

1
2
πiξ), if −π < arg ξ ≤ π

2 ,
e

3
2
πνiJν(e−

3
2
πiξ), if π2 < arg ξ ≤ π,

are the Bessel and modified Bessel functions of the first kind respectively [58, p. 40, 77].
When the order of the Bessel functions in (1.2) and (1.3) is an integer, say, n, then we define
Yn(ξ) = limν→n Yν(ξ) and Kn(ξ) = limν→nKν(ξ).

The infinite series in (1.1) is the error term ∆(x) in the Dirichlet divisor problem, that is,

∆(x) =
√
x

∞∑
n=1

d(n)√
n

(
−Y1(4π

√
nx)− 2

π
K1(4π

√
nx)

)
.

The general form of the Voronoı̈ summation formula involving a test function f , given by
Voronoı̈ [55], is∑

α<n<β

d(n)f(n) =

∫ β

α
(2γ + log t)f(t) dt

+ 2π
∞∑
n=1

d(n)

∫ β

α
f(t)

(
2

π
K0(4π

√
nt)− Y0(4π

√
nt)

)
dt, (1.5)

where f(t) is a function of bounded variation in (α, β) and 0 < α < β. Mathematicians
have worked with several different versions of the Voronoı̈ summation formula differing in
the conditions put forth on f and catered to a particular problem they have been interested
in. See, for example, Dixon and Ferrar [24], Koshliakov [33], Wilton [62] etc. Voronoı̈ also
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claimed a formula corresponding to (1.1) for r2(n), the number of representations of n as
sum of two squares. This was subsequently proved by Hardy [31] and Sierpiński [51].

Today Voronoı̈ summation formulas are known to exist for coefficients of various L-
functions, for example, the L-functions associated with modular forms, Maass forms, and
more recently, with automorphic forms as well. See, for example, [16], [41] and [42]. The
reader is encouraged to read the excellent survey [40] on the Voronoı̈ (also, Poisson) summation
formulas. As mentioned in this survey, summation formulas can be used to obtain functional
equations for various L-functions, and, likewise, the properties of the L-functions, in turn,
can be used to derive the summation formulas.

In fact, consider the following setup due to Chandrasekharan and Narasimhan [9].
Let a(n) and b(n), 1 ≤ n < ∞, be two sequences of complex numbers which are not

identically 0. Let

ϕ(s) :=
∞∑
n=1

a(n)

λsn
, Re(s) > σa; ψ(s) :=

∞∑
n=1

b(n)

µsn
, Re(s) > σ∗a, (1.6)

where {λn} and {µn} are two sequences of positive numbers, each tending to∞, and σa and
σ∗a are, respectively, the abscissae of absolute convergence for ϕ(s) and ψ(s). Suppose that
ϕ(s) and ψ(s) have analytic continuations into the entire complex plane C and are analytic
on C except for a finite set of poles, which we denote by S. For some δ > 0, suppose that
ϕ(s) and ψ(s) satisfy a functional equation of the form

χ(s) := (2π)−sΓ(s)ϕ(s) = (2π)s−δΓ(δ − s)ψ(δ − s). (1.7)

Chandrasekharan and Narasimhan [9, p. 6, Lemmas 4, 5] showed that the functional equation
(1.7) is not only equivalent to the ‘modular’ relation

∞∑
n=1

a(n)e−λnx =

(
2π

x

)δ ∞∑
n=1

b(n)e−4π2µn/x + P (x), Re(x) > 0, (1.8)

where

P (x) :=
1

2πi

∫
C
(2π)zχ(z)x−zdz,

where C is a curve, or a set of curves, encircling all of S, but also to the Riesz-sum identity

1

Γ(ρ+ 1)

∑
λn≤x

′
a(n)(x− λn)ρ =

(
1

2π

)ρ ∞∑
n=1

b(n)

(
x

µn

)(δ+ρ)/2

Jδ+ρ(4π
√
µnx) +Qρ(x), (1.9)

where x > 0, ρ > 2σ∗a − δ − 1
2 , Jν(z) is defined in (1.4), and

Qρ(x) :=
1

2πi

∫
C

χ(z)(2π)zxz+ρ

Γ(ρ+ 1 + z)
dz,

with C defined as before. The prime ′ on the summation sign on the left-hand side indicates
that if ρ = 0 and x ∈ {λn}, then only 1

2a(n) is to be taken into account. The restriction
ρ > 2σ∗a − δ − 1

2 can be replaced by ρ > 2σ∗a − δ − 3
2 , subject to certain conditions, as

enunciated in [9, p. 14, Theorem III]. The ‘modular’ relation in (1.8) is due to Bochner [6].
Later, Chandrasekharan and Narasimhan [10] considered a more general functional equation

than (1.7), namely,
∆(s)ϕ(s) = ∆(δ − s)ψ(δ − s), (1.10)

where δ > 0, ∆(s) :=
∏N
j=1 Γ (αjs+ βj), with N ≥ 1, βj ∈ C, and αj > 0 with

∑N
j=1 αj ≥ 1.
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As described in [4, p. 3800], most versions of the Voronoı̈ summation formula for an
arithmetic function a(n), and associated with a test function f require (1.9) to first hold
for ρ = 0, and which has to be established separately as one cannot put ρ = 0 in (1.9). This
is inherent in the nature of the proofs of these versions. The only exception to this that we
know of is the method of Koshliakov (see [4, p. 3800] for more details) although it requires
f to be analytic.

But this suggests an important thing. If an arithmetic function a(n) falls into the purview
of the aforementioned setting of Chandrasekharan and Narasimhan, then the Voronoı̈ summation
formula for it, and involving a test function f (not necessarily analytic), would automatically
hold, provided (1.9) holds for ρ = 0.

In this paper, among other things, we obtain the Voronoı̈ summation formula associated
with a generalized divisor function that does not fall into the purview of the setting of
Chandrasekharan and Narasimhan from [10] except in two special cases. This arithmetic
function is defined for k ∈ N, z ∈ C by

σ(k)
z (n) :=

∑
dk|n

dz. (1.11)

It is easily seen that the Dirichlet series associated to σ(k)
z (n) is ζ(s)ζ(ks− z), that is,

∞∑
n=1

σ
(k)
z (n)

ns
= ζ(s)ζ(ks− z)

(
Re(s) > max

{
1,

1 + Re(z)

k

})
. (1.12)

The form of the Dirichlet series implies that the setting of Chandrasekharan and Narasimhan
will not be applicable here unless k ∈ N and z = k−1

2 or unless k = 1 and z > −1. This is
explained in detail at the beginning of the next section. In our Voronoı̈ summation formula
for σ(k)

z (n), we will also encounter another divisor function, defined by

S(k)
z (n) :=

∑
dk1d2=n

d
1+z
k
−1

2 . (1.13)

One can easily show that
∞∑
n=1

S
(k)
z (n)

ns
= ζ(ks)ζ

(
s+ 1− 1 + z

k

) (
Re(s) > max

{
1

k
,
1 + Re(z)

k

})
. (1.14)

Observe that σ(1)
z (n) = S

(1)
z (n) = σz(n).

The earliest mention of the function σ(k)
z (n), defined slightly differently, occurs in a paper

of Crum [17] although he obtains just the Dirichlet series representation (1.12) in his work.
Later, Berndt, Roy, Zaharescu and the first author [5, Section 10.2] briefly studied this function.
Robles and Roy [50] obtained asymptotic estimates for the summatory function of σ(k)

z (n).
The special case z = 0 of σ(k)

z (n) was studied in detail by Wigert [60] as early as in 1925.
Note that

∞∑
n=1

σ(k)
z (n)e−ny =

∞∑
n=1

nz

enky − 1
. (1.15)

On page 332 of the Lost Notebook, Ramanujan considered the above series for k ∈ N and
any even integer z − k. Although he did not give any transformation for this series for
general values of z and k mentioned above, he did give it for z = 0 and k = 2 [49, p. 332],
which certainly shows that he considered studying these series an important task. Recently,
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the first and the second authors [20, Theorem 1.2] generalized Ramanujan’s famous formula
for ζ(2m+ 1) by obtaining a transformation for the series in (1.15) for z = −2m− 1,m ∈ Z.

Various number-theoretic constructs are also intimately connected with the function σ(k)
z (n).

An explicit appearance of the function σ
(k)
z (n) occurs in a result of Cohen [12]. To state it,

consider the generalization of the Ramanujan sum defined by him [12] to be

c`,k(n) :=

`k∑
b=1

(b,`k)k=1

exp

(
2πibn

`k

)
,

where the condition (b, `k)k = 1 means there is no prime p such that p|` and pk|b. Then the
Dirichlet series of c`,k(n) satisfies [12, Theorem 4] (see also [38, p. 163])

ζ(s)

∞∑
`=1

c`,k(n)

`s
= σ

(k)
1− s

k
(n),

for s > k. The case k = 1 of this identity was given by Ramanujan [48].
Moreover, let pk(n) denote the number of power partitions of an integer n, that is, the

number of partitions of n into parts which are k-th powers. These partitions were studied
by Hardy and Ramanujan in their famous work [32]. In the new proof of the asymptotic
expansion of pk(n) as n→∞ using the saddle-point method given by Tenenbaum, Wu and

Li [53, Equation (2.4)], the series
∞∑
n=1

σ
(k)
k (n)e−ny makes its appearance.

For Im(z) > 0, the Dedekind eta function is defined by η(z) := e
iπz
12

∞∏
n=1

(1 − e2πinz). It

satisfies the modular transformation

η(−1/z) =
√
−izη(z). (1.16)

In his recent study in the context of power partitions, Zagier [65] generalized this property.
Consider the generalized eta-function ηs(z) defined by

ηs(z) := exp (−πiζ(−s)z)
∞∏
n=1

(1− exp (2πinsz)) (z ∈ H, s ∈ R+).

Then for k ∈ N, he proved [65, Equation (6)]

ηk(−1/z) = (2π)(k−1)/2
√
−iz

∏
w∈H

wk=±z

η1/k(w). (1.17)

Clearly, (1.17) reduces to (1.16) for k = 1. In [3], the authors show the equivalence of (1.17)
with one of the corollaries of their general result by starting with

log ηk(iy) := πζ(−k)y −
∞∑
n=1

σ
(k)
k (n)

e−2πny

n

for Re(y) > 0. Thus, we see that the function σ
(k)
k (n) is intimately connected with power

partitions. We note here that the transformation for ηs(z) was first obtained in an equivalent
form by Ramanujan [49, p. 330], and was then rediscovered by Wright [63]. Krätzel [36]
further generalized Ramanujan’s result.

The extended higher Herglotz function recently studied in [19] has an integral representation
with the integrand consisting of the sum

∑∞
n=1 σ

(N)
−k (n)e−2πnt; see [19, Equation (2.8)]. Cohen
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and Ramanujan-type identities associated to σkz (n) and Kν(ξ) were recently obtained in [2].
This shows frequent appearance of σ(k)

z (n) in various topics in number theory.
As mentioned before, Wigert worked with the special case z = 0 of σ(k)

z (n), which he
denoted by d(k)(n). For the infinite series

Lk(w) :=
∞∑
n=1

d(k)(n)e−nw (Re(w) > 0),

he obtained the following result [60, p. 8-10].

Theorem 1.1. For an even k > 1, we have1

Lk(w) =
ζ(k)

w
+ w−

1
kΓ

(
1 +

1

k

)
ζ

(
1

k

)
+

1

4

+
(−1)

k
2
−1

k

(
2π

w

) 1
k

k
2
−1∑
j=0

{
e
iπ(2j+1)(k−1)

2k Lk

(
2π

(
2π

w

) 1
k

e−
(2j+1)πi

2k

)

+ e−
iπ(2j+1)(k−1)

2k Lk

(
2π

(
2π

w

) 1
k

e
(2j+1)πi

2k

)}
, (1.18)

where Lk(w) :=
∞∑
n=1

n
1
k
−1

exp(n
1
kw)− 1

. For an odd k > 1, Lk(w) admits the following asymptotic

formula:

Lk(w) =
ζ(k)

w
+ w−

1
kΓ

(
1 +

1

k

)
ζ

(
1

k

)
+

1

4
± i

k
(−1)

k−1
2

(
2π

w

) 1
k

Lk

(
2π

(
2π

w

) 1
k
)

+ 4(−1)
k+1
2

N∑
j=1

ζ(2j)ζ(2kj − k + 1)(k(2j − 1))!

(2π)2(k+1)j−k+1
w2j−1 +

i

k
(−1)

k−1
2

(
2π

w

) 1
k

×

k−1
2∑
j=0

{
e
iπj(k−1)

k Lk

(
2π

(
2π

w

) 1
k

e−
iπj
k

)
− e

−iπj(k−1)
k Lk

(
2π

(
2π

w

) 1
k

e
iπj
k

)}
+ Θ(N),

(1.19)

where

Θ(N) :=
(2π)k

w

(−1)
k−1
2

2πi

∫ 1+ρ+i∞

1+ρ−i∞

(
w

(2π)k+1

)s (
cot

πs

2
∓ i
)

Γ(ks− k + 1)ζ(ks− k + 1)ζ(s) ds

= Ok,N (|w|2N ),

as w → 0 in the region | argw| ≤ λ < π/2.

In the special case k = 1, the asymptotic expansion of the Lambert series
∑∞

n=1 d
(k)(n) exp(−nw)

was previously obtained by Wigert himself in [59] (see also [54, p. 163, Theorem 7.15]). In
a follow-up paper [61], Wigert also obtained a Riesz-type identity for d(k)(n), of the type in
(1.9), for any ρ > 1.

1Wigert simplifies this result in the special case k = 2 in the footnote on p. 9 of [60]. However, this result was
already known to Ramanujan. See [49, p. 332].



VORONOÏ SUMMATION FORMULA FOR THE GENERALIZED DIVISOR FUNCTION σ
(k)
z (n) 7

Koshliakov [34, Equation (4)] obtained the Voronoı̈ summation formula for d(k)(n) given
below. He took k to be even in this result since he later wanted to give its special case for
f(w) = e−nw, which gives an exact formula only for even k (see (1.18) above), however, the
result itself is true for any k ∈ N.

Theorem 1.2. Let 0 < α < β and α, β 6∈ Z. Let k > 1 be a natural number. Let f(x) be an analytic
function defined inside a closed contour containing [α, β]. Then

∑
α<n<β

d(k)(n)f(n) =

∫ β

α

(
ζ(k) +

1

k
ζ

(
1

k

)
y

1
k
−1

)
f(y)dy

+ 4(2π)1/k−1
∞∑
n=1

S(k)(n)

∫ β

α
H

(k)
0

(
(2π)1+1/k(ny)1/k

)
y

1
k
−1f(y)dy, (1.20)

where S(k)(n) := S
(k)
0 (n) and H(k)

0 (x) :=
∫∞

0 cos(1/tk) cos(xt)t−kdt.

Remark 1. Although the results in Koshliakov’s paper [34] are correct, we warn the readers of many
typos. For example, in the argument of the function L(k) in his version of the above result, the
expression (2π)

1
k
−1 should be replaced by (2π)

1
k

+1.

Remark 2. Using the fact that

lim
s→1

ζ(s) +
1

s
ζ

(
1

s

)
y

1
s
−1 = 2γ + log(y),

Theorem 1.2 can be easily modified to accommodate the case k = 1. Indeed, this gives (1.5) upon
using (2.4) below.

One can extend Theorem 1.2 by letting α → 0 and β → ∞ but with the obvious need of
putting further restrictions on f . This is, of course, permitted when f(x) = e−xw, x > 0,
Re(w) > 0, (because of the exponential decay), and results in Wigert’s (1.18) as a corollary.

In this paper, we prove Voronoı̈ summation formulas for the generalized divisor function
σ

(k)
z (n) defined in (1.11). We give two such formulas, one of which applies with a test

function f analytic in an interval [α, β] (see Theorem 2.2 below), while the other is not
truncated to any interval and can be applied with a test function belonging to the Schwartz
class (see Theorem 2.4). Thus, our first version of the Voronoı̈ summation formula is a
generalization of Theorem 1.2 of Koshliakov. There are instances in Koshliakov’s paper [34]
where the results are but merely stated and not proved at all, for example, [34, Equation (6)].
Our generalization of his Equation (6), which is given in Theorem 2.1, rigorously proves
his Theorem 1.2 given above as a special case of our Theorem 2.2. As can be seen, the
proof of Theorem 2.1 is quite non-trivial and requires the uniqueness theorem of the linear
differential equations [11, p. 21, Section 6] along with properties of combinatorial objects
such as the Stirling numbers of the second kind and the elementary symmetric polynomials.
Also, we later derive (1.18) as a special case of a more general result, namely, Corollary 2.6.

In addition to obtaining the Voronoı̈ summation formulas for σ(k)
z (n), this paper is equally

devoted to developing the theories of the new special functions H(k)
z (x) and K

(k)
z (x) that

arise in this context and are defined in (2.3) and (2.5) respectively.
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2. MAIN RESULTS

We first show that the generalized divisor function σ(k)
z (n) defined in (1.11) and its Dirichlet

series in (1.12) are not covered by the setting of Chandrasekharan and Narasimhan in [10]
unless k ∈ N and z = k−1

2 or unless k = 1 and z ∈ R. To that end, first note that the
symmetric form of the functional equation of ζ(s) reads [54, p. 22, Equation (2.6.4)]

π−
s
2 Γ
(s

2

)
ζ(s) = π−

(1−s)
2 Γ

(
1− s

2

)
ζ(1− s). (2.1)

Along with (1.10) and (1.12) and the Dirichlet series defined in (1.6), this implies that if

a(n) = πz/2σ(k)
z (n) = b(n), λn = π

1
2

(k+1)n = µn (2.2)

so that

ϕ(s) = ψ(s) = π
1
2

(z−(k+1)s)ζ(s)ζ(ks− z), ∆(s) = Γ
(s

2

)
Γ

(
ks− z

2

)
,

then we must have, for some δ > 0,

∆(δ − s) = Γ

(
1− s

2

)
Γ

(
1− ks+ z

2

)
,

It is easy to see that this will be true only if z = k−1
2 for k ∈ N and δ = 1 or if k = 1, z ∈ R

and δ = z + 1. (We get these same conditions if we work with S(k)
z (n) rather than σ(k)

z (n) in
(2.2).) Thus, our Theorems 2.2 and 2.4 are covered by the setting of Chandrasekharan and
Narasimhan only in the aforementioned two special cases which force either z to be rational
or k to be 1. On the other hand, our Theorems 2.2 and 2.4 hold for any k ∈ N and any
complex z such that −1 < Re(z) < k.

Before stating Theorem 2.2, we define the function2 H
(k)
z (x) for k ∈ N and x ≥ 0 by

H(k)
z (x) :=

∫ ∞
0

tz−k cos(xt) cos

(
1

tk

)
dt. (2.3)

In Theorem 4.1, it is shown that H(k)
z (x) converges for −1 < Re(z) < k.

For k = 1 and z = 0, this integral was evaluated by Hardy [58, p. 184, Equation (4)] who
showed that

H
(1)
0 (x) = K0(2

√
x)− π

2
Y0(2
√
x). (2.4)

Also, the integral H(k)
0 (x) appeared in Koshliakov’s result (1.20). Hence we call the integral

H
(k)
0 (x) as the Hardy-Koshliakov integral. Theorem 4.9 below generalizes (2.4) for any z

satisfying −1 < Re(z) < 1.
As is shown in [25, Equations (1.14), (4.1)], the functionH(1)

z (x) is a special case of a kernel
of Watson [57] given by

$µ,ν(xy) := x1/2

∫ ∞
0

Jν(xt)Jµ

(
1

t

)
dt

t
,

2The notation here does not mean k-th derivative of some function Hz(x). This notation is used to comply
with that used by Wigert [60] and Koshliakov [34] for the associated arithmetic as well as special functions and
is retained throughout the paper for other functions as well. For the jth derivative of, say, H(k)

z (x) with respect
to x, we use the notation dj

dxj
H

(k)
z (x).
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namely,H(1)
z (x) = π

2x
−z/2$−z−1

2
, z−1

2
(x). This follows from the fact that J−1/2(x) =

√
2
πx cos(x).

However, for k > 1, our kernel H(k)
z (x) is new. In Theorem 2.1, we show that H(k)

z (x)

essentially equals the MeijerG- functionG k+1,0
0,2k+2

(
{}

b1, · · · , b2k+2

∣∣∣14 ( x2k)2k)with the parameters

b1, · · · , b2k+2 defined in (2.7) below. A similar Meijer G-function acting as a symmetric
Fourier kernel was studied by Narain [43, Equation (1.5)], however, it is different from ours.

We will also need an auxiliary integral in the proof of the Voronoı̈ summation formula for
σ

(k)
z (n). This integral is defined for x 6= 0 by

K(k)
z (x) :=

1

2πi

∫
(c)

Γ(s) cos
(πs

2

)
Γ

(
s− 1− z

k
+ 1

)
ds

kxs
, (2.5)

where k ∈ N and max{0, 1−k+Re(z)} < Re(s) = cwhen | arg(x)| < π/(2k), and max{0, 1−
k + Re(z)} < Re(s) = c ≤ 1+Re(z)

k+1 when | arg(x)| = π/(2k). (Note that the latter strip
is non-empty when we additionally assume −1 < Re(z) < k, which will be the case in
most of our results.) The integral is absolutely convergent in | arg(x)| < π/(2k) but only
conditionally convergent for | arg(x)| = π/(2k). While the former is easily established using
Stirling’s formula (see (3.3) below), the latter requires some work, and is hence proved in
detail at the end of the proof of Theorem 4.3. As a function of x, K(k)

z (x) is analytic in
| arg(x)| < π/(2k). Also, as a function of z, it is analytic in C, provided | arg(x)| < π/(2k);
when | arg(x)| = π/(2k), it is analytic in −1 < Re(z) < k.

The functions H(k)
z (x) and K

(k)
z (x) are related to each other by means of the following

important identity.

Theorem 2.1. Let x ≥ 0 and k ∈ N. For any z such that −1 < Re(z) < k,

H(k)
z (x) =

1

2

{
exp

(
iπ(k − 1− z)

2k

)
K(k)
z

(
e−

iπ
2kx
)

+ exp

(
−iπ(k − 1− z)

2k

)
K(k)
z

(
e
iπ
2kx
)}

=
π

√
k2

1+z
k

G k+1,0
0,2k+2

(
{}

b1, · · · , b2k+2

∣∣∣1
4

( x
2k

)2k
)
, (2.6)

where the parameters bj , 1 ≤ j ≤ 2k + 2, are given by

bj =


j−1
k , if 1 ≤ j ≤ k,

1
2 −

1+z
2k , if j = k + 1,

2 + 3−2j
2k , if k + 2 ≤ j ≤ 2k + 1,

1− 1+z
2k , if j = 2k + 2,

(2.7)

and G k+1,0
0,2k+2

(
{}

b1, · · · , b2k+2

∣∣∣14 ( x2k)2k) is the Meijer G-function defined in (3.7).

This result will be crucially used in the proofs of Theorems 2.2 and 2.4. A proof of this
result is offered in Section 4 using the uniqueness theorem of linear differential equations.
Compare (4.2) with (4.43) by means of Lemma 4.6.

We are now ready to give our first version of the Voronoı̈ summation formula for σ(k)
z (n)

which involvesH(k)
z (x), the aforementioned generalization of the Hardy-Koshliakov integral.

Theorem 2.2. Let 0 < α < β and α, β 6∈ Z. Let k ∈ N and z ∈ C with −1 < Re(z) < k and
z 6= k−1. Let S(k)

z (n) be defined in (1.13) and let f(x) be analytic inside a closed contour containing
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[α, β]. Then∑
α<n<β

σ(k)
z (n)f(n) =

∫ β

α
f(t)

(
ζ(k − z) +

1

k
t
1+z
k
−1ζ

(
1 + z

k

))
dt

+ 2(2π)
1+z
k
−1
∞∑
n=1

S(k)
z (n)

∫ β

α
f(t)t

1+z
k
−1H(k)

z

(
(2π)

1
k

+1(nt)
1
k

)
dt. (2.8)

If z = k − 1, then∑
α<n<β

σ
(k)
k−1(n)f(n) =

∫ β

α
f(t)

(
(k + 1)γ + log(t)

k

)
dt

+ 2
∞∑
n=1

S
(k)
k−1(n)

∫ β

α
f(t)H

(k)
k−1

(
(2π)

1
k

+1(nt)
1
k

)
dt. (2.9)

As a corollary of the above theorem, we obtain the well-known Voronoı̈ summation formula
for σz(n) [5, Theorem 6.1].

Corollary 2.3. Let 0 < α < β and α, β /∈ Z. Let f denote a function analytic inside a closed contour
strictly containing [α, β]. Assume that −1 < Re(z) < 1, z 6= 0. Then3,∑

α<j<β

σ−z(j)f(j) =

∫ β

α
(ζ(1 + z) + t−zζ(1− z))f(t) dt

+ 2π

∞∑
n=1

σ−z(n)n
1
2
z

∫ β

α
t−

1
2
zf(t)

{(
2

π
Kz(4π

√
nt)− Yz(4π

√
nt)

)
× cos

(πz
2

)
− Jz(4π

√
nt) sin

(πz
2

)}
dt. (2.10)

Moreover, if we let k = 1 in (2.9), then using (2.4), we get (1.5).

Also, letting z = 0 in Theorem 2.2 readily gives Theorem 1.2. Thus, Theorem 2.2 is a
simultaneous generalization of Koshliakov’s result in Theorem 1.2 and Corollary 2.3.

Throughout the sequel, F (s), or M(f)(s), will always denote the Mellin transform of a
function f . Let S (R) denote the space of Schwartz functions on R, that is, those functions
f which satisfy f ∈ C∞(R) and all of whose derivatives (including f itself) tend to 0 faster
than any power of |x| as |x| → ∞. See [13, p. 177]. Our next result is the “infinite” version
of Theorem 2.2 for Schwartz functions f .

Theorem 2.4. Let k ∈ N, z ∈ C be such that −1 < Re(z) < k, z 6= k− 1. Let f ∈ S (R). Then we
have
∞∑
n=1

σ(k)
z (n)f(n) = −1

2
ζ(−z)f(0+) + ζ(k − z)

∫ ∞
0

f(y)dy +
1

k
F

(
1 + z

k

)
ζ

(
1 + z

k

)

+
(2π)(k+1)( 1+z

k )−z

π2

∞∑
n=1

S(k)
z (n)

∫ ∞
0

H(k)
z

(
(2π)1+1/k(ny)1/k

)
y

1+z
k
−1f(y)dy,

(2.11)

3In [5, Theorem 6.1], it was assumed that −1/2 < Re(z) < 1/2. However, we see here that the result actually
holds for −1 < Re(z) < 1.
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where S(k)
z (n) and H(k)

z (x) are defined in (1.13) and (2.3) respectively. Moreover, when z = k − 1,
∞∑
n=1

σ
(k)
k−1(n)f(n) = −1

2
ζ(1− k)f(0+) +

∫ ∞
0

f(t)

(
(k + 1)γ + log(t)

k

)
dt

+ 4
∞∑
n=1

S
(k)
k−1(n)

∫ ∞
0

H
(k)
k−1

(
(2π)1+1/k(ny)1/k

)
f(y)dy.

Remark 3. If we let z = 0 in (2.11), then one can obtain the aforementioned extension of Koshliakov’s
Theorem 1.2, that is, the one obtained by letting α→ 0 and β →∞ in it.

Define B(z, b) by

B(z, b) :=

∫ ∞
0

tz cos t

t2 + b2
dt. (2.12)

This integral converges only in the region −1 < Re(z) < 2, where it is also given by [44,
p. 43, Equation (5.8)]4

B(z, b) =
πbz−1

2

cosh b

cos(πz/2)
+ Γ(z − 1) sin(πz/2)1F2

(
1; 1− z

2
,
3− z

2

∣∣∣∣b24
)

(2.13)

=
πbz−1

2

cosh b

cos(πz/2)
− π

2 cos(πz/2)

∞∑
n=0

b2n

Γ(2n− z + 2)
, (2.14)

where 1F2

(
a; b, c

∣∣z) :=
∑∞

n=0
(a)n

(b)n(c)n
zn

n! is the 1F2-hypergeometric sfunction with (a)n :=

Γ(a+ n)/Γ(a) being the shifted factorial. Here, b ∈ C with b 6= ±iy for any real number y.

Remark 4. At first glance, it appears that the right-hand side of (2.13) has singularities at every
odd integer. However, in Section 6 we show that the odd positive integers are removable singularities
whereas it has poles at all odd negative integers. Thus the right-hand side of (2.13) provides meromorphic
continuation of B(z, b) to the whole complex plane with simple poles at z = −1,−3,−5, · · · .

As a special case of Theorem 2.4, we obtain the following result.

Theorem 2.5. Let k ∈ N, z ∈ C be such that −1 < Re(z) < k and z 6= k − 1. Let B(z, b)

be defined in (2.12) and (2.13). Let a = 2π
(

2πn
w

)1/k, where Re(w) > 0 and Aj = ζ
(2−k)(2j−1)
4k ,

Bj = ζ
(1−k)(2j)
4k , where ζ4k is the primitive 4k-th root of unity. For k ≥ 2 even,
∞∑
n=1

σ(k)
z (n)e−nw = −ζ(−z)

2
+
ζ(k − z)

w
+

1

k

Γ
(

1+z
k

)
ζ
(

1+z
k

)
w(1+z)/k

+
(−1)

k
2
−1(2π)2+ 2

k
−z

π2kw2/k

×
∞∑
n=1

S(k)
z (n)n

1−z
k

k
2∑
j=1

[
AjB(z, aζ2j−1

4k ) +AjB(z, aζ
−(2j−1)
4k )

]
, (2.15)

and for k ≥ 1 odd,
∞∑
n=1

σ(k)
z (n)e−nw = −ζ(−z)

2
+
ζ(k − z)

w
+

1

k

Γ
(

1+z
k

)
ζ
(

1+z
k

)
w(1+z)/k

+
(−1)

k−1
2 (2π)1+ 1

k
−z

π2kw1/k

4There is a typo in the stated formula in [44] in that b−z should be replaced by b2−z .



12 ATUL DIXIT, BIBEKANANDA MAJI AND AKSHAA VATWANI

×
∞∑
n=1

S(k)
z (n)n−z/k

[
B(z + 1, a) +

k−1
2∑
j=1

[
Bj B

(
z + 1, aζ2j

4k

)
+Bj B

(
z + 1, aζ

−(2j)
4k

) ]]
.

(2.16)

Letting z = 2m in (2.15), we obtain a generalization of Wigert’s identity (1.18).

Corollary 2.6. Let k ≥ 2 be an even integer and m be a non-negative integer with 0 ≤ m < k/2.
For Re(w) > 0, we have
∞∑
n=1

σ
(k)
2m(n)e−nw = −ζ(−2m)

2
+
ζ(k − 2m)

w
+

1

k

Γ
(

1+2m
k

)
ζ
(

1+2m
k

)
w(1+2m)/k

+
(−1)

k
2

+m−1

k

(
2π

w

) 1+2m
k

×
k/2∑
j=1

[
exp

(
iπ

2k
(1− k + 2m)(2j − 1)

)
Lk,2m

(
2π

(
2π

w

) 1
k

e
iπ
2k

(2j−1)

)

+ exp

(
− iπ

2k
(1− k + 2m)(2j − 1)

)
Lk,2m

(
2π

(
2π

w

) 1
k

e−
iπ
2k

(2j−1)

)]
,

where

Lk,z(w) :=
∞∑
n=1

S(k)
z (n) exp(−n1/kw). (2.17)

Whenm = 0, the above corollary reduces to Wigert’s identity (1.18). Letting z = 2m−1 in
(2.16) leads to the odd counterpart of Wigert’s identity. We note here that our result below
is an exact formula as compared to the asymptotic formula (1.19) of Wigert.

Corollary 2.7. Let k > 1 odd and m be an integer with 1 ≤ m < k+1
2 . For Re(w) > 0,

∞∑
n=1

σ
(k)
2m−1(n)e−nw = −ζ(1− 2m)

2
+
ζ(k − 2m+ 1)

w
+

1

k

Γ
(

2m
k

)
ζ
(

2m
k

)
w(2m)/k

+
(−1)

k−1
2

+m

k

(
2π

w

) 2m
k

×

[
Lk,2m−1

(
2π

(
2π

w

) 1
k

)
+

k−1
2∑
j=1

[
exp

(
iπj

k
(−k + 2m)

)
Lk,2m−1

(
2π

(
2π

w

) 1
k

e
iπj
k

)

+ exp

(
− iπj

k
(−k + 2m)

)
Lk,2m−1

(
2π

(
2π

w

) 1
k

e−
iπj
k

)]]
.

where Lk,z(w) is defined in (2.17).

Theorem 2.2 indicates that it may be possible to derive the following asymptotic formula
for σ(k)

z (n) for k > 1 and −1 < Re(z) < k, z 6= k − 1 :∑
n≤x

σ(k)
z (n) = ζ(k − z)x+

1

z + 1
ζ

(
1 + z

k

)
x
z+1
k + ∆z,k(x),

where the error term ∆z,k(x) can be expressed in the form

∆z,k(x) =
∞∑
n=1

S(k)
z (n)

∫ x

0
t
1+z
k
−1H(k)

z

(
(2π)

1
k

+1(nt)
1
k

)
dt.
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Also, when z = k − 1, we have∑
n≤x

σ
(k)
k−1(n) =

x

k
(γ(k + 1)− 1 + log(x)) + ∆k−1,k(x),

with

∆k−1,k(x) =

∞∑
n=1

S
(k)
k−1(n)

∫ x

0
H

(k)
k−1

(
(2π)

1
k

+1(nt)
1
k

)
dt.

If we show that ∆z,k(x) � x1/3(log x)2, then this would not only yield the asymptotic
formulae given by Theorem 1.4 of Robles and Roy in [50], but also extend them to larger
ranges of z as well as to k ≥ 4. It may also be possible to determine better upper bounds for
∆z,k(x) by obtaining non-trivial estimates for the integral H(k)

z (x) defined in (2.3).
This is a delicate task, which we relegate to a future work.

3. PRELIMINARIES

Here we state some known results which will be useful in the sequel. For 0 < Re(s) < 1,
the Mellin transform of cos(x) is given by [28, p. 1101, Formula (3)]∫ ∞

0
cos(x)xs−1dx = Γ(s) cos

(πs
2

)
, (3.1)

so that by Mellin inversion theorem, we have, for 0 < c < 1,
1

2πi

∫
(c)

Γ(s) cos
(πs

2

)
x−sds = cos(x). (3.2)

Here, and in the rest of the paper,
∫

(c) will always denote the line integral
∫ c+i∞
c−i∞ .

Stirling’s formula for Γ(s), s = σ+ it, in a vertical strip C ≤ σ ≤ D is given by [15, p. 224]

|Γ(s)| = (2π)
1
2 |t|σ−

1
2 e−

1
2π|t|

(
1 +O

(
1

|t|

))
, (3.3)

as |t| → ∞.

Theorem 3.1 (Parseval’s formula). [46, p. 83, Equation (3.1.13)] Let F (s) andG(s) be the Mellin
transforms of f(x) and g(x) respectively. If F (1 − s) and G(s) have a common strip of analyticity,
then for any vertical line Re(s) = c in the common strip, we have

1

2πi

∫
(c)
G(s)F (1− s)ds =

∫ ∞
0

f(t)g(t)dt, (3.4)

under the assumption that the integral on the right-hand side exists and the conditions

tc−1g(t) ∈ L[0,∞) and F (1− c− it) ∈ L(−∞,∞) (3.5)

hold.

An extension of Parseval’s formula due to Vu Kim Tuan [56] is given in the next theorem.
This result allows application of Parseval’s formula in situations where the first condition in
(3.5) does not hold, albeit with an additional restriction. We will require this in the proof of
Theorem 4.4. Before we state this extension though, we define the concepts needed to do so,
namely, a new function space and a certain class of functions.

Let M−1(L) denote the space of functions f(x) which are inverse Mellin transforms of
functions F (s) ∈ L

(
1
2 − i∞,

1
2 + i∞

)
over the contour Re(s) = 1/2 with norm ||f ||M−1(L)

equal to
∫∞

0

∣∣F (1
2 + it

)∣∣ dt.
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We letK be the set of functions g(x) integrable on any segment [ε, E], 0 < ε < E <∞, and
such that the improper integral

M{g(x); s} = G(s) =

∫ ∞
0

xs−1g(x) dx, Re(s) =
1

2
,

converges boundedly, that is, there exists a constant C > 0 such that for almost all ε, E > 0

and t ∈ R, we have
∣∣∣∫ Eε xit−1/2g(x) dx

∣∣∣ < C.
Then the extension of Parseval’s theorem [56, Lemma 1] is as follows.

Theorem 3.2. Let f(x) ∈M−1(L) and g(x) ∈ K. Then the following convolution formula holds:∫ ∞
0

g(xt)f(t) dt =
1

2πi

∫
( 1
2)
G(s)F (1− s)x−s ds. (3.6)

Remark 5. Using Cauchy’s residue theorem, we note that (3.6) can be extended to any vertical strip
containing the line [1/2 − i∞, 1/2 + i∞] as long as it does not contain any poles of the integrand
and the integrals along the horizontal segments of the rectangular contour tend to zero as the height
of the contour tends to∞.

Remark 6. As mentioned in [56, Corollary 1], the cosine function belongs to the class K and hence
the extension of Parseval’s formula, that is, (3.6) holds with g(x) = cos(x) and f ∈ M−1(L). It is
this fact that will be employed in the proof of Theorem 4.4.

These results are also given in [64, p. 15-17].
The next result, which gives the evaluation of a Mellin transform of a certain rational

function, will be used in the sequel.

Lemma 3.3. For −k − Re(z) < c = Re(s) < k − Re(z),

1

2πi

∫
(c)

πt−s ds

cos
(
π
2k (z + s)

) =
2ktk+z

t2k + 1
.

Proof. Employ the change of variable t = v1/(2k) in the integral below so that∫ ∞
0

ts−1 2ktk+z

t2k + 1
dt =

∫ ∞
0

v
(s+k+z)

2k
−1

v + 1
dv =

π

sin
(
π
(

1
2 + z+s

2k

)) =
π

cos
(
π
2k (z + s)

) ,
since −k < Re(s + z) < k. The result now follows from the Mellin inversion theorem [39,
p. 341]. �

Next, we define an important special function called the Meijer G-function [45, p. 415,
Definition 16.17]. Let m,n, p, q be integers such that 0 ≤ m ≤ q, 0 ≤ n ≤ p. Let a1, · · · , ap
and b1, · · · , bq be complex numbers such that ai − bj 6∈ N for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The
Meijer G-function is defined by

Gm,n
p,q

(
a1, · · · , ap
b1, · · · , bq

∣∣∣X) :=
1

2πi

∫
L

∏m
j=1 Γ(bj − w)

∏n
j=1 Γ(1− aj + w)Xw∏q

j=m+1 Γ(1− bj + w)
∏p
j=n+1 Γ(aj − w)

dw. (3.7)

Here L goes from −i∞ to +i∞ separating the poles of Γ(1 − aj + s) from the poles of
Γ(bj − s). Note that the integral converges absolutely if p + q < 2(m + n) and | arg(X)| <
(m+n− p+q

2 )π. In the case p+q = 2(m+n) and arg(X) = 0, the integral converges absolutely
if
(
Re(w) + 1

2

)
(q − p) > Re(ψ) + 1, where ψ =

∑q
j=1 bj −

∑p
j=1 aj .

The following result elucidates the asymptotic behaviour of the MeijerG-functionGm,0
p,q (X)

when the argument is large.
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Proposition 3.4. [37, Theorem 2, p. 190] If 1 ≤ m ≤ q, then for |X| → ∞, we have

Gm,0
p,q (X) ∼ Am,0q Hp,q

(
Xeiπ(q−m)

)
, if m ≤ q − 1, δ ≤ arg(X) ≤ (m− p+ 1)π − δ, δ > 0;

Gm,0
p,q (X) ∼ Am,0q Hp,q

(
Xe−iπ(q−m)

)
, if m ≤ q − 1, δ − (m− p+ 1)π ≤ arg(X) ≤ −δ, δ > 0;

where [37, p. 183, Equation (2)]

Am,0q =

(
− 1

2πi

)ν
exp

(
−

q∑
j=m+1

bj

)
, ν = q −m, (3.8)

Am,0q is obtained by replacing i by −i in (3.8), and the function Hp,q(X) is defined by [37, p. 180]

Hp,q(X) =
(2π)(σ−1)/2

√
σ

exp
(
−σX1/σ

)
Xθ

∞∑
k=0

MkX
−k/σ, (3.9)

with σ = q − p, θ = 1
σ

(
1−σ

2 + Ξ1 − Λ1

)
, where Ξ1 =

∑q
j=1 bj and Λ1 =

∑p
j=1 aj . Here M0 = 1

and M ′ks are independent of X .

Lastly, we define certain mathematical objects which will play an important role in the
proof of Theorem 2.1. Consider the monic polynomial (w − x1)(w − x2) · · · (w − xn) and
let Xn = {x1, x2, · · · , xn}. For all n, k ∈ N, the elementary symmetric polynomial e`(Xn) is
given by [26, p. 24]

e`(Xn) :=
∑

1≤j1<···<j`≤n

∏̀
m=1

xjm . (3.10)

It is well-known that
n∑
j=0

ej(Xn)tj =
n∏
j=1

(1 + xjt).

For all n, k ∈ N, the Stirling number of the second kind S(n, k) is the number of set partitions
of {1, 2, · · · , n}with exactly k non-empty parts. Clearly, S(n, k) = 0 for n < k. By convention,
S(0, 0) = 1. See [8, p. 204, Chapter V] for more details.

4. A GENERALIZATION OF THE HARDY-KOSHLIAKOV INTEGRAL H
(k)
z (x)

4.1. Convergence of H(k)
z (x). We begin with determining the values of z for which the

integral H(k)
z (x) in (2.3) converges.

Theorem 4.1. Let x > 0 and k ∈ N. Then H(k)
z (x) converges in−1 < Re(z) < k. Moreover, when

x = 0, it converges in −1 < Re(z) < k − 1.

Proof. Let ε > 0 be small and M be a large positive real number. For simplicity let ν = k− z.
We split the integral into three parts, namely,

H(k)
z (x) =

∫ ε

0
+

∫ M

ε
+

∫ ∞
M

cos

(
1

tk

)
cos(xt)

dt

tν
,=: I1 + I2 + I3 (say).

It is easy to observe that I2 is finite since the integrand is a continuous function on the closed
and bounded interval [ε,M ]. In the first integral I1, replacing 1/tk by T gives

I1 =
1

k

∫ ∞
ε−k

cos(T ) cos
( x

T 1/k

)
T
ν−1
k
−1dT.
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Using the series expansion of cosine, we have

I1 =
1

k

∫ ∞
ε−k

cos(T )

[
1− x2

2!T 2/k
+

x4

4!T 4/k
− · · ·+O

(
x2m

(2m)!T 2m/k

)]
T
ν−1
k
−1dT

=
1

k

∫ ∞
ε−k

cos(T )T
ν−1
k
−1dT − x2

2!k

∫ ∞
ε−k

cos(T )T
ν−3
k
−1dT +

x4

4!k

∫ ∞
ε−k

cos(T )T
ν−5
k
−1dT

+ · · ·+O

(
x2m

(2m)!

∫ ∞
ε−k

T
ν−(2m+1)

k
−1dT

)
.

The first term above is convergent for Re(ν−1
k ) < 1, the second for Re(ν−3

k ) < 1 and so on.
The final term is convergent for Re(ν−(2m+1)

k ) < 0. These conditions hold simultaneously if
Re(ν) < min{k+ 1, k+ 3, . . . , 2m+ 1}. Choosing m large enough so that 2m+ 1 > k+ 1, we
see that I1 converges for Re(ν) < k + 1. Turning to I3, we similarly have

I3 =

∫ ∞
M

cos

(
1

tk

)
cos(xt)

dt

tν

=

∫ ∞
M

cos(xt)t(−ν+1)−1dt− 1

2!

∫ ∞
M

cos(xt)t(−ν−2k+1)−1dt

+
1

4!

∫ ∞
M

cos(xt)t(−ν−4k+1)−1dt+ · · ·+O

(
1

(2m)!

∫ ∞
M

t(−ν−2mk+1)−1dt

)
.

Similar to the discussion for I1, the conditions for convergence are Re(ν) > 0,Re(ν) >
−2k, . . . ,Re(ν) > −2mk + 1. As k > 0, choosing m sufficiently large yields that I3 is
convergent for Re(ν) > 0. Combining the conditions for convergence of I1 and I3, we have
that H(k)

z (x) converges for 0 < Re(ν) < k + 1, that is, −1 < Re(z) < k, as needed.
Now let x = 0. Employing the change of variable t = u−1/k in (2.3), we see that for

−1 < Re(z) < k − 1,

H(k)
z (0) =

1

k

∫ ∞
0

u
k−1−z
k
−1 cos(u) du =

1

k
Γ

(
k − 1− z

k

)
cos

(
π

2

(
k − 1− z

k

))
, (4.1)

where in the last step we used (3.1). �

4.2. Differential equation satisfied by H(k)
z (x). Hardy [30] proved (2.4) by finding a fourth

order differential equation for H(1)
0 (x). In what follows, we adapt Hardy’s method to derive

the differential equation of order 2k+2 forH(k)
z (x). This will play a crucial role in the second

proof of Theorem 2.6.

Theorem 4.2. Let x ≥ 0, k ∈ N and −1 < Re(z) < k − 1. The function H(k)
z (x) defined in (2.3)

satisfies the homogeneous linear differential equation of order 2k + 2 given by

x2d
2k+2w

dx2k+2
+ (2z + k + 3)x

d2k+1w

dx2k+1
+ (z + 1)(z + k + 1)

d2kw

dx2k
+ (−1)kk2w = 0. (4.2)

Proof. Replacing t by 1/t in (2.3), one can see that H(k)
z (x) can be equivalently written in the

form

H(k)
z (x) =

∫ ∞
0

cos
(x
t

)
cos
(
tk
) dt

tz−k+2
.
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Let us define the following two functions:

Jk := Jk(x, s) :=

∫ ∞
0

cos
(x
t

)
cos
(
tk
) dt
ts
,

Ik := Ik(x, s) :=

∫ ∞
0

sin
(x
t

)
sin
(
tk
) dt
ts
.

Since Jk(x, z−k+ 2) = H
(k)
z (x), Theorem 4.1 implies that Jk converges in 1−k < Re(s) < 2.

In a similar vein, one can show that Ik converges in −k < Re(s) < k + 2. First suppose that
0 < Re(s) < 1. Observe that for any k ∈ N, both Jk and Ik converge in this strip.

From [7, p. 433], one can see that Jk (and also Ik) are uniformly convergent with respect
to x in any interval 0 < x0 ≤ x ≤ x1. Hence differentiation under the integral sign with
respect to x yields

dJk
dx

= −
∫ ∞

0
sin
(x
t

)
cos
(
tk
) dt

ts+1
.

We cannot directly differentiate the above integral with respect to x under the integral sign,
for, the resulting integral becomes divergent. However,∫ ∞

0

(
1− cos(tk)

)
sin
(x
t

) dt

ts+1
=
dJk
dx

+

∫ ∞
0

sin
(x
t

) dt

ts+1

=
dJk
dx

+ x−sΓ(s) sin
(πs

2

)
, (4.3)

where the last step resulted from the well-known identity∫ ∞
0

uξ−1 sin(xu) du = x−ξΓ(ξ) sin

(
πξ

2

)
(−1 < Re(ξ) < 1). (4.4)

(Note that in our case, we have assumed 0 < Re(s) < 1, thus permitting us to use the above
evaluation.) Now we can differentiate (4.3) under the integral sign thereby obtaining

d2Jk
dx2

− x−s−1Γ(s+ 1) sin
(πs

2

)
=

∫ ∞
0

(
1− cos(tk)

)
cos
(x
t

) dt

ts+2

= −1

x

∫ ∞
0

(
1− cos(tk)

)
ts

d

dt
sin
(x
t

)
dt

= −1

x

[(
1− cos(tk)

)
ts

sin
(x
t

)]∞
0

+
1

x

∫ ∞
0

sin
(x
t

) d

dt

((
1− cos(tk)

)
ts

)
dt

=
k

x
Ik(x, s+ 1− k)− s

x

dJk
dx
− x−s−1Γ(s+ 1) sin

(πs
2

)
,

where, the last step follows from (4.4) and the fact that the condition 0 < Re(s) < 1 renders
the boundary terms zero. Hence

d2Jk
dx2

+
s

x

dJk
dx

=
k

x
Ik(x, s+ 1− k). (4.5)

Similarly, one can derive that

d2Ik
dx2

+
s

x

dIk
dx

=
k

x
Jk(x, s+ 1− k). (4.6)
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Multiply both sides of (4.5) by x and then differentiate the resulting equation with respect
to x to get

x
d3Jk
dx3

+ (s+ 1)
d2Jk
dx2

= k
d

dx
Ik(x, s+ 1− k). (4.7)

Now multiply both sides by x and differentiate once again to see that

x
d4Jk
dx4

+ (s+ 2)
d3Jk
dx3

= −kIk(x, s+ 3− k), (4.8)

where we used the fact d
2Ik(x,s)
dx2

= −Ik(x, s+2). Differentiating (4.8) k−3 times with respect
to x, we arrive at the equation

x
dk+1Jk
dxk+1

+ (s+ k − 1)
dkJk
dxk

= (−1)
k+3
2 kIk(x, s) (4.9)

for k odd, and at

x
dk+1Jk
dxk+1

+ (s+ k − 1)
dkJk
dxk

= (−1)
k+2
2 k

d

dx
Ik(x, s− 1) (4.10)

for k even. Similarly,

x
dk+1Ik
dxk+1

+ (s+ k − 1)
dkIk
dxk

= (−1)
k+3
2 kJk(x, s), for k odd, (4.11)

x
dk+1Ik
dxk+1

+ (s+ k − 1)
dkIk
dxk

= (−1)
k+2
2 k

d

dx
Jk(x, s− 1), for k even. (4.12)

Now applying the differential operator D := x dk+1

dxk+1 + (s + k − 1) dk

dxk
on both sides of (4.9),

utilizing (4.11) and substituting s = z− k+ 2, we derive the differential equation in (4.2) for
k odd. However, when k + 1 is odd, one needs to use the differential operator x dk

dxk
+ (s +

k − 2) dk−1

dxk−1 on both sides of (4.10) so that we can employ (4.12), with s replaced by s− 1, to
obtain

x2d
2k+1Jk
dx2k+1

+ x(2s+ 3k − 3)
d2kJk
dx2k

+ (s+ k − 2)(s+ 2k − 2)
d2k−1Jk
dx2k−1

= k2 d

dx
Jk(x, s− 2).

Finally, differentiating once again and observing d2Jk(x,s)
dx2

= −Jk(x, s+ 2), we arrive at (4.2)
again upon replacing s by z − k + 2.

Our assumption 0 < Re(s) < 1 implies k − 2 < Re(z) < k − 1. But from Theorem 4.1,
H

(k)
z (x) itself converges for −1 < Re(z) < k. Hence (4.2) holds for k ∈ N and all z with
−1 < Re(z) < k − 1.

�

Remark 7. We note in passing that (4.5), (4.6) and the above analysis show that

Ik(x, z − k + 2) =

∫ ∞
0

sin
(x
t

)
sin
(
tk
) dt

tz−k+2
=

∫ ∞
0

tz−k sin(xt) sin

(
1

tk

)
dt (4.13)

also satisfies the same differential equation given by (4.2).
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4.3. The auxiliary integralK(k)
z (x). We derive some properties of the integralK(k)

z (x) defined
in (2.5). The first one expresses it in terms of a Meijer-G function.

Theorem 4.3. Let k ∈ N. Let X = 1
4

(
x
2k

)2k, where | arg(x)| ≤ π/(2k). Then

K(k)
z (x) =

1
√
k 2

1+z
k

G k+2,0
0,2k+2

(
{}

b
′
1, · · · , b

′
2k+2

∣∣∣X) , (4.14)

where

b
′
j =


j−1
k , if 1 ≤ j ≤ k,
k−1−z

2k , if j = k + 1,
2k−1−z

2k , if j = k + 2,
4k−2j+5

2k if k + 3 ≤ j ≤ 2k + 2,

(4.15)

and where we additionally assume −1 < Re(z) < k if | arg(x)| = π/(2k).

Proof. Invoke the variant of Euler’s reflection formula, namely cos
(
πw
2

)
= π

Γ( 1−w
2 )Γ( 1+w

2 )
,

the duplication formula Γ(s)

Γ( 1+s
2 )

=
Γ( s2)2s−1

√
π

in (2.5) and then replace s by 2ks so as to get

upon simplification

K(k)
z (x) =

√
π

1

2πi

∫
( c
2k )

Γ (ks) Γ
(
2s+ k−1−z

k

)
Γ
(

1
2 − ks

) (
2

x

)2ks

ds. (4.16)

Again use the duplication formula for Γ
(
2s+ k−1−z

k

)
followed by the Gauss multiplication

formula [52, p. 52]
m∏
j=1

Γ

(
w +

j − 1

m

)
= (2π)

1
2

(m−1)m
1
2
−mwΓ(mw) (m ∈ N) (4.17)

for Γ(ks) and Γ
(

1
2 − ks

)
to arrive at

K(k)
z (x) =

1
√
k 2

1+z
k

1

2πi

∫
( c
2k )

∏k
j=1 Γ

(
s+ j−1

k

)
Γ
(
s+ k−1−z

2k

)
Γ
(
s+ 2k−1−z

2k

)
∏k
j=1 Γ

(
2j−1

2k − s
) (

2k

x

)2ks

4s ds

=
1

√
k 2

1+z
k

1

2πi

∫
( c
2k )

∏k
j=1 Γ

(
s+ j−1

k

)
Γ
(
s+ k−1−z

2k

)
Γ
(
s+ 2k−1−z

2k

)
∏2k+2
j=k+3 Γ

(
2j−2k−5

2k − s
) X−s ds,

where X = 1
4

(
x
2k

)2k. Replace s by −s to obtain

K(k)
z (x) =

1
√
k 2

1+z
k

1

2πi

∫
(− c

2k )

∏k
j=1 Γ

(
j−1
k − s

)
Γ
(
k−1−z

2k − s
)

Γ
(

2k−1−z
2k − s

)
∏2k+2
j=k+3 Γ

(
2j−2k−5

2k + s
) Xs ds.

(4.18)

Comparing this with the definition (3.7) of the Meijer G-function, we see that m = k + 2,
n = p = 0, q = 2k + 2 and the b

′
j are as defined in (4.15).

One can check that
∑2k+2

j=1 b
′
j = 1 + k − 1+z

k . Since p + q < 2(m + n), the integral

representation (4.18) ofK(k)
z (x) converges absolutely for | arg(X)| < π, that is, for | arg(x)| <

π/(2k), and can be expressed as the Meijer G-function given on the right-hand side of (4.14).
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Now let | arg(x)| = π/(2k). Then we show that K(k)
z (x) is conditionally convergent,

provided max{0, 1 − k + Re(z)} < Re(s) = c ≤ 1+Re(z)
k+1 . We will prove this in the case

arg(x) = π/(2k). The result can be similarly obtained in the other case, that is, when
arg(x) = −π/(2k). Let x = reiπ/(2k), r > 0. Then

K(k)
z (x) =

1

2πik

∫
(c)

Γ(s) cos
(πs

2

)
Γ

(
s− 1− z

k
+ 1

)
e−

iπs
2k r−s ds

=
1

2πk

[∫ −T
−∞

+

∫ T

−T
+

∫ ∞
T

]
Γ(c+ it) cos

(π
2

(c+ it)
)

Γ

(
c+ it− 1− z

k
+ 1

)
e−

iπ(c+it)
2k

dt

rc+it
,

where T > Im(z) is large enough. The integral from −T to T is clearly finite. We now
consider the integral from T to ∞. From [18, p. 73], as |s| → ∞ in the angle −π + δ <
arg(s) < π − δ, for any fixed δ > 0,

Γ(s) =
√

2π exp

((
s− 1

2

)
log(s)− s

)(
1 +O

(
1

|s|

))
.

With θ = tan−1(t/c), this implies that as t→∞,

Γ(c+ it) = exp

((
c− 1

2

)
log(t)− tθ − c

)
· exp (if1(t))

(
1 +O

(
1

t

))
, (4.19)

where f1(t) = t log(t) + θ
(
c− 1

2

)
− t. Next,

cos

(
π(c+ it)

2

)
=

1

2

(
exp

(
iπ

2
(c+ it)

)
+ exp

(
− iπ

2
(c+ it)

))
. (4.20)

Let c1 = 1 + 1
k (c − 1 − Re(z)) and t1 = 1

k (t − Im(z)). Clearly, c1 > 0 and t1 > 0. With
θ1 = tan−1(t1/c1), this implies that as t→∞,

Γ(c1 + it1) = exp

((
c1 −

1

2

)
log(t1)− t1θ1 − c1

)
· exp (if2(t))

(
1 +O

(
1

t

))
, (4.21)

where f2(t) = t1 log(t1) + θ1

(
c1 − 1

2

)
− t1. Also,

exp

(
− iπs

2k

)
= exp

( π
2k

(Im(z)− ic)
)

exp

(
πt1
2

)
. (4.22)

Moreover, since tan−1(x) + tan−1(1/x) = π/2 for x > 0, we find that as t→∞,

θ =
π

2
− c

t
+O

(
1

t2

)
,

θ1 =
π

2
− c1

t1
+O

(
1

t21

)
. (4.23)

Now let f(t) = f1(t)+f2(t). Hence using from (4.19)-(4.23) and observing that f ′(t) ∼ log(t)
and f ′′(t)� 1/t as t→∞, we see that∫ ∞

T
Γ(c+ it) cos

(π
2

(c+ it)
)

Γ

(
c+ it− 1− z

k
+ 1

)
e−

iπ(c+it)
2k

dt

rc+it

= az,k,r,c

∫ ∞
T

t(c−
1
2

)+(c1− 1
2

) exp (i(f(t)− t log(r)))

(
1 +O

(
1

t

))
dt

= az,k,r,c

{[
tc+c1−1

i(f ′(t)− log(r))
exp (i(f(t)− t log(r)))

]∞
T

+O

(∫ ∞
T

tc+c1−2 dt

)}
,
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where az,k,r,c is a constant. Here, in the last step, we performed integration by parts on
the first integral. Thus the integral will be finite only if c + c1 ≤ 1, which implies that
c ≤ (1 + Re(z))/(k + 1). One can similarly show the existence of the integral from −∞
to −T . This shows that K(k)

z (x) is conditionally convergent on the ray arg(x) = π/(2k),
provided max{0, 1− k + Re(z)} < Re(s) = c ≤ 1+Re(z)

k+1 . Proceeding as in the first part of the
proof, we see that (4.14) holds for | arg(x)| = π/(2k) as well.

�

Remark 8. In | arg(x)| < π/(2k), K(k)
z (x) is an analytic function of x as can be seen from [52,

p. 30, Theorem 2.3] or, with the help of Theorem 4.3, from [47, p. 618].

For x > 0,K(k)
z (x) has a representation as an integral of a real variable given in the following

theorem. This will be instrumental in proving Theorem 2.1.

Theorem 4.4. Let K(k)
z (z) be defined in (2.5). For x ≥ 0 and Re(z) < k, we have

K(k)
z (x) =

∫ ∞
0

exp

(
− 1

tk

)
cos(xt)

dt

tk−z
. (4.24)

Proof. We first prove the above result for Re(z) < k−1/2 and then extend it to Re(z) < k by
analytic continuation. As mentioned in Remark 6, we can take g(t) = cos(t) in Theorem 3.2.
Then, from (3.1), G(s) = Γ(s) cos

(
πs
2

)
x−s. Moreover, if f(t) = tz−k exp

(
−t−k

)
, then, with

the change of variable t = u−1/k, it is easy to see that

F (s) =
1

k
Γ

(
k − s− z

k

)
(Re(s) < k − Re(z)).

Now for f to be in M−1(L), we must have 1/2 < k − Re(z). This explains the condition
Re(z) < k − 1/2 that we initially need to impose.

Invoking Theorem 3.2 with the above choices of k and f , we see that∫ ∞
0

exp

(
− 1

tk

)
cos(xt)

dt

tk−z
=

1

2πi

∫
( 1
2)

Γ(s) cos
(πs

2

)
Γ

(
s− 1− z

k
+ 1

)
ds

kxs

= K(k)
z (x),

where in the last step we used Remark 5 and the fact that the line [1/2 − i∞, 1/2 + i∞] lies
in the half-plane max{0, 1− k + Re(z)} < Re(s). This proves (4.24) for Re(z) < k − 1/2.

Next, using the techniques of Theorem 4.1, it is easy to see that the right-hand side of
(4.24) is convergent in Re(z) < k and is analytic in this region. Along with the discussion
following (2.5), we see that by analytic continuation, (4.24) holds for Re(z) < k. �

Koshliakov [35, Equation (9)] has shown that for n ∈ N and x > 0,

K0

(
4πe

iπ
4
√
nx
)

+K0

(
4πe−

iπ
4
√
nx
)

=
1

2πi

∫
( 3
2

)

Γ2(s) cos
(
πs
2

)
(2π)2s(nx)s

ds.

An easy application of the residue theorem after shifting the line of integration from Re(s) =
3/2 to Re(s) = c, 0 < c < 1, and then comparing with (2.5) yields

K
(1)
0 (4π2nx) = K0

(
4πe

iπ
4
√
nx
)

+K0

(
4πe−

iπ
4
√
nx
)
.

More generally, we have
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Theorem 4.5. Let Kν(ξ) be the modified Bessel function of the second kind defined in (1.3). For
x > 0, n ∈ N and Re(z) < 1,

K(1)
z (4π2nx) = (2π

√
nx)−z

{
e−

iπz
4 Kz

(
4πe

iπ
4
√
nx
)

+ e
iπz
4 Kz

(
4πe−

iπ
4
√
nx
)}

. (4.25)

Proof. For Re(s) > ± Re(z) and Re(a) > 0, we have∫ ∞
0

xs−1Kz(ax) dx = 2s−2a−sΓ

(
s− z

2

)
Γ

(
s+ z

2

)
.

Replace s by 2s, x by
√
x and then let a = 4πe±iπ/4

√
n so that for Re(s) > ± Re

(
z
2

)
,∫ ∞

0
xs−1Kz

(
4πe±iπ/4

√
nx
)
dx = 22s−1

(
4πe±iπ/4

√
n
)−2s

Γ
(
s− z

2

)
Γ
(
s+

z

2

)
.

Therefore, ∫ ∞
0

xs−1
{
e
iπz
4 Kz

(
4πeiπ/4

√
nx
)

+ e−
iπz
4 Kz

(
4πe−iπ/4

√
nx
)}

dx

= (4π2n)−sΓ
(
s− z

2

)
Γ
(
s+

z

2

)
cos
(π

2

(z
2
− s
))

.

Hence by the Mellin inversion theorem [39, p. 341], we have with c =Re(s) > ± Re
(
z
2

)
,

1

2πi

∫
(c)

Γ
(
s− z

2

)
Γ
(
s+

z

2

)
cos
(π

2

(z
2
− s
))

(4π2nx)−s ds

= e
iπz
4 Kz

(
4πeiπ/4

√
nx
)

+ e−
iπz
4 Kz

(
4πe−iπ/4

√
nx
)
.

Now replace z by −z in the above equation and use the well-known fact K−z(y) = Kz(y) so
as to get for Re(s) > ± Re

(
z
2

)
,

1

2πi

∫
(c)

Γ
(
s− z

2

)
Γ
(
s+

z

2

)
cos
(π

2

(z
2

+ s
))

(4π2nx)−s ds

= e−
iπz
4 Kz

(
4πeiπ/4

√
nx
)

+ e
iπz
4 Kz

(
4πe−iπ/4

√
nx
)
. (4.26)

Finally, replace s by s− z/2 in (4.26) so that for max {0,Re(z)} < c′ = Re(s),

1

2πi
(4π2nx)z/2

∫
(c′)

Γ(s− z)Γ(s) cos
(πs

2

)
(4π2nx)−s ds

= e−
iπz
4 Kz

(
4πeiπ/4

√
nx
)

+ e
iπz
4 Kz

(
4πe−iπ/4

√
nx
)
.

Upon adding the restriction Re(s) < 1 and observing (2.5), this leads us to (4.25). �

4.4. Relation between H
(k)
z (x) and K

(k)
z (x). The integrals H(k)

z (x) and K
(k)
z (x) defined in

(2.3) and (2.5) respectively are related by means of the identity in Theorem 2.1 of which
we now give a proof. Note also that neither Parseval’s formula (3.4) nor its extension
in (3.6) is capable of handling the integral H(k)

z (x) since the integrand of H(k)
z (x) cannot

be decomposed in any way into functions f and g so that they satisfy the conditions of
Theorems 3.1 or 3.2.

We prove Theorem 2.1 using the uniqueness theorem in the theory of linear differential
equations [11, p. 21, Section 6]. But before that, we need the following lemma.
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Lemma 4.6. Let X2k+2 = {b1, b2, · · · , b2k+2} where bj , 1 ≤ j ≤ 2k + 2, are defined in (2.7). Let
e`(X2k+2) denote the elementary symmetric polynomial defined in (3.10) and let S(n, k) denote the
Stirling numbers of the second kind defined in Section 3. Then

2k+2−m∑
j=0

(−2k)jej(X2k+2)S(2k + 2− j,m) =


1, if m = 2k + 2,

2z + k + 3, if m = 2k + 1,

(z + 1)(z + k + 1), if m = 2k,

0, if 1 ≤ m ≤ 2k − 1.

(4.27)

Proof. The result holds trivially for m = 2k + 2 since S(2k + 2, 2k + 2) = 1.
Now let m = 2k + 1. Using the fact

e1(X2k+2) =
2k+2∑
j=1

bj = 1 + k − 1 + z

k
, (4.28)

as well as the result [8, p. 227]

S(n, n− 1) = n(n− 1)/2, (4.29)

in the second step, we see that
1∑
j=0

(−2k)jej(X2k+2)S(2k + 2− j, 2k + 1) = S(2k + 2, 2k + 1)− 2ke1(X2k+2)S(2k + 1, 2k + 1)

= (k + 1)(2k + 1)− 2k

(
1 + k − 1 + z

k

)
= 2z + k + 3.

Now let m = 2k. Then substituting (4.28), (4.29) and the identity [8, p. 227]

S(n, n− 2) =
1

24
n(n− 1)(n− 2)(3n− 5)

in the second step below, we have
2∑
j=0

(−2k)jej(X2k+2)S(2k + 2− j, 2k)

= S(2k + 2, 2k)− 2ke1(X2k+2)S(2k + 1, 2k) + 4k2e2(X2k+2)S(2k, 2k)

=
1

24
(2k + 2)(2k + 1)(2k)(6k + 1)− 2k

(
1 + k − 1 + z

k

)
(k(2k + 1)) + 4k2e2(X2k+2).

(4.30)

Using (2.7), we now show

e2(X2k+2) =
∑

1≤i<j≤2k+2

bibj =
1

24k2

(
12k4 + 16k3 − 3k2(7 + 8z)− k(7 + 6z) + 6(1 + z)2

)
.

(4.31)
To that end, observe that

∑
1≤i<j≤2k+2

bibj =
∑

2≤i<j≤k

(i− 1)(j − 1)

k2
+ bk+1

2k+2∑
i=2

bi +

(
k∑
i=2

i− 1

k

) 2k+1∑
j=k+2

(
2 +

3− 2j

k

)
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+
∑

k+2≤i<j≤2k+1

(
2 +

3− 2i

k

)(
2 +

3− 2j

k

)
+ b2k+2

2k+1∑
i=2

bi − bk+1b2k+2,

(4.32)

where the last expression on the right was subtracted since it was considered twice, once in
bk+1

∑2k+2
i=2 bi, and again in b2k+2

∑2k+1
i=2 bi. Now it can be seen that∑

2≤i<j≤k

(i− 1)(j − 1)

k2
=

1

24k
(3k3 − 10k2 + 9k − 2),

bk+1

2k+2∑
i=2

bi =

(
1

2
− 1 + z

2k

)(
1

2
+ k − 1 + z

2k

)
,

k∑
i=2

i− 1

k

2k+1∑
j=k+2

(
2 +

3− 2j

k

)
=
k(k − 1)

4
,

b2k+2

2k+1∑
i=2

bi =

(
1− 1 + z

2k

)(
k − 1 + z

2k

)
,

bk+1b2k+2 =

(
1

2
− 1 + z

2k

)(
1− 1 + z

2k

)
. (4.33)

Substituting (4.33) in (4.32) and simplifying, we arrive at (4.31), and substituting (4.31), in
turn, in (4.30) gives (4.27) for m = 2k upon simplification.

It remains to show the validity of (4.27) in the case 1 ≤ m ≤ 2k − 1. To that end, we
represent S(2k + 2− j,m) using the identity [8, p. 204, Theorem A]

S(`,m) =
1

m!

m∑
n=1

(−1)m−n
(
m

n

)
n`,

and then interchange the order of summation consequently obtaining

2k+2−m∑
j=0

(−2k)jej(X2k+2)S(2k + 2− j,m)

=
(−1)m

m!

m∑
n=1

(−1)n
(
m

n

)
n2k+2

2k+2∑
j=0

(
−2k

n

)j
ej(X2k+2)

=
(−1)m

m!

m∑
n=1

(−1)n
(
m

n

)
n2k+2

2k+2∏
j=1

(
1− 2k

n
bj

)
.

Now it is important to observe that for any 1 ≤ n ≤ m and any 1 ≤ m ≤ 2k − 1, the
product

∏2k+2
j=1

(
1− 2k

n bj
)

equals zero since there is precisely one factor in the product which
vanishes.

Indeed, for any odd n of the form n = 2`− 1, where 1 ≤ ` ≤ k, we have 1− 2k
n b2k−`+2 = 0

as can be seen from (2.7). Similarly, for any even n of the form n = 2`, where 1 ≤ ` ≤ k − 1,
the expression 1− 2k

n b`+1 = 0. This proves (4.27) in the remaining case 1 ≤ m ≤ 2k − 1 and
completes the proof. �
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Proof of Theorem 2.1: We initially prove the result for −1 < Re(z) < k − 1 and later extend
it by analytic continuation to −1 < Re(z) < k. Define

A(k)
z (x) :=

1

2

{
exp

(
iπ(k − 1− z)

2k

)
K(k)
z

(
e−

iπ
2kx
)

+ exp

(
−iπ(k − 1− z)

2k

)
K(k)
z

(
e
iπ
2kx
)}

.

(4.34)

We first show that for −1 < Re(z) < k − 1, the identity in (2.6) holds for x = 0, that is,

H(k)
z (0) = A(k)

z (0) =
π

√
k2

1+z
k

G k+1,0
0,2k+2

(
{}

b1, · · · , bq

∣∣∣0) =
1

k
Γ

(
k − 1− z

k

)
cos

(
π

2

(
k − 1− z

k

))
.

(4.35)
From (4.36), for −1 < Re(z) < k − 1,

H(k)
z (0) =

1

k
Γ

(
k − 1− z

k

)
cos

(
π

2

(
k − 1− z

k

))
. (4.36)

Invoking Theorem 4.4 and employing again the change of variable t = u−1/k, we see that
for Re(z) < k − 1,

K(k)
z (0) =

1

k

∫ ∞
0

u
k−1−z
k
−1e−u du =

1

k
Γ

(
k − 1− z

k

)
,

which when substituted in (4.34) yields

A(k)
z (0) =

1

k
Γ

(
k − 1− z

k

)
cos

(
π

2

(
k − 1− z

k

))
. (4.37)

Next, we prove the last equality of (2.6). To that end, note that by Slater’s theorem5 [37,
p. 145, formula (7)],

G k+1,0
0,2k+2

(
{}

b1, · · · , b2k+2

∣∣∣0) =

∏k+1
j=2 Γ(bj − b1)∏2k+2

j=k+2 Γ(1 + b1 − bj)

=

∏k
j=1 Γ

(
j
k

)
Γ
(

1
2 −

1+z
2k

)
∏k
j=1 Γ

(
1
2k + j−1

k

)
Γ
(

1+z
2k

)
=

1√
kπ

Γ
(

1
2 −

1+z
2k

)
Γ
(

1+z
2k

) ,

where the last step results from applying (4.17) twice, once with w = 1/k and m = k, and
the second time with w = 1/(2k) and m = k. This implies that

π
√
k2

1+z
k

G k+1,0
0,2k+2

(
{}

b1, · · · , b2k+2

∣∣∣0) =

√
π

k2
1+z
k

Γ
(

1
2 −

1+z
2k

)
Γ
(

1+z
2k

)
=

1

k
Γ

(
k − 1− z

k

)
cos

(
π

2

(
k − 1− z

k

))
, (4.38)

5In general, Meijer G-function has a complicated branch point at x = 0. However, since b1 = 0, bj > 0 for
2 ≤ j ≤ k, and Re(bk+1) > 0 because of the condition −1 < Re(z) < k − 1, Slater’s theorem is applicable,
thereby giving the non-trivial value of the Meijer G-function.
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as can be seen by specializing the identity [18, p. 73],

Γ
(
s
2

)
Γ
(

1
2 −

s
2

) = 21−sπ−1/2Γ(s) cos
(πs

2

)
with s = 1− (1 + z)/k. From (4.36), (4.37) and (4.38), we have proven (4.35) in totality.

We next show that for x > 0,

A(k)
z (x) =

π
√
k2

1+z
k

G k+1,0
0,2k+2

(
{}

b1, · · · , bq

∣∣∣1
4

( x
2k

)2k
)
. (4.39)

To that end, using (2.5) and making a note of the discussion following it, it is easy to see that
for max{0, 1− k + Re(z)} < Re(s) = c ≤ 1+Re(z)

k+1 ,

A(k)
z (x) =

1

2πi

∫
(c)

Γ(s) cos
(πs

2

)
Γ

(
s− 1− z

k
+ 1

)
cos

(
π

2

(
s− 1− z

k
+ 1

))
ds

kxs
. (4.40)

Proceeding along the similar lines as in the proof of Theorem 4.3, we see that for
max{0, 1−k+Re(z)

2k } < Re(s) = c′ ≤ 1+Re(z)
2k(k+1) ,

A(k)
z (x) =

1√
k

2
k
2
− 1+z

k π
k+2
2

1

2πi

∫
(c′)

∏k
j=1 Γ

(
s+ j−1

k

)
Γ
(

1
2 + s− 1+z

2k

) (
4
(

2k
x

)2k)s
ds∏k

j=1 Γ
(
−s+ 2j−1

2k

)
Γ
(
−s+ 1+z

2k

) .

Now replace s by −s and use (3.7) and (2.7) to arrive at (4.39).
Our next task is to show that for x > 0,

H(k)
z (x) =

π
√
k2

1+z
k

G k+1,0
0,2k+2

(
{}

b1, · · · , b2k+2

∣∣∣1
4

( x
2k

)2k
)
. (4.41)

This is achieved by invoking the uniqueness theorem of linear differential equations [11,
p. 21, Section 6]. To that end, note that in Theorem 4.2, the differential equation satisfied by
H

(k)
z (x) was found. Hence we must first show that the right-hand side of (4.41) also satisfies

the same differential equation. Since the expression in front of the MeijerG-function in (4.41)
is independent of x, we do not bother about it while showing this.

It is well-known [45, p. 417] thatw = Gm,n
p,q

(
a1, · · · , ap
b1, · · · , bq

∣∣∣ξ) satisfies the differential equation(
(−1)p−m−nξ(θ − a1 + 1) · · · (θ − ap + 1)− (θ − b1) · · · (θ − bq)

)
w = 0,

where θ = ξ ddξ . With ξ = 1
4

(
x
2k

)2k, this implies thatG k+1,0
0,2k+2

(
{}

b1, · · · , b2k+2

∣∣∣14 ( x2k)2k) satisfies

the differential equation[(
ξ
d

dξ

)2k+2

− e1(X2k+2)

(
ξ
d

dξ

)2k+1

+ e2(X2k+2)

(
ξ
d

dξ

)2k

− · · ·

+ (−1)2k+2e2k+2(X2k+2) + (−1)kξ

]
w = 0,

where X2k+2 = {b1, b2, · · · , b2k+2} with bj defined in (2.7) and e`(X2k+2) is the elementary
symmetric polynomial defined in (3.10), or, written more compactly, the differential equation2k+2∑

j=0

(−1)jej(X2k+2)

(
ξ
d

dξ

)2k+2−j
+ (−1)kξ

w = 0.
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Since ξ = 1
4

(
x
2k

)2k implies
(
ξ ddξ

)`
(w) =

(
x
2k

d
dx

)`
(w), the above differential equation, upon

simplification, takes the formx−2k
2k+2∑
j=0

(−2k)jej(X2k+2)

(
x
d

dx

)2k+2−j
+ (−1)kk2

w = 0.

Now employ the well-known identity [8, p. 157](
x
d

dx

)`
(w) =

∑̀
m=1

S(`,m)xm
dmw

dxm
, (4.42)

where S(`,m) denote the Stirling numbers of the second kind defined in Section 3, to write(
x d
dx

)2k+2−j as a sum and then interchange the order of summation while noting S(0,m) = 0
to derive2k+2∑

m=1

xm−2k d
m

dxm

2k+2−m∑
j=0

(−2k)jej(X2k+2)S(2k + 2− j,m) + (−1)kk2

w = 0. (4.43)

Invoking Lemma 4.6, we are led to (4.2). This proves that both sides of (4.41) satisfy the
same differential equation in (4.2).

Therefore, to prove (4.41), it only remains to show that the jth derivative of both sides
with respect to x evaluated at x = 0 match for j = 0, 1, · · · , 2k + 1. In view of (4.34) and
(4.39), it suffices to show that for 0 ≤ j ≤ 2k + 1,

dj

dxj
H(k)
z (x)

∣∣∣∣
x=0

=
dj

dxj
A(k)
z (x)

∣∣∣∣
x=0

. (4.44)

In what follows, we show that for 0 ≤ j ≤ 2k + 1,

dj

dxj
H(k)
z (x)

∣∣∣∣
x=0

=
dj

dxj
A(k)
z (x)

∣∣∣∣
x=0

=

{
1
k (−1)

j
2 Γ
(
k−j−1−z

k

)
cos
(
π
2

(
k−j−1−z

k

))
, if j is even,

0, if j is odd.
(4.45)

We first establish (4.45) for dj

dxj
H

(k)
z (x)

∣∣∣
x=0

. Differentiating (2.3) under the integral sign j

times with respect to x, we arrive at

dj

dxj
H(k)
z (x) =

{
(−1)

j
2

∫∞
0 tz−k+j cos(xt) cos

(
1
tk

)
dt, if j is even,

(−1)
j+1
2

∫∞
0 tz−k+j sin(xt) cos

(
1
tk

)
dt, if j is odd.

(4.46)

Now clearly, for j odd, dj

dxj
H

(k)
z (x)

∣∣∣
x=0

= 0. For j even, we employ the change of variable

t = u−1/k on the right-hand side of (4.46) so that for −j − 1 < Re(z) < −j − 1 + k,

dj

dxj
H(k)
z (x)

∣∣∣∣
x=0

=
1

k
(−1)

j
2

∫ ∞
0

u
k−1−z−j

k
−1 cos(u) du

=
1

k
(−1)

j
2 Γ

(
k − 1− z − j

k

)
cos

(
π

2

(
k − 1− z − j

k

))
.
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Next, we show that (4.45) holds for dj

dxj
A

(k)
z (x)

∣∣∣
x=0

. This time, we differentiate (4.24) under
the integral sign j times with respect to x so as to obtain for x > 0,

dj

dxj
K(k)
z (x) =

{
(−1)

j
2

∫∞
0 tz−k+j cos(xt) exp

(
− 1
tk

)
dt, if j is even,

(−1)
j+1
2

∫∞
0 tz−k+j sin(xt) exp

(
− 1
tk

)
dt, if j is odd.

(4.47)

Moreover, if we let y = xe±
iπ
2k , where x > 0, then the chain rule implies

dj

dxj
K(k)
z

(
xe±

iπ
2k

)
= e±

iπj
2k

dj

dyj
K(k)
z (y). (4.48)

Note that from [14, p. 68-69], the functionK(k)
z (x) and its successive derivatives are continuous

at x = 0, so also the derivatives dj

dyj
K

(k)
z (y), j ≥ 0, are continuous at y = 0, where y = xe±

iπ
2k .

Hence approaching the origin along the ray arg(y) = ± π
2k or through the positive real line

arg(y) = 0 does not alter their limit. This, along with (4.47) and (4.48), implies that for
Re(z) < −j − 1 + k,

dj

dxj
K(k)
z

(
xe±

iπ
2k

)∣∣∣∣
x=0

= e±
iπj
2k lim

y→0+

dj

dyj
K(k)
z (y)

=

{
e±

iπj
2k (−1)

j
2 limy→0+

∫∞
0 tz−k+j cos(yt) exp

(
− 1
tk

)
dt, if j is even,

e±
iπj
2k (−1)

j+1
2 limy→0+

∫∞
0 tz−k+j sin(yt) exp

(
− 1
tk

)
dt, if j is odd

=

{
e±

iπj
2k (−1)

j
2

∫∞
0 tz−k+j exp

(
− 1
tk

)
dt, if j is even,

0, if j is odd

=

{
1
ke
± iπj

2k (−1)
j
2 Γ
(
k−1−z−j

k

)
, if j is even,

0 if j is odd,

where, in the penultimate step, we used the fact that the integrals are continuous functions
of y. Therefore,

dj

dxj
A(k)
z (x)

∣∣∣∣
x=0

=

{
1
k (−1)

j
2 Γ
(
k−1−z−j

k

)
cos
(
π
2

(
k−1−z−j

k

))
, if j is even,

0 if j is odd,

which proves (4.45) for −j − 1 < Re(z) < −j − 1 + k.
This completes the proof of Theorem 2.1 for −1 < Re(z) < k− 1. Since K(k)

z (x) is analytic
in Re(z) < k as can be seen from the discussion following (2.5) and H

(k)
z (x) is analytic in

−1 < Re(z) < k, by analytic continuation, the identity holds for −1 < Re(z) < k.
�

4.5. Asymptotics of H(k)
z (x). We first obtain the asymptotic behavior of H(k)

z (x) as x→ 0+.

Theorem 4.7. Let H(k)
z (x) be defined in (2.3). Then H(k)

z (x) = O(1) as x→ 0+.

Proof. Note that in (4.36), it was shown that H(k)
z (0) is a finite quantity. Using Abel’s and

Dirichlet’s tests for uniform convergence of infinite integrals [7], it can be seen that H(k)
z (x)

is continuous at x = 0 whence H(k)
z (x) = O(1) as x→ 0+. �

The behavior of H(k)
z (x) as x→∞ is derived next.
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Theorem 4.8. Let y > 0, k ∈ N and −1 < Re(z) < k. As y →∞,

H(k)
z (y) ∼

√
π
(

1
4

( y
2k

)2k) 1
4(k+1)

− 1+z
2k(k+1)√

k(k + 1) 2
1+z
k

cos

(
π

4
+ (2k + 2)

(
1

4

( y
2k

)2k
) 1

2k+2

)
. (4.49)

Proof. Letting x = ye±
iπ
2k , y > 0, in Theorem 4.3, we get, with Y = 1

4

( y
2k

)2k,

K(k)
z

(
e±

iπ
2k y
)

=
1

√
k 2

1+z
k

G k+2,0
0,2k+2

(
{}

b
′
1, · · · , b

′
q

∣∣∣e±iπY ) .
Employ the asymptotic expansion of the Meijer G-function from Proposition 3.4 to get

K(k)
z

(
e
iπ
2k y
)
∼ 1
√
k 2

1+z
k

(
− 1

2πi

)k
exp

−iπ 2k+2∑
j=k+3

b
′
j

H0,2k+2

(
Y eiπ(k+1)

)
. (4.50)

From (4.15) one can easily check that
∑2k+2

j=k+3 b
′
j = k/2. Taking the leading term, the definition

of Hp,q in (3.9) gives

H0,2k+2

(
Y eiπ(k+1)

)
∼ (2π)(2k+1)/2Y θ

√
2k + 2

exp
(
−i(2k + 2)Y 1/(2k+2) + iπ(k + 1)θ

)
, (4.51)

where θ = 1
4(k+1) −

1+z
2k(k+1) . Substituting (4.51) in (4.50), as y →∞,

K(k)
z

(
e
iπ
2k y
)
∼ (2π)(2k+1)/2Y θ√

2k(k + 1) 2
1+z
k

(
− 1

2πi

)k
exp

(
− iπk

2
− i(2k + 2)Y 1/(2k+2) + iπ(k + 1)θ

)
∼

√
πY θ√

k(k + 1) 2
1+z
k

exp
(
−i(2k + 2)Y 1/(2k+2) + iπ(k + 1)θ

)
. (4.52)

Similarly, it can be seen that

K(k)
z

(
e
−iπ
2k y

)
∼

√
πY θ√

k(k + 1) 2
1+z
k

exp
(
i(2k + 2)Y 1/(2k+2) − iπ(k + 1)θ

)
. (4.53)

Finally, making use of (4.52) and (4.53) in Theorem 2.1, we obtain after some simplification,

H(k)
z (y) ∼

√
πY θ√

k(k + 1) 2
1+z
k

cos
(π

4
+ (2k + 2)Y 1/2k+2

)
.

Substituting the values of Y and θ in the above formula, we arrive at (4.49). �

Remark 9. When k = 1 and z = 0, Theorem 4.8 implies that as x→∞,

H
(1)
0 (x) ∼

√
π

2 4
√
x

cos
(π

4
+ 2
√
x
)
.

This can also be verified from the asymptotic formulas of Y0(x) and K0(x) upon using (2.4).

4.6. The special case H
(1)
z (x). In this section, we explicitly evaluate H

(1)
z (x) in terms of

Bessel functions. This will be required while proving Corollary 2.3.

Theorem 4.9. Let H(k)
z (x) be as defined in (2.3) and let Mν(x) = 2

πKν(x) − Yν(x). For −1 <
Re(z) < 1 and x > 0, we have

H(1)
z (x) =

π

2
x−

z
2
(
cos
(

1
2πz

)
Mz(2

√
x)− sin

(
1
2πz

)
Jz(2
√
x)
)
. (4.54)
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Proof. From the first equality in Theorem 2.1, (4.34) and (4.40), we have, for max{0, 1− k +

Re(z)} < c ≤ 1+Re(z)
k+1 ,

H(k)
z (x) =

1

2πi

∫
(c)

Γ(s) cos
(πs

2

)
Γ

(
s− 1− z

k
+ 1

)
cos

(
π

2

(
s− 1− z

k
+ 1

))
ds

kxs
. (4.55)

Letting k = 1, replacing s by w + z/2, we then use the formula 2 cos(A) cos(B) = cos(A +
B) + cos(A−B) in order to get for |Re

(
z
2

)
| < c′ = Re(w) ≤ 1

2 ,

H(1)
z (x) =

x−z/2

4πi

∫
(c′)

Γ
(
w − z

2

)
Γ
(
w +

z

2

)(
cos(πw) + cos

(πz
2

))
x−w dw. (4.56)

From [22, Lemma 5.1], for |Re
(
z
2

)
| < c′ = Re(w) < 3/4, we have

1

2π2i

∫
(c′)

Γ
(
w − z

2

)
Γ
(
w +

z

2

)(
cos(πw) + cos

(πz
2

))
(4π2ty)−w dw

= cos
(

1
2πz

)
Mz(4π

√
ty)− sin

(
1
2πz

)
Jz(4π

√
ty). (4.57)

Employing (4.57) with ty = x/(4π2) on the right-hand side of (4.56) and noting that H(1)
z (x)

converges for −1 < Re(z) < 1 as proved in Theorem 4.1, we arrive at (4.54). �

5. VORONOI SUMMATION FORMULA FOR σ
(k)
z (n)

Armed with results in the previous section, we are now all set to prove the Voronoı̈
summation formula for σ(k)

z (n) for an analytic function f in a closed contour containing
the segment [α, β], where 0 < α < β and α, β /∈ Z.
Proof of Theorem 2.2. First, let us define

Φk(x; z) := C
∞∑
n=1

S(k)
z (n)K(k)

z

(
(2π)

1
k

+1(nx)
1
k

)
, (5.1)

where C := Ck(x; z) = 2(2πx)
1+z
k
−1. Using [52, p. 30, Theorem 2.3] and the discussion

following (2.5), it is clear that K(k)
z

(
(2π)

1
k

+1(nx)
1
k

)
is analytic in Re(x) > 0. One can

establish the uniform convergence of the above series in (5.1) for Re(x) > 0 in a manner
similar to that proved by Koshliakov in [34, p. 125-126]. Hence by Weierstrass’ theorem on
analytic functions, we see that Φk(x; z) is analytic in Re(x) > 0.

Employing (2.5), one can write the above series representation of Φk(x; z) as

Φk(x; z) =
C

2πik

∞∑
n=1

S(k)
z (n)

∫
(c)

Γ(s) cos
(πs

2

)
Γ

(
s− 1− z

k
+ 1

)
ds(

(2π)
1
k

+1(nx)
1
k

)s ,
where c > max{0, 1 − k + Re(z)}. Moreover, we need Re(s) = c > max{1, 1 + Re(z)} to
take the summation inside the integration as the Dirichlet series associated to S(k)

z (n) will
be absolutely and uniformly convergent in this region. Therefore, using (1.14), we get

Φk(x; z) =
C

2πik

∫
(c)

Γ(s)ζ(s) cos
(πs

2

)
Γ

(
s− 1− z

k
+ 1

)
ζ

(
s− 1− z

k
+ 1

)
ds(

(2π)
1
k

+1(nx)
1
k

)s .
(5.2)
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The asymmetric form of (2.1) is given by

ζ(s) = 2sπs−1Γ(1− s)ζ(1− s) sin
(πs

2

)
. (5.3)

To simplify further, we shall use (5.3) in the form

Γ(s)ζ(s) =
ζ(1− s)2s−1πs

cos
(
πs
2

) (5.4)

Use (5.4) twice in (5.2) to obtain

Φk(x; z) = − C

2πik

∫
(c)

ζ(1− s)ζ
(
z+1−s
k

)
sin
(
π
2

(
s−1−z
k

)) ds

4(2π)
1+z
k
−1x

s
k

. (5.5)

Now we substitute z+1−s = ks′. This implies that the new line of integration Re(s′) = c′ <

min
{

0, Re(z)
k

}
since Re(s) = c > max{0, 1− k + Re(z)}. Upon simplification, (5.5) becomes

Φk(x; z) =
C

4x(2πx)
1+z
k
−1

1

2πi

∫
(c′)

ζ(s′)ζ(ks′ − z)
sin
(
πs′

2

) xs
′
ds′. (5.6)

Here we note that in the current line of integration Re(s′) = c′, one can not use the series
definition of ζ(s′)ζ(ks′ − z), so we would like to shift the line of integration to a new line
Re(s′) = c′′ with 2 > c′′ > max

{
1, 1+Re(z)

k

}
as ζ(s′)ζ(ks′ − z) is absolutely and uniformly

convergent in this new region. To do that we consider the following rectangular contour C
defined by [c′′ − iT, c′′ + iT, c′ + iT, c′ − iT ]. In the process, we encounter simple poles at
s = 0, 1, 1+z

k inside this contour. Applying Cauchy’s residue theorem, we get

1

2πi

∫
C

ζ(s′)ζ(ks′ − z)
sin
(
πs′

2

) xs
′
ds′ = R0 +R1 +R 1+z

k
, (5.7)

where Rρ denotes the residual the term corresponding to the pole at s′ = ρ. Letting T →∞,
one can easily show that the horizontal integrals go to zero. Therefore, (5.7) reduces to

1

2πi

∫
(c′)

ζ(s′)ζ(ks′ − z)
sin
(
πs′

2

) xs
′
ds′ =

1

2πi

∫
(c′′)

ζ(s′)ζ(ks′ − z)
sin
(
πs′

2

) xs
′
ds′ −

(
R0 +R1 +R 1+z

k

)
, (5.8)

where the residual terms are the following expressions

R0 = −ζ(−z)
π

, R1 = ζ(k − z)x, R 1+z
k

=
x

1+z
k ζ

(
1+z
k

)
k sin

(
π
2

(
1+z
k

)) . (5.9)

Now using the Dirichlet series representation (1.12) of σ(k)
z (n), one can write

1

2πi

∫
(c′′)

ζ(s′)ζ(ks′ − z)
sin
(
πs′

2

) xs
′
ds′ =

∞∑
n=1

σ(k)
z (n)

1

2πi

∫
(c′′)

(
x
n

)s′
sin
(
πs′

2

) ds′. (5.10)

It is well-known [46, p. 91, Equation (3.3.10)] that for any 0 < d < 2,

1

2πi

∫
(d)

x−s

sin
(
πs
2

) ds =
2

π

1

1 + x2
. (5.11)

In view of (5.10) and (5.11), (5.8) reduces to

1

2πi

∫
(c′)

ζ(s′)ζ(ks′ − z)
sin
(
πs′

2

) xs
′
ds′ =

2x2

π

∞∑
n=1

σ
(k)
z (n)

n2 + x2
−
(
R0 +R1 +R 1+z

k

)
. (5.12)
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Now substituting (5.12) in (5.6), we obtain

Φk(x; z) =
C

4x(2πx)
1+z
k
−1

{
2x2

π

∞∑
n=1

σ
(k)
z (n)

n2 + x2
−
(
R0 +R1 +R 1+z

k

)}
. (5.13)

Substituting the residual terms from (5.9) in (5.13), we see that

Φk(x; z) = Ψk(x; z), (5.14)

where

Ψk(x; z) :=
ζ(−z)
2πx

− ζ(k − z)
2

−
x

1+z
k
−1ζ

(
1+z
k

)
2k sin

(
π
2

(
1+z
k

)) +
x

π

∞∑
n=1

σ
(k)
z (n)

n2 + x2
. (5.15)

One can easily check that Ψk(x; z) is analytic, as a function of x, in the entire complex plane
except on the negative real axis and at x = ±in, n ∈ N ∪ {0}. Thus, Ψk(ix; z) is analytic
on C except on the positive imaginary axis and at integers. Similarly, Ψk(−ix; z) is analytic
on C except on the negative imaginary axis and at integers. The combination of these two
facts implies that Ψk(ix; z) + Ψk(−ix; z) is analytic on C except on the imaginary axis and
possibly at integers. But

lim
x→±n

(x∓ n)Ψk(ix; z) =
1

2πi
σ(k)
z (n), and lim

x→±n
(x∓ n)Ψk(−ix; z) = − 1

2πi
σ(k)
z (n),

which implies that the function Ψk(ix; z) + Ψk(−ix; z) is analytic in Re(x) > 0. Observe that
for x lying inside an interval (u, v) on the positive real line not containing any integer in its
interior, we have, using (5.15),

Ψk(ix; z) + Ψk(−ix; z) = −ζ(k − z)− 1

k
x

1+z
k
−1ζ

(
1 + z

k

)
. (5.16)

However, both sides of (5.16) are analytic in Re(x) > 0, and hence, by analytic continuation
we see that (5.16) holds in Re(x) > 0.

Now let us consider f(x) to be analytic function of x inside a closed contour γ that
intersects the real line at α and β, where 0 < m − 1 < α < m ≤ n − 1 < β < n and
m,n ∈ N. Let γ′ and γ′′ denote the upper and lower portion of the contour, respectively.
This means that αγ′β and αγ′′β denote the paths from α to β in the upper- and lower- half
planes respectively. By Cauchy’s residue theorem,

1

2πi

∫
αγ′′βγ′α

f(x)Ψk(ix; z) dx =
∑

α<n<β

lim
x→n

(x− n)f(x)Ψk(ix; z) =
1

2πi

∑
α<n<β

σ(k)
z (n)f(n).

(5.17)

Now ∫
αγ′′βγ′α

f(x)Ψk(ix; z) dx =

∫
αγ′′β

f(x)Ψk(ix; z) dx−
∫
αγ′β

f(x)Ψk(ix; z) dx. (5.18)

Thus from (5.16), (5.17) and (5.18),∑
α<n<β

σ(k)
z (n)f(n) =

∫
αγ′′β

f(x)Ψk(ix; z) dx+

∫
αγ′β

f(x)Ψk(−ix; z) dx

+

∫
αγ′β

f(x)

(
ζ(k − z) +

1

k
x

1+z
k
−1ζ

(
1 + z

k

))
dx. (5.19)



VORONOÏ SUMMATION FORMULA FOR THE GENERALIZED DIVISOR FUNCTION σ
(k)
z (n) 33

Again, utilizing Cauchy’s residue theorem, one can instantly observe that∫
αγ′β

f(x)

(
ζ(k − z) +

x
1+z
k
−1

k
ζ

(
1 + z

k

))
dx =

∫ β

α
f(t)

(
ζ(k − z) +

1

k
t
1+z
k
−1ζ

(
1 + z

k

))
dt.

(5.20)

From the discussion following (5.1) and and (5.15), it is clear that (5.14) holds for −π/2 <
arg(x) < π/2. Thus, Ψk(ix; z) = Φk(ix; z) holds for −π < arg(x) < 0, and Ψk(−ix; z) =
Φk(−ix; z) holds for 0 < arg(x) < π. Employing these two facts and together with (5.20),
(5.19) becomes∑

α<n<β

σ(k)
z (n)f(n) =

∫
αγ′′β

f(x)Φk(ix; z) dx+

∫
αγ′β

f(x)Φk(−ix; z) dx

+

∫ β

α
f(t)

(
ζ(k − z) +

1

k
t
1+z
k
−1ζ

(
1 + z

k

))
dt.

From the discussion following (5.1), we know that the series defining Φk(ix; z) and Φk(−ix; z)
are uniformly convergent in −π < arg(x) < 0 and 0 < arg(x) < π respectively. Thus
using these series representations in the above identity and then interchanging the order of
summation and integration, we arrive at∑
α<n<β

σ(k)
z (n)f(n) =

∫ β

α
f(t)

(
ζ(k − z) +

1

k
t
1+z
k
−1ζ

(
1 + z

k

))
dt

+ 2(2π)
1+z
k
−1
∞∑
n=1

S(k)
z (n)

[ ∫
αγ′′β

f(x)K(k)
z

(
(2π)

1
k

+1(inx)
1
k

)
(ix)

1+z
k
−1 dx

+

∫
αγ′β

f(x)K(k)
z

(
(2π)

1
k

+1(−inx)
1
k

)
(−ix)

1+z
k
−1 dx

]
.

Here we use the residue theorem twice to obtain∑
α<n<β

f(n)σ(k)
z (n) =

∫ β

α
f(t)

(
ζ(k − z) +

1

k
t
1+z
k
−1ζ

(
1 + z

k

))
dt+ 2(2π)

1+z
k
−1
∞∑
n=1

S(k)
z (n)

×
∫ β

α
f(t)t

1+z
k
−1

[
exp

(
−iπ(k − 1− z)

2k

)
K(k)
z

(
(2π)

1
k

+1(nt)
1
k e

iπ
2k

)
dt

+ exp

(
iπ(k − 1− z)

2k

)
K(k)
z

(
(2π)

1
k

+1(nt)
1
k e−

iπ
2k

)
dt

]
.

Finally, invoking Theorem 2.1, we arrive at (2.8). This completes the proof.
�

Proof of Corollary 2.3. Letting k = 1 in Theorem 2.2 gives∑
α<j<β

σz(j)f(j) =

∫ β

α
(ζ(1− z) + tzζ(1 + z))f(t)dt+ 2(2π)z

∞∑
n=1

σz(n)

∫ β

α
tzf(t)H(1)

z (4π2nt)dt.

Now invoke Lemma 4.9 with x = 4π2nt, simplify and then replace z by −z to arrive at
(2.10). Here, we have made use of the elementary fact σ−z(n)nz/2 = σz(n)n−z/2 as well as
the fact [5, p. 842] that cos

(
1
2πz

)
Mz(2

√
x) − sin

(
1
2πz

)
is invariant under the replacement

of z by −z, which, in fact, is an easy consequence of the definition in (1.2) and the identity
K−z(ξ) = Kz(ξ).
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�

Proof of Theorem 2.4. We first prove the result for z 6= k − 1. Using the inverse Mellin
transform of F (s), one can write

∞∑
n=1

σ(k)
z (n)f(n) =

∞∑
n=1

σ(k)
z (n)

1

2πi

∫
(c)
F (s)n−sds =

1

2πi

∫
(c)
F (s)ζ(s)ζ(ks− z)ds, (5.21)

where c > max
{

1, 1+Re(z)
k

}
. Since f ∈ S (R), its Mellin transform F (s) is holomorphic on

Re(s) > 0. Moreover, integration by parts gives the following identity forM(f)(s):

M(f)(s) = f(x)
xs

s

∣∣∣∣∞
0

−
∫ ∞

0
f ′(x)

xs

s
dx = −1

s
M(f ′)(s+ 1).

Hence
s(s+ 1) · · · (s+ i)F (s) = (−1)i+1M(f (i+1))(s+ i+ 1).

This proves that F (s) has an analytic continuation to the whole complex plane except for
possible simple poles at s = 0,−1,−2, · · · . We know that ζ(s)ζ(ks − z) has simple poles at
1 and 1+z

k . To transform the line integral in (5.21), we shall consider the following contour
C := [c− iT, c+ iT, λ+ iT, λ− iT ], where

λ = −ε, with max

{
0,−Re(z)

k

}
< ε < 1. (5.22)

Choose T large enough so that | Im(z)/k| < T . Now employing the Cauchy residue theorem,
we have

1

2πi

∫
C
F (s)ζ(s)ζ(ks− z)ds = R0 +R1 +R 1+z

k
, (5.23)

where the residues are given by

R0 = lim
s→0

sF (s)ζ(s)ζ(ks− z) =
1

2
M(f ′)(1)ζ(−z) =

ζ(−z)
2

∫ ∞
0

f ′(y)dy = −ζ(−z)f(0+)

2
,

R1 = lim
s→1

(s− 1)F (s)ζ(s)ζ(ks− z) = F (1)ζ(k − z) = ζ(k − z)
∫ ∞

0
f(y)dy,

R 1+z
k

= lim
s→ 1+z

k

(
s− 1 + z

k

)
F (s)ζ(s)ζ(ks− z) =

1

k
F

(
1 + z

k

)
ζ

(
1 + z

k

)
. (5.24)

Now let T →∞ in (5.23). It can be checked that the integrals along the horizontal segments
go to zero whence

1

2πi

∫
(c)
F (s)ζ(s)ζ(ks− z)ds = R0 +R1 +R 1+z

k
+ I, (5.25)

where
I :=

1

2πi

∫
(λ)
F (s)ζ(s)ζ(ks− z)ds. (5.26)

We would like to write I in terms of an infinite series involving the function S(k)
z (n). To that

end, using (5.3) twice, we have

ζ(s)ζ(ks− z) =
(2π)(k+1)s−z

π2
Γ(1− s)ζ(1− s)Γ(1− ks+ z)ζ(1− ks+ z)

× sin
(πs

2

)
sin
(π

2
(ks− z)

)
.
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Substituting this expression into the right-hand side of (5.25) and employing the change of
variable s = 1+z

k − w, we have

I =
1

2πi

∫
(
−λ+

1+Re(z)
k

) (2π)(k+1)( 1+z
k
−w)−z

π2
F

(
1 + z

k
− w

)
Γ

(
w + 1− 1 + z

k

)
ζ

(
w + 1− 1 + z

k

)
× Γ(kw)ζ(kw) cos

(
π

2

(
w + 1− 1 + z

k

))
cos

(
πkw

2

)
dw.

From (5.22), we have −1 < λ < min
{

0, Re(z)
k

}
which implies Re(kw) > 1 as well as

Re
(
w + 1− 1+z

k

)
> 1. Hence, invoking (1.14) and interchanging of the order of summation

and integration (which is justified by the absolute and uniform convergence), we have

I =
(2π)(k+1)( 1+z

k )−z

π2

∞∑
n=1

S(k)
z (n)

1

2πi

∫
(
−λ+

1+Re(z)
k

) F
(

1 + z

k
− w

)
N (k)
z (w)

(
(2π)k+1n

)−w
dw

=
(2π)(k+1)( 1+z

k )−z

π2

∞∑
n=1

S(k)
z (n)

1

2πi

∫
(−kλ+1+Re(z))

F

(
1 + z − ξ

k

)
N (k)
z

(
ξ

k

)(
(2π)1+ 1

kn
1
k

)−ξ dξ
k
,

where

N (k)
z (w) := Γ

(
w + 1− 1 + z

k

)
cos

(
π

2

(
w + 1− 1 + z

k

))
Γ(kw) cos

(π
2
kw
)
,

and where in the last step we employed the change of variable w = ξ/k so that Re(ξ) =
−kλ+ 1 + Re(z).

Observe that max{0, 1 − k + Re(z)} < Re(ξ). We also need Re(ξ) ≤ 1+Re(z)
k+1 for reasons

to be clear soon, however, we unfortunately have Re(ξ) > 1 > 1+Re(z)
k+1 at this stage (since

λ < Re(z)/k). To circumvent this problem, we shift the line of integration to max{0, 1− k +

Re(z)} < c′′ = Re(ξ) ≤ 1+Re(z)
k+1 and apply Cauchy’s residue theorem. Since −1 < Re(z) < k

and Re(ξ) > 0, we do not encounter any poles of the integrand in this process. (There is no
pole at ξ = 1 as well because the possibility of F

(
1+z−ξ
k

)
giving rise to it arises only when

z = 0, since −1 < Re(z) < k, and even if that is the case, cos
(
π
2

(
1− z

k

))
= 0 there.) Also,

the integrals along the horizontal segments tend to zero as the height of the contour tends
to∞. Hence

I =
(2π)(k+1)( 1+z

k )−z

π2

∞∑
n=1

S(k)
z (n)

1

2πi

∫
(c′′)

F

(
1 + z − ξ

k

)
N (k)
z

(
ξ

k

)(
(2π)1+ 1

kn
1
k

)−ξ dξ
k
,

(5.27)

with max{0, 1− k + Re(z)} < c′′ = Re(ξ) ≤ 1+Re(z)
k+1 .

Now insert the integral representation of F , namely,

F

(
1 + z − ξ

k

)
=

∫ ∞
0

y
1+z−ξ
k
−1f(y) dy

in (5.27), then interchange the order of integration which is permissible due to the decay of
F (since f ∈ S (R)) so that

I =
(2π)(k+1)( 1+z

k )−z

π2

∞∑
n=1

S(k)
z (n)

∫ ∞
0

y
1+z
k
−1f(y)

1

2πi

∫
(c′′)

N (k)
z

(
ξ

k

)(
(2π)1+ 1

kn
1
k

)−ξ dξ
k
dy
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=
(2π)(k+1)( 1+z

k )−z

π2

∞∑
n=1

S(k)
z (n)

∫ ∞
0

H(k)
z

(
(2π)1+ 1

k (ny)
1
k

)
y

1+z
k
−1f(y) dy (5.28)

where, in the last step, we invoked (4.55). Note that we had to shift the line of integration to
Re(ξ) = c′′ to be able to use (4.55).

From (5.21), (5.24), (5.25), (5.26) and (5.28), we are led to (2.11).
Now when z = k−1, the only difference is that the poles of the integrand of (5.23) at 1 and

(1+z)/k coalesce giving a double pole because of whichR1 =
∫∞

0 f(t)
(

(k+1)γ+log(t)
k

)
dt. �

6. A GENERALIZATION OF THEOREM 1.1 OF WIGERT

This section begins with certain lemmas which will play a crucial role in proving Theorem
2.5. We first evaluate special values of the function B(z, b) defined in (2.12) and (2.13).

6.1. Special values ofB(z, a). The next result evaluatesB(z, a) at non-negative even integers.

Lemma 6.1. For m ∈ N ∪ {0},

B(2m, b) =
π

2b
b2me−b(−1)m.

Proof. To prove this lemma, we use the identity (2.14) so that

lim
z→2m

B(z, b) =
π

2
(−1)mb2m−1 cosh(b)− π

2
(−1)m

∞∑
n=0

b2n

Γ(2n− 2m+ 2)

=
π

2
(−1)mb2m−1 cosh(b)− π

2
(−1)m

∞∑
n=m

b2n

Γ(2n− 2m+ 2)

=
π

2
(−1)mb2m−1 cosh(b)− π

2
(−1)m

∞∑
i=0

b2m+2i

Γ(2i+ 2)

=
π

2
(−1)mb2m−1 cosh(b)− π

2
(−1)mb2m−1 sinh(b) =

π

2
(−1)mb2m−1e−b.

�

Similarly, one can prove that

Lemma 6.2. For m ∈ N,

B(−2m, b) =
π

2b
b−2m(−1)m

[
e−b −

m−1∑
j=0

b2j+1

Γ(2j + 2)

]
.

The proof of this lemma is similar that of Lemma 6.1 and is hence omitted. The next result
evaluates B(z, b) at positive odd integers.

Lemma 6.3. For m ∈ N ∪ {0},

B(2m+ 1, b) = b2m(−1)m
∞∑
n=0

b2n

Γ(2n+ 1)
(ψ(2n+ 1)− log b) .

Proof. At first glance, it seems from (2.14) that B(z, b) has singularities at odd integers.
However, we show that at positive odd integers, they are removable.
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We write down the Laurent series expansions of the terms in (2.14). A bit of calculation
implies that for m ≥ 0,

πbz−1

2

cosh b

cos(πz/2)
=

a−1

z − (2m+ 1)
+ a0 +O (|z − (2m+ 1)|) , (6.1)

where a−1 = (−1)m+1b2m cosh(b), and a0 = (−1)m+1b2m log(b) cosh(b). Here we have used
the fact that

sec(πz/2) =
c−1

z − (2m+ 1)
+O (|z − (2m+ 1)|) , (6.2)

where c−1 = 2
π (−1)m+1. Now we shall try to find the Laurent series expansion of the second

term in (2.14), i.e.,

π

2
sec(πz/2)

∞∑
n=0

b2n

Γ(2n− z + 2)
(6.3)

at z = 2m+ 1. We need to find the Laurent series expansion for the entire function 1
Γ(2n−z+2)

at z = 2m + 1. Note that the sum over n in (6.3) will run from n = m to infinity since the
first m terms are zero. One can check that

1

Γ(2n− z + 2)
= d0 + d1(z − (2m+ 1)) +O

(
|z − (2m+ 1)|2

)
, (6.4)

with d0 = 1
Γ(2n−2m+1) and d1 = limz→(2m+1)

d
dz

1
Γ(2n−2m+1) = ψ(2n−2m+1)

Γ(2n−2m+1) for n ≥ m, where
ψ(z) denotes the logarithmic derivative of the gamma function. Thus, combining (6.2) and
(6.4), the Laurent series expansion of (6.3) becomes

π

2

(
c−1

z − (2m+ 1)
+O(z − (2m+ 1))

) ∞∑
n=m

b2n (d0 + d1(z − (2m+ 1)) +O
(
|z − (2m+ 1)|2

)
.

Substituting c−1, d0, d1 and simplifying, one can find that the coefficient of 1
z−(2m+1) is

(−1)m+1
∞∑
n=m

b2n

Γ(2n− 2m+ 1)
= (−1)m+1b2m cosh(b), (6.5)

and the constant term is

(−1)m+1
∞∑
n=m

b2nψ(2n− 2m+ 1)

Γ(2n− 2m+ 1)
= (−1)m+1b2m

∞∑
n=0

b2nψ(2n+ 1)

Γ(2n+ 1)
. (6.6)

Finally, combining (6.1), (6.5) and (6.6), we can easily see that B(z, b) has a removable
singularity at z = 2m+ 1 and adding constant terms we complete the proof. �

Remark 10. In particular, letting m = 0 in Lemma 6.3, we see that

B(1, b) =

∫ ∞
0

t cos t

t2 + b2
dt =

∞∑
n=0

b2n

Γ(2n+ 1)
(ψ(2n+ 1)− log b) .

This result was recently established in [23, Lemma 3.2]. The integral in the above identity is known
as Raabe’s consine transform. The reader is encouraged to see [23, Section 3] for more details on this
integral.

The next three lemmas offer interesting partial fraction decompositions of some algebraic
functions.
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Lemma 6.4. For k ≥ 1 odd,

tk

t2k + a2k
= 2t

k∑
j=1

C2j−1

t2 −
(
aζ2j−1

4k

)2 , (6.7)

and for k ≥ 2 even,

tk

t2k + a2k
= 2a

k∑
j=1

C2j−1ζ
2j−1
4k

t2 −
(
aζ2j−1

4k

)2 , (6.8)

where C2j−1 = 1
2ka

1−kζ
(1−k)(2j−1)
4k and ζ4k := e

iπ
2k .

Proof. For any k ≥ 1, one can easily check that roots of t2k + a2k = 0 are tj = aζ2j+1
4k for

0 ≤ j ≤ 2k − 1. Note that tk = −t0, tk+1 = −t1, · · · , t2k−1 = −tk−1. Thus,

t2k + a2k = (t− t0)(t+ t0)(t− t1)(t+ t1) · · · (t− tk−1)(t+ tk−1)

= (t2 − a2ζ2
4k)(t

2 − a2ζ6
4k) · · · (t2 − a2ζ

2(2k−1)
4k ).

Utilizing the method of partial fraction decomposition, one can write

tk

t2k + a2k
=

k∑
j=1

(
C2j−1

t− aζ2j−1
4k

+
C2j

t+ aζ2j−1
4k

)
, (6.9)

with

C2j−1 =
a1−k

2kζ
(k−1)(2j−1)
4k

, and C2j =
a1−k(−1)k−1

2kζ
(k−1)(2j−1)
4k

. (6.10)

When k ≥ 1 odd, C2j−1 = C2j and when k ≥ 2 even, C2j−1 = −C2j . Substituting these
values of C2j−1 and C2j in (6.9), we obtain (6.7) and (6.8). �

Lemma 6.4, in turn, leads to the following partial fraction decompositions, the second of
which was obtained by Koshliakov [34, pp. 124-125].

Lemma 6.5. For k ≥ 1 odd,

tk

t2k + a2k
=

(−1)
k−1
2 a1−kt

k

[
1

t2 + a2
+

k−1
2∑
j=1

Bj

t2 +
(
aζ2j

4k

)2 +
Bj

t2 +
(
aζ−2j

4k

)2

]
, (6.11)

where Bj = ζ
(1−k)(2j)
4k and Bj is the conjugate of Bj , and for k ≥ 2 even,

tk

t2k + a2k
=

(−1)
k
2
−1a2−k

k

k
2∑
j=1

[
Aj

t2 +
(
aζ2j−1

4k

)2 +
Aj

t2 +
(
aζ
−(2j−1)
4k

)2

]
, (6.12)

where Aj = ζ
(2−k)(2j−1)
4k and Aj is the conjugate of Aj .

Proof. We prove the result only for k odd. The proof for even k is similar. From (6.7),

tk

t2k + a2k
= 2t

k−1
2∑
j=1

C2j−1

t2 −
(
aζ2j−1

4k

)2 +
2tCk

t2 − a2ζ2k
4k

+ 2t

k∑
j= k+3

2

C2j−1

t2 −
(
aζ2j−1

4k

)2 ,
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where C2j−1 are defined in (6.10). The term corresponding to j = (k + 1)/2 is

2tCk

t2 − a2ζ2k
4k

=
(−1)

k−1
2 a1−k

k

t

t2 + a2
. (6.13)

Also,

2t

k−1
2∑
j=1

C2j−1

t2 −
(
aζ2j−1

4k

)2 =
a1−kt

k

(k−1)/2∑
j=1

ζ
(1−k)(2j−1)
4k

t2 +
(
aζ2j−1−k

4k

)2 ,

where we used ζ2k
4k = −1. Changing the variable 2j − 1− k by −2J yields

(−1)
k−1
2 a1−kt

k

(k−1)/2∑
J=1

ζ
−2J(1−k)
4k

t2 +
(
aζ−2J

4k

)2 . (6.14)

The sum from j = (k+ 3)/2 to k is treated in the same way. Mainly, we replace 2j− 1− k by
2J to have

2t

k∑
j= k+3

2

C2j−1

t2 −
(
aζ2j−1

4k

)2 =
(−1)

k−1
2 a1−kt

k

(k−1)/2∑
J=1

ζ
2J(1−k)
4k

t2 +
(
aζ2J

4k

)2 . (6.15)

Finally, combining (6.13), (6.14), and (6.15), we derive (6.11). To prove (6.12), we use (6.8)
and separate the sum in two parts, the first from j = 1 to k/2, and then the second from
j = k/2 + 1 to k. The details are similar. �

The above partial fraction decompositions permit us to obtain an elegant explicit evaluation
of an integral:

Lemma 6.6. Let k ≥ 2 be an even integer and m be an integer such that 0 ≤ 2m < k. Then the
following identity holds:∫ ∞

0

tk+2m cos(t)

t2k + a2k
dt =

π(−1)
k
2

+m−1

2k
a2m−k+1

k/2∑
j=1

[
exp

(
iπ

2k
(1− k + 2m)(2j − 1)− ae

iπ
2k

(2j−1)

)

+ exp

(
− iπ

2k
(1− k + 2m)(2j − 1)− ae−

iπ
2k

(2j−1)

)]
.

Proof. Let Ik,a(z) :=

∫ ∞
0

tk+z cos(t)

t2k + a2k
dt. It converges in −1 − k < Re(z) < k. Employ (6.12)

to see that

Ik,a(z) =
(−1)

k
2
−1a2−k

k

k
2∑
j=1

Aj

∫ ∞
0

tz cos(t)

t2 +
(
aζ

(2j−1)
4k

)2 dt+ Āj

∫ ∞
0

tz cos(t)

t2 +
(
aζ
−(2j−1)
4k

)2 dt,

where Aj and Āj are defined as in Lemma 6.5. Note that the above identity holds for −1 <
Re(z) < 2 since the integrals on the right side are convergent in this region only. Invoking
Lemma 2, we obtain

Ik,a(z) =
(−1)

k
2
−1a2−k

k

k
2∑
j=1

AjB
(
z, aζ

(2j−1)
4k

)
+ ĀjB

(
z, aζ

−(2j−1)
4k

)
.
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At this juncture, we use Remark 4 to analytically continue the above identity in the region
−1 < Re(z) < k. Now let z = 2m with 0 ≤ m < k/2, in the above identity and then utilize
Lemma 6.1 to derive

Ik,a(2m) =
π

2k
(−1)

k
2

+m−1a2m−k+1

k
2∑
j=1

[
Ajζ

(2m−1)(2j−1)
4k exp

(
−aζ(2j−1)

4k

)

+ Ājζ
−(2m−1)(2j−1)
4k exp

(
−aζ−(2j−1)

4k

)]
.

Finally, substituting values ofAj , Āj and simplifying, one sees that the proof is complete. �

Proof of Theorem 2.5. We first prove the result for w > 0 and then extend it by analytic
continuation to Re(w) > 0.

Substituting f(x) = exp(−xw) and F (s) := M(f, s) = Γ(s)/ws in Theorem 2.4 and
simplifying, we get

∞∑
n=1

σ(k)
z (n) exp(−nw) = −ζ(−z)

2
+
ζ(k − z)

w
+

1

k

Γ
(

1+z
k

)
w(1+z)/k

ζ

(
1 + z

k

)

+
(2π)(k+1)( 1+z

k )−z

π2

∞∑
n=1

S(k)
z (n)

∫ ∞
0

H(k)
z

(
(2π)1+1/k(ny)1/k

)
y

1+z
k
−1 exp(−yw)dy, (6.16)

where S(k)
z (n) and H

(k)
z (x) are defined in (1.13) and (2.3) respectively. Our main aim is to

simplify the integral

I(k)
z,w(n) :=

∫ ∞
0

H(k)
z

(
αy1/k

)
y

1+z
k
−1 exp(−yw)dy, (6.17)

where α = (2π)1+1/kn1/k. Assume first k−1
2 ≤ Re(z) < k − 1/2. Now write H(k)

z

(
αy1/k

)
as an integral using (4.55) and interchange the order of integration using Fubini’s theorem
(which is justified because of the presence of e−yw) to get, for max{0, 1 − k + Re(z)} < c =

Re(s) ≤ 1+Re(z)
k+1 ,

I(k)
z,w(n) =

1

2πik

∫
(c)

Γ(s) cos
(πs

2

)
Γ

(
s− 1− z

k
+ 1

)
cos

(
π

2

(
s− 1− z

k
+ 1

))
α−s

×
∫ ∞

0
y

1+z−s
k
−1e−yw dy ds

=
1

2πik
w−

(1+z)
k

∫
(c)

Γ(s) cos
(πs

2

)
Γ

(
s− 1− z

k
+ 1

)
cos

(
π

2

(
s− 1− z

k
+ 1

))
× Γ

(
1 + z − s

k

)(
αw−1/k

)−s
ds.

Using the reflection formula

Γ

(
1 + z − s

k

)
Γ

(
s− 1− z

k
+ 1

)
=

π

sin
(
π
(

1+z−s
k

))
and then simplifying, we arrive at

I(k)
z,w(n) =

1

4πik
w−

(1+z)
k

∫
(c)

Γ(s) cos
(
πs
2

)
cos
(
π
(

1+z−s
2k

)) (αw−1/k
)−s

ds.
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Note that our assumption k−1
2 ≤ Re(z) < k − 1/2 ensures that the line Re(s) = 1/2 lies

inside the strip max{0, 1 − k + Re(z)} < Re(s) ≤ 1+Re(z)
k+1 . Hence we now employ Theorem

3.2 with G(s) = Γ(s) cos
(
πs
2

)
(while keeping in mind Remark 6, (3.1) and (3.2)) and F (s) =

π
cos(π( 1+z−s

2k ))
, and use Lemma 3.3 so as to get, for k−1

2 ≤ Re(z) < k − 1/2,

I(k)
z,w(n) = w−

(1+z)
k

∫ ∞
0

tk+z

t2k + 1
cos
(
αw−1/kt

)
dt =

αk−z−1

w

∫ ∞
0

xk+z cos(x)

x2k + α2k

w2

dx, (6.18)

where, in the last step, we employed the change of variable x = αw−1/kt. Now observe using
Theorems 4.7 and (4.8) that the extreme left-hand side of (6.18) is analytic in Re(z) > −1
whereas the extreme right-hand side is analytic in Re(z) < k. Hence by analytic continuation,
(6.18) holds for −1 < Re(z) < k.

We now find an explicit evaluation of the integral on the extreme-right hand side of (6.18)
for any complex z with −1 < Re(z) < k. For simplicity, let a = α/w1/k.

First, consider the case k ≥ 2 even and let −1 < Re(z) < 2. Employing the partial fraction
decomposition (6.12) and using the definition of Aj from Lemma 6.5, we have

∫ ∞
0

xk+z cos(x)

x2k + a2k
dx =

(−1)
k
2
−1a2−k

k

k
2∑
j=1

[
Aj

∫ ∞
0

xz cos(x) dx

x2 +
(
aζ2j−1

4k

)2 +Aj

∫ ∞
0

xz cos(x) dx

x2 +
(
aζ
−(2j−1)
4k

)2

]

=
(−1)

k
2
−1a2−k

k

k
2∑
j=1

[
AjB(z, aζ2j−1

4k ) +AjB(z, aζ
−(2j−1)
4k )

]
. (6.19)

By analytic continuation (see Remark 4), (6.19) holds in −1 < Re(z) < k, where B(z, b) is
given in (2.14). From (6.16), (6.17), (6.18) and (6.19), we arrive at (2.15) for w > 0. Since both
sides of (2.15) are analytic in Re(w) > 0, the result holds for Re(w) > 0.

We now turn to the case k ≥ 1 odd. Assume initially −1 < Re(z) < 1. We use the partial
fraction decomposition (6.11) thereby obtaining for −1 < Re(z) < 1,

∫ ∞
0

tk+z cos t

t2k + a2k
dt =

(−1)
k−1
2 a1−k

k

[∫ ∞
0

tz+1 cos t dt

t2 + a2
+

k−1
2∑
j=1

{
Bj

∫ ∞
0

tz+1 cos t

t2 +
(
aζ2j

4k

)2 dt

+Bj

∫ ∞
0

tz+1 cos t

t2 +
(
aζ−2j

4k

)2 dt

}]
.

Proceeding along the similar lines as in the case when k was even, we can see upon using
(2.14), we have, for −1 < Re(z) < k,

∫ ∞
0

tk+z cos t

t2k + a2k
dt =

(−1)
k−1
2 a1−k

k

[
B(z + 1, a) +

k−1
2∑
j=1

[
BjB

(
z + 1, aζ2j

4k

)
+BjB

(
z + 1, aζ−2j

4k

) ]]
.

(6.20)

From (6.16), (6.17), (6.18) and (6.20), we arrive at (2.16) for w > 0. By analytic continuation,
the identity holds for Re(w) > 0.

�
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Proof of Corollary 2.6. Let z = 2m with 0 ≤ m < k/2 in Theorem 2.5 to obtain
∞∑
n=1

σ
(k)
2m(n)e−nw = −ζ(−2m)

2
+
ζ(k − 2m)

w
+

1

k

Γ
(

1+2m
k

)
ζ
(

1+2m
k

)
w(1+2m)/k

+ P
(k)
2m (w), (6.21)

where, with a = α/w1/k = 2π(2πn/w)1/k,

P
(k)
2m (w) :=

(−1)
k
2
−1(2π)2+ 2

k
−2m

π2kw2/k

∞∑
n=1

S
(k)
2m(n)n

1−2m
k

k
2∑
j=1

[
AjB

(
2m, aζ2j−1

4k

)
+AjB

(
2m, aζ

−(2j−1)
4k

)]

=
(−1)

k
2

+m−1

k

(
2π

w

) 1+2m
k

∞∑
n=1

S
(k)
2m(n)

k/2∑
j=1

[
ζ

(1−k+2m)(2j−1)
4k exp

(
−2π

(
2πn

w

) 1
k

ζ
(2j−1)
4k

)

+ ζ
−(1−k+2m)(2j−1)
4k exp

(
−2π

(
2πn

w

) 1
k

ζ
−(2j−1)
4k

)]
,

where we used Lemma 6.1 in the last step. The result now follows from substituting the
above expression of P (k)

2m (w) in (6.21) and defining Lk,z(w) :=
∑∞

n=1 S
(k)
z (n) exp(−n1/kw).

�

Proof of Corollary 2.7. The proof is similar to that of Corollary 2.6 and is hence omitted. �

7. CONCLUDING REMARKS

The focus of this paper was obtaining the Voronoı̈ summation formula associated with
the function σ(k)

z (n). Two versions were achieved. The first one was in Theorem 2.2 for the
finite sum

∑
α<n<β σ

(k)
z (n)f(n), where f is analytic, and another, in Theorem 2.4, for the

infinite series
∑∞

n=1 σ
(k)
z (n)f(n), where f is a function from the Schwartz class. It might be

interesting to find appropriate conditions on the non-analytic functions f for which Theorem
2.2 is still valid, and the non-Schwartz functions f for which Theorem 2.4 still holds.

A considerable part of the paper was devoted to obtaining properties of the functions
H

(k)
z (x) and K

(k)
z (x) defined in (2.3) and (2.5) respectively. The proof of the crucial relation

between them which was established in Theorem 2.1 necessitated an application of the
uniqueness theorem from the theory of linear differential equations and required properties
of elementary symmetric polynomials and the Stirling numbers of the second kind. The
initial value problem for the uniqueness theorem was solved by proving (4.45) for 0 ≤ j ≤
2k+ 1. Since (2.6) holds, a worthwhile thing to do would be to show that for 0 ≤ j ≤ 2k+ 1,

π
√
k2

1+z
k

dj

dxj
G k+1,0

0,2k+2

(
{}

b1, · · · , b2k+2

∣∣∣1
4

( x
2k

)2k
)∣∣∣∣

x=0

=

{
1
k (−1)

j
2 Γ
(
k−j−1−z

k

)
cos
(
π
2

(
k−j−1−z

k

))
, if j is even,

0, if j is odd,
(7.1)

where bi are defined in (2.7). We enlist some steps which may aid in proving (7.1).

Let ξ = 1
4

(
x
2k

)2k and let G(ξ) := G k+1,0
0,2k+2

(
{}

b1, · · · , b2k+2

∣∣∣ξ). From [8, p. 157],

x`
d`w

dx`
=
∑̀
m=1

s(`,m)

(
x
d

dx

)`
(w),
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where s(`,m) are the Stirling numbers of the first kind. Hence

xj
dj

dxj
G(ξ) =

j∑
m=1

s(j,m)

(
x
d

dx

)m
G(ξ)

=

j∑
m=1

s(j,m)(2k)m
(
ξ
d

dξ

)m
G(ξ)

=

j∑
m=1

s(j,m)(2k)m
m∑
n=1

S(m,n)ξn
dn

dξn
G(ξ), (7.2)

where, in the last step, we used (4.42). Employing the result [47, p. 621, Formula (38)] (note
that b1 = 0)

ξn
dn

dξn
G(ξ) = (−1)nG k+1,0

0,2k+2

(
{}

n, · · · , b2k+2

∣∣∣ξ)
in (7.2), we get

dj

dxj
G(ξ) =

1

xj

j∑
m=1

s(j,m)(2k)m
m∑
n=1

S(m,n)(−1)nG k+1,0
0,2k+2

(
{}

n, · · · , b2k+2

∣∣∣1
4

( x
2k

)2k
)
. (7.3)

While this suggests an application of L’Hopital’s rule as the next step towards obtaining
(7.1), we are unable to obtain (7.1) this way.

We now mention an interesting thing we observed. Note that proving (2.6) is equivalent
to proving (4.55) in view of (2.5). If one formally applies Parseval’s formula (3.4) to the
right-hand side of (4.55), it still evaluates to H(k)

z (x)! This suggests that perhaps there exists
a grand generalization of Parseval’s formula which encompasses Vu Kim Tuan’s extension
given in Theorem 3.2 to accommodate the case where both functions f and g are highly
oscillatory and neither one has its Mellin transform absolutely integrable on [0,∞).

It would also be interesting to see solutions of the differential equation in Theorem 4.2
other than H

(k)
z (x) and the integral in Remark 7. This is particularly important in light

of (2.4) or, more generally, (4.54). Differential equations analogous to the one in Theorem
4.2 have played an important role in number theory and special functions. We note two
studies in this regard. The first one is by Wigert [61] and is concerned with our work in
a forthcoming paper [21]. The other is by Everitt [27, Equation (2.6)] who considered a
differential equation having as one of its solutions a generalization of the Bessel function of
the first kind denoted by Jν,k(x).

Finally, it may be important to study the integral∫ ∞
0

tz+
1−3k

2 Jµ(xt)Jν

(
1

tk

)
dt,

where Jν(ξ) is the Bessel function of the first kind defined in (1.4). Indeed, for µ = ν =

−1/2, it reduces (except for a constant in front) to H(k)
z (x) in view of the relation J−1/2(x) =√

2
πx cos(x). Similarly, for µ = ν = 1/2, it essentially reduces to the integral in (4.13) since

J1/2(x) =
√

2
πx sin(x). For k = 1, this integral was studied by Hanumanta Rao [29] (see also

[58, p. 437]) and appears in his work on self-reciprocal functions [57] and which has led to a
large amount of research; see the survey on p. 5 of [25].
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