
RECENT DEVELOPMENTS PERTAINING TO RAMANUJAN’S FORMULA FOR
ODD ZETA VALUES

ATUL DIXIT

Abstract. In this expository article, we discuss the contributions made by several mathematicians with
regard to a famous formula of Ramanujan for odd zeta values. The goal is to complement the excellent
survey by Berndt and Straub [22] with some of the recent developments that have taken place in the area
in the last decade or so.
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1. Introduction

At the Ramanujan centenary conference at the University of Illinois at Urbana-Champaign in 1987,
the renowned physicist and mathematician Freeman Dyson remarked, “That was the wonderful thing
about Ramanujan. He discovered so much, and yet he left so much more in his garden for other people
to discover”. Dyson’s remarks hold true to this day as can be seen from the stunning developments
currently happening in the theory of mock modular forms (having its origin in Ramanujan’s mock theta
functions), the theory of partitions, Rogers-Ramanujan identities (hard hexagon model, Kanade-Russell
conjectures), to name a few. Another result of Ramanujan which is in the same league as above is his
famous formula for the values of the Riemann zeta function at odd integers (other than 1), which we
will shortly describe.

The Riemann zeta function ζ(s) is defined for Re(s) > 1 by the absolutely convergent series

ζ(s) :=
∞∑
n=1

1

ns
.

2020 Mathematics Subject Classification. Primary 11M06, 44A20; Secondary 11J91
Keywords and phrases. Lambert series, odd zeta values, Eisenstein series, Ramanujan polynomials.

1



It converges uniformly in Re(s) ≥ 1 + ε for any ε > 0 and hence represents an analytic function in
Re(s) > 1. Further, it is well-known that ζ(s) can be analytically continued in the entire complex plane
except for a simple pole at s = 1. The Riemann zeta function is just a simple case of what is known as
an L-function, which, in the half-plane Re(s) > σa, is defined by

∞∑
n=1

a(n)

ns
,

where a(n) is an arithmetic function and σa is the abscissa of absolute convergence of the series.
For m ≥ 1, it is well-known that ζ(−2m) = 0. Euler gave an explicit representation for ζ(2m), m ≥ 1,

given by

ζ(2m) = (−1)m+1 (2π)2mB2m

2(2m)!
, (1.1)

where Bm is the mth Bernoulli number defined by

x

ex − 1
=:

∞∑
m=1

Bm

m!
xm, (|x| < 2π).

This implies, in particular, ζ(2) = π2/6, ζ(4) = π4/90, ζ(6) = π6/945 etc. One of the reasons why Euler’s
formula is extremely important is that it at once implies that ζ(2m) for any m ≥ 1 is transcendental.
This is owing to the fact that π is transcendental and Bm,m ≥ 1, is a rational number. In particular,
this implies that for any m ≥ 1, ζ(2m) is irrational.

Now a natural question arises here - what can we say about ζ(2m + 1) for any m ≥ 1? 1 (We shall
henceforth call ζ(2m+1) as the odd zeta values.) Except in the case of ζ(3), the answer is far from being
known! Even in the case of ζ(3), we only know, thanks to Apéry [3], [4], that ζ(3) is irrational. Nothing
is known currently on its possibility of being transcendental. The reader is encouraged to see the paper
of Rajkumar [70] and that of Zudilin [80] for interesting accounts on how a result of Ramanujan inspired
Apéry in his proof of irrationality of ζ(3). As far as the other odd zeta values ζ(5), ζ(7), ζ(9), · · · are
concerned, we do not even know if they are irrational. However, it is known due to Zudilin [79] that at
least one of ζ(5), ζ(7), ζ(9) or ζ(11) must be irrational. Moreover, Rivoal [73] has shown that infinitely
many numbers in the set {ζ(2m + 1)}∞m=2 are irrational, but we do not know exactly which ones. The
paper [65] by Murty on the subject of transcendental numbers is a pleasant read.

The topic of evaluating the Riemann zeta function, and more generally L-functions, at special values
of their arguments remains to this day an evergreen topic. While there may not always be exact
formulas that are available, there are transformations in the literature involving such functions which
are fundamentally important.

One such is the formula of Ramanujan for ζ(2m+1) alluded to in the first paragraph of the introduc-
tion. Let α, β > 0 with αβ = π2 and m ∈ Z\{0}. Then Ramanujan’s formula is given by2 [71, p. 173,
Ch. 14, Entry 21(i)], [72, p. 319-320, formula (28)], [17, p. 275-276]

α−m

{
1

2
ζ(2m+ 1) +

∞∑
n=1

n−2m−1

e2nα − 1

}
= (−β)−m

{
1

2
ζ(2m+ 1) +

∞∑
n=1

n−2m−1

e2nβ − 1

}

− 22m

m+1∑
k=0

(−1)kB2kB2m+2−2k

(2k)!(2m+ 2− 2k)!
αm+1−kβk. (1.2)

The series occurring in (1.2) are examples of Lambert series. A Lambert series associated with the

arithmetic function a(n) is defined by
∞∑
n=1

a(n)
qn

1− qn
, where |q| < 1. If we let q = e−y, where Re(y) > 0,

1It is well-known for m ≥ 0 that ζ(−2m− 1) = −B2m+2

2m+2 , a rational number.
2Ramanujan’s formula actually holds for any complex α, β such that Re(α) > 0,Re(β) > 0 and αβ = π2.
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then the above Lambert series can be written in the equivalent form
∞∑
n=1

a(n)

eny − 1
, which is what appears

in (1.2) with a(n) = n−2m−1.
There are several applications of Ramanujan’s formula. We begin with its special case - a formula

due to Lerch [61]. For odd m ∈ N, it is given by

ζ(2m+ 1) + 2
∞∑
n=1

n−2m−1

e2πn − 1
= π2m+122m

m+1∑
j=0

(−1)j+1B2jB2m+2−2j

(2j)!(2m+ 2− 2j)!
. (1.3)

It can be thought of as a formula for evaluating special values of the Dirichlet series associated with
coth(πn); see, for example, the paper of Straub [74], where such evaluations are taken up further.

While the right-hand side of (1.3) is again a transcendental number, the left-hand side, unlike (1.1),
is not just ζ(2m+ 1) but instead the sum of ζ(2m+ 1) and a rapidly convergent series. Hence, at best,

we can only say [45] that at least one of ζ(2m+ 1) or
∑∞

n=1
n−2m−1

e2πn−1
is transcendental.

Ramanujan’s formula encodes the fundamental transformation properties of the Eisenstein series on
the full modular group SL2(Z). The Eisenstein series of even integral weight k ≥ 2 over SL2(Z) have
the following Fourier series expansion:

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)e2πinz, z ∈ H (the upper half-plane),

where σs(n) =
∑
d|n

ds is the generalized divisor function and Bk are the Bernoulli numbers. Now letting

m = −` in (1.2) gives, for ` > 1, the transformation formula satisfied by the Eisenstein series:

α`
∞∑
n=1

n2`−1

e2nα − 1
− (−β)`

∞∑
n=1

n2`−1

e2nβ − 1
=
(
α` − (−β)`

) B2`

4`
. (1.4)

Indeed, this is a reformulation of the well-known modular relation valid for ` > 1:

E2`(−1/z) = z2`E2`(z), z ∈ H.

Moreover, whenm = −1 in (1.2), we get an equivalent version of the modular transformation E2(−1/z) =
z2E2(z) + 6z

πi
satisfied by the quasi-modular form E2(z), namely,

α

∞∑
n=1

n

e2nα − 1
+ β

∞∑
n=1

n

e2nβ − 1
=
α + β

24
− 1

4
.

There are further important corollaries resulting from Ramanujan’s formula. One such concerns the
Eichler integral associated with the Eisenstein series Ek(z). An Eichler integral corresponding to Ek(z)
is defined as the (k − 1)st primitive of Ek(z). Then Ramanujan’s formula for positive integers m gives
the transformation of Eichler integrals corresponding to E2m+2(z). Moreover, even though the pole of
ζ(2m + 1) at m = 0 does not permit us letting m = 0 in (1.2), the Lambert series occurring in (1.2)
make perfect sense. Thus, starting with one of these Lambert series with m = 0 and converting it into a
line integral using the Perron inversion formula followed by appropriately shifting the line of integration,
using the Cauchy residue theorem and taking into account the contributions of the residues at the poles,
leads to

∞∑
n=1

1

n(e2nα − 1)
−
∞∑
n=1

1

n(e2nβ − 1)
=
β − α

12
+

1

4
log

(
α

β

)
. (1.5)
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This transformation is nothing but an equivalent form 3 of

η(−1/z) =
√
−izη(z), (1.6)

where η(z) is the Dedekind eta-function defined for z ∈ H by η(z) = e
πiz
12

∏∞
n=1(1 − e2πinz). It is well-

known that η(z) is a half-integral weight modular form on SL2(Z) with its transformations twisted by
roots of unity.

Thus, Ramanujan’s formula (1.2) encapsulates the transformations of Eisenstein series on SL2(Z) as
well as those of their Eichler integrals, and, in addition, also gives the Dedekind eta-function transfor-
mation. In fact, Ramanujan’s formula is equivalent to a certain representation for period polynomials
of Eisenstein series of even weight on SL2 (Z); see [21, Proposition 5.2, Equation (35)].

Apart from the applications in modular forms, Kirschenhofer and Prodinger [55] have given an appli-
cation of Ramanujan’s formula in theoretical computer science, in particular, in the analysis of special
data structures and algorithms. To be more specific, (1.2) and its aforementioned corollaries are used
to achieve certain distribution results on random variables related to dynamic data structures called
‘tries’.

The literature on Ramanujan’s formula and its very many generalizations and analogues is vast.
There have also been many surveys and expository articles written on the subject, for example, those
by Berndt [15], Berndt and Straub [22] and by Zudilin [80]. In this survey, we will be concentrating
on the developments that have taken place in the area in the last decade or so, in particular, après the
excellent survey [22]. To keep the survey short, we do not duplicate the material in [22] concerning how
Ramanujan may have proved (1.2). The contributions by various mathematicians concerning (1.2) before
the last decade have been well-documented in [17, p. 276], [22], and hence, barring a few exceptions, do
not form a topic of discussion in this paper.

2. Generalizations of Ramanujan’s formula (1.2)

The generalizations of Ramanujan’s formula given here are not in chronological order.

2.1. A generalization associated with the Lambert series of ns and its applications. Recently,
Kesarwani, Kumar and the current author [35] considered the generalized Lambert series

∞∑
n=1

ns

eny − 1
=
∞∑
n=1

σs(n)e−ny, (2.1)

where s ∈ C, Re(y) > 0, and obtained the following result [35, Theorem 2.4].

Theorem 2.1. For Re(s) > −1,

∞∑
n=1

σs(n)e−ny +
1

2

((
2π

y

)1+s

cosec
(πs

2

)
+ 1

)
ζ(−s)− 1

y
ζ(1− s)

=
2π

y sin
(
πs
2

) ∞∑
n=1

σs(n)

(
(2πn)−s

Γ(1− s)1F2

(
1;

1− s
2

, 1− s

2
;
4π4n2

y2

)
−
(

2π

y

)s
cosh

(
4π2n

y

))
, (2.2)

where 1F2(a; b, c; z) :=
∑∞

n=0
(a)nzn

(b)n(c)nn!
with z ∈ C is the generalized hypergeometric function with (a)n =

Γ(a+n)
Γ(a)

, and Γ(z) is the Euler Gamma function.

This generalization can be considered as a transformation for a “complex” analogue of Eisenstein
series. They used analytic continuation to extended the validity of the above formula in a larger region
and obtained the following result [35, Theorem 2.5].

3To see this, take logarithm on both sides of (1.6), use the Taylor expansion of logarithm, then substitute α = −πiz
and β = πi/z (so that Re(α) > 0 and Re(β) > 0, and simplify.
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Theorem 2.2. Let m ∈ N ∪ {0} and Re(y) > 0. Then for Re(s) > −2m− 3, we have
∞∑
n=1

σs(n)e−ny +
1

2

((
2π

y

)1+s

cosec
(πs

2

)
+ 1

)
ζ(−s)− ζ(1− s)

y

=
2
√

2π

y1+ s
2

∞∑
n=1

σs(n)n−
s
2

{
1
2
K s

2

(
4π2n

y
, 0

)
− π2

3
2

+s

sin
(
πs
2

) (4π2n

y

)− s
2
−2

Am

(
1

2
,
s

2
, 0;

4π2n

y

)}

− y(2π)−s−3

sin
(
πs
2

) m∑
k=0

ζ(s+ 2k + 2)ζ(2k + 2)

Γ(−s− 1− 2k)

(
4π2

y

)−2k

, (2.3)

where µKν(z, w) is a generalized modified Bessel function defined for ν ∈ C\ (Z\{0}), and z, µ, w ∈ C
such that µ+ w 6= −1

2
,−3

2
,−5

2
, · · · , by

µKν(z, w) :=
πzw2µ+ν−1

sin(νπ)

{(z
2

)−ν Γ(µ+ w + 1
2
)

Γ(1− ν)Γ(w + 1
2
− ν)

1F2

(
µ+ w + 1

2

w + 1
2
− ν, 1− ν

∣∣∣∣z2

4

)
−
(z

2

)ν Γ(µ+ ν + w + 1
2
)

Γ(1 + ν)Γ(w + 1
2
)

1F2

(
µ+ ν + w + 1

2

w + 1
2
, 1 + ν

∣∣∣∣z2

4

)}
, (2.4)

with µK0(z, w) = limν→0 µKν(z, w), and

Am(µ, ν, w; z) :=
m∑
k=0

(−1)−µ−w−
1
2 Γ
(
µ+ w + 1

2
+ k
)

k!Γ (−ν − µ− k) Γ
(

1
2
− ν − µ− w − k

) (z
2

)−2k

. (2.5)

It is shown in [35, Corollaries 2.6–2.9] that Theorems 2.1 and 2.2 together yield Ramanujan’s formula
(1.2) as a corollary.

Having a general parameter s also allows more flexibility. We can now let s→ 2m,m ≥ 0, in Theorem
2.1 and obtain [35, Theorem 2.11]:

Theorem 2.3. Let Shi(z) and Chi(z) be the hyperbolic sine and cosine integrals defined by [68, p. 150,
Equation (6.2.15), (6.2.16)]

Shi(z) :=

∫ z

0

sinh(t)

t
dt, Chi(z) := γ + log(z) +

∫ z

0

cosh(t)− 1

t
dt, (2.6)

where γ is Euler’s constant. Let m ∈ N. Then for Re(y) > 0,
∞∑
n=1

σ2m(n)e−ny − (2m)!

y2m+1
ζ(2m+ 1) +

B2m

2my

= (−1)m
2

π

(
2π

y

)2m+1 ∞∑
n=1

σ2m(n)

{
sinh

(
4π2n

y

)
Shi

(
4π2n

y

)

− cosh

(
4π2n

y

)
Chi

(
4π2n

y

)
+

m∑
j=1

(2j − 1)!

(
4π2n

y

)−2j
}
. (2.7)

Note that the series on the right-hand side of (2.7) is a natural analogue of
∞∑
n=1

σ2m+1(n)

{
sinh

(
4π2n

y

)
− cosh

(
4π2n

y

)}
= −

∞∑
n=1

σ2m+1(n)e−4π2n/y,

which is one of the series appearing in the modular transformation satisfied by
∑∞

n=1 σ2m+1(n)e−ny, that
is, in (1.4).

The case m = 0 of Theorem 2.3 was obtained in an equivalent form by Wigert [78, p. 203, Equation
(A)] (see also [35, Equation (2.19)]) who termed it ‘la formule importante’.

Also, if we let s→ −2m,m ∈ N, in Theorem 2.2, we are led to [35, Theorem 2.12]:
5



Theorem 2.4. Let m ∈ N. If α and β are complex numbers such that Re(α) > 0, Re(β) > 0, and
αβ = π2, then

α−(m− 1
2)

{
1

2
ζ(2m) +

∞∑
n=1

n−2m

e2nα − 1

}
−

m−1∑
k=0

22k−1B2k

(2k)!
ζ(2m− 2k + 1)α2k−m− 1

2

= (−1)m+1β−(m− 1
2)

{
γ

π
ζ(2m) +

1

2π

∞∑
n=1

n−2m

(
ψ

(
inβ

π

)
+ ψ

(
−inβ

π

))}
, (2.8)

where ψ(z) denotes the logarithmic derivative of Γ(z).

This result can be conceived as a companion of Ramanujan’s formula for ζ(2m + 1). It was for the
first time4 in [35] that the non-modular but explicit transformations given in Theorem 2.1 and 2.2 were
obtained for

∑∞
n=1 σ2m(n)e−ny,m ∈ Z\{0}. See [35, p. 7] for more discussion on these results. One

of their applications is that one can easily obtain the asymptotic expansion of
∑∞

n=1 σ2m(n)e−ny using
them. For example, for m ∈ N, we have [36, Corollary 1.5] as y → 0 in | arg(y)| < π/2,

∞∑
n=1

σ2m(n)e−ny =
(2m)!

y2m+1
ζ(2m+ 1)− B2m

2my
− 2(−1)m

π(2π)2m−1

r+1∑
j=1

Γ(2m+ 2j)ζ(2m+ 2j)ζ(2j)

(2π)4j
y2j−1 +O

(
y2r+3

)
.

(2.9)

Ramanujan’s first letter to Hardy contains the case m = 1 of this asymptotic expansion and is proved
by Watson using the Abel-Plana summation formula. This asymptotic expansion very easily leads to
Wright’s asymptotic estimate for the generating function of the number of plane partitions of a positive
integer. For more details, see [36, Corollary 1.6] and the discussion preceding it.

Another application of Theorem 2.1 is that the parameter s being complex permits differentiation of
both sides of the transformation. Before we present the identity resulting through this process, let us
define ψk(z) for z ∈ C\{a : a ∈ R− ∪ {0}} by

ψk(z) := −γk −
logk(z)

z
−
∞∑
n=1

(
logk(n+ z)

n+ z
− logk(n)

n

)
, (2.10)

where γk is the generalized Stieltjes constant defined by [13]

γk := lim
n→∞

(
n∑
j=0

logk(j + 1)

j + 1
− logk+1(n+ 1)

k + 1

)
. (2.11)

The ψk(z) are the logarithmic derivatives of the generalized gamma functions of Dilcher [30], and are
intimately connected with the Laurent series coefficients of the Hurwitz zeta function ζ(s, z) around
s = 1. See [38] not only for a discussion on this but also for the literature survey.

Differentiating (2.2) with respect to s and then letting s→ 0 gives the following identity of Banerjee,
Gupta and the current author [8, Theorem 1.1]:

Theorem 2.5. Let ψ1(z) be defined by (2.10). Then for Re(y) > 0,

∞∑
n=1

log(n)

eny − 1
= −1

4
log(2π) +

1

2y
log2(y)− γ2

2y
+

π2

12y

− 2

y
(γ + log(y))

∞∑
n=1

{
log

(
2πn

y

)
− 1

2

(
ψ

(
2πin

y

)
+ ψ

(
−2πin

y

))}
4Around the same time, Dorigoni and Kleinschmidt [39] considered the case when a is a negative even integer (see [39,

Equation (2.43)]) using the concept of transseries [40].
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+
1

y

∞∑
n=1

{
ψ1

(
2πin

y

)
+ ψ1

(
−2πin

y

)
− 1

2

(
log2

(
2πin

y

)
+ log2

(
−2πin

y

))
+

y

4n

}
.

(2.12)

Prior to the discovery of (2.12), no information about
∞∑
n=1

log(n)

eny − 1
was available, not even its asymp-

totic expansion as y → 0. The above exact formula for the series readily gives its asymptotic expansion
as y → 0 as can be seen from [8, Theorem 1.2]. The latter is shown to have an application in deriving
the asymptotic expansion to all orders of the smoothly weighted moment of ζ

(
1
2
− it

)
ζ ′
(

1
2

+ it
)

on the

critical line, that is, of

∫ ∞
0

ζ

(
1

2
− it

)
ζ ′
(

1

2
+ it

)
e−δt dt as δ → 0; see Theorem 1.3 of [8].

We note that for Re(s) > 2, the series in (2.1) was considered by Ramanujan himself [71, p. 269],
who obtained the following beautiful transformation for it.

Theorem 2.6. Let α and β be two positive real numbers such that αβ = 4π2. Then for Re(s) > 2, we
have

αs/2

{
Γ(s)ζ(s)

(2π)s
+ cos

(πs
2

) ∞∑
n=1

ns−1

enα − 1

}
= βs/2

{
cos
(πs

2

) Γ(s)ζ(s)

(2π)s
+
∞∑
n=1

ns−1

enβ − 1

− sin
(πs

2

)
PV

∫ ∞
0

xs−1

e2πx − 1
cot

(
1

2
βx

)
dx

}
, (2.13)

where PV denotes the Cauchy principal value integral.

It is important to observe the difference between the above result and (2.2) - while (2.2) transforms
the series in (2.1) in terms of another series whose summand is different in appearance from that of the
former but which is explicit and useful to get the asymptotic expansion of (2.1) as y → 0, Ramanujan’s
(2.13) shows precisely for a complex s /∈ {4, 6, 8, 10, · · · }, the obstruction to modularity of the series in
(2.1) in terms of the principal value integral.

It is clear that letting s = 2`, ` ∈ N, ` > 1, and respectively replacing α and β by 2α and 2β in (2.13)
gives (1.4), and hence (2.13) is also a continuous version of (1.4). Berndt proved the above formula in
[19, p. 416] using the Abel-Plana summation formula.

Two different generalizations of this result have been obtained recently. The first one is given by
Berndt, Gupta, Zaharescu and the current author [20, Theorem 14] and is in the setting of Koshliakov
zeta functions which are shortly discussed below. The second generalization was obtained by Kumar
and the current author [36, Theorem 1.1] and is given next.

Theorem 2.7. Let Re(α),Re(β) > 0 such that αβ = 4π2. Let 0 ≤ a < 1. Then, for Re(s) > 2, the
following transformation holds:

αs/2

{
Γ(s)ζ(s)

(2π)s
+

1

2

∞∑
n=1

ns−1

(
eπis/2

enα−2πia − 1
+

e−πis/2

enα+2πia − 1

)}

= βs/2

{
Γ(s)

(2π)s

∞∑
k=1

cos
(
πs
2

+ 2πak
)

ks
+
∞∑
n=1

(n− a)s−1

e(n−a)β − 1

− 1

2i
PV

∫ ∞
0

xs−1

(
eπis/2

e2πx−2πia − 1
− e−πis/2

e2πx+2πia − 1

)
cot

(
1

2
βx

)
dx

}
. (2.14)

The above result involves the generalized Lambert series
∞∑
n=1

(n− a)s−1

e(n−a)z − 1
(s ∈ C,Re(z) > 0, 0 ≤ a < 1),
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which has not been studied before except for some special values such as a = 1/2 or 1/4. Three special
cases of (2.14) are derived in [36, Corollaries 1.2-1.4].

2.2. A generalization in the setting of Koshliakov zeta functions. Nikolai Sergeevich Koshliakov
[58] wrote a beautiful manuscript in 1949 that lay dormant in the mathematical community for over
70 years. In this manuscript, he developed the theory of generalized zeta functions and the functions
associated with them. The theory has its genesis in a problem on heat conduction resulting from Physics
(see [32, Section 2]). This manuscript was studied in detail for the first time by Gupta and the current
author in [32] who also built the theory further by obtaining two new modular equations, one of which
is a new generalization of (1.2). It concerns one of the two Koshliakov zeta functions defined below.

Let p > 0. Then the first Koshliakov zeta function ζp(s) is defined by [58, p. 6]

ζp(s) :=
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

· 1

λsj
, <(s) > 1, (2.15)

where λj runs over the roots of the transcendental equation p sin(πλ) + λ cos(πλ) = 0. Observe that
limp→∞ ζp(s) = ζ(s).

Let σ(z) := p+z
p−z and σp(z) :=

∑∞
j=1

p2+λ2j

p(p+ 1
π )+λ2j

e−λjz. For k ∈ N, Koshliakov’s generalized Bernoulli

numbers5 are defined by [58, p. 46, Chapter 2, Equation (45)]

B
(p)
2k := (−1)k+14k

∫ ∞
0

x2k−1σp(2πx)dx, B
(p)
0 :=

1

1 + 1
πp

. (2.16)

Then for m ∈ Z, m 6= 0, and αβ = π2, the generalization of Ramanujan’s formula (1.2) derived in [32,
Theorem 4.1] is

α−m

1

2
ζp(2m+ 1) +

∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

·
λ−2m−1
j

σ
(
λjα

π

)
e2αλj − 1


= (−β)−m

1

2
ζp(2m+ 1) +

∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

·
λ−2m−1
j

σ
(
λjβ

π

)
e2βλj − 1


− 22m

m+1∑
j=0

(−1)jB
(p)
2j B

(p)
2m−2j+2

(2j)!(2m− 2j + 2)!
αm−j+1βj. (2.17)

It is clear that letting p → ∞ yields (1.2). Also, if we let p → 0, we get an analogue of (1.2); see the
papers of Malurkar [63], Berndt [16], Gupta and the current author [32, Corollary 4.2] and Chourasiya,
Jamal and Maji [26].

2.3. Generalizing the classical theory of Eisenstein series. In 2001 [51], Kanemitsu, Tanigawa

and Yashimoto studied the generalized Lambert series
∞∑
n=1

nN−2h

enNx−1
for h,N ∈ N such that h ≤ N/2

and obtained a transformation for it [51, Theorem 1]. A slight generalization of this series was first
considered by Ramanujan! See page 332 of Ramanujan’s Lost Notebook [72]. However, Ramanujan did
not give any result for this series. A possibility of some pages in the Lost Notebook being lost cannot
be discarded altogether.

In [2, p. 385–386], Andrews and Berndt discuss a bit on placing the series in a framework generalizing
the classical theory of Eisenstein series. Samplings of such a theory have recently been conceived in

5We note that in Koshliakov’s notation, B
(p)
2k would be denoted by (−1)k+1B

(p)
k . We have followed the contemporary

notation for Bernoulli numbers. It is easy to see that limp→∞B
(p)
2k = B2k.
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the papers [37], [34] and [9]. In [37, Theorem 1.2], Maji and the current author give a generalization
of Ramanujan’s formula (1.2) containing the aforementioned generalized Lambert series considered by
Ramanujan. This formula is given next. The nice thing about it is that it gives a relation between two
different odd zeta values of the form ζ(2m + 1) and ζ(2Nm + 1), where N is an odd natural number,
by means of these Lambert series.

Theorem 2.8. Let N be an odd positive integer and α, β > 0 such that αβN = πN+1. Then for
m ∈ Z,m 6= 0,

α−
2Nm
N+1

(
1

2
ζ(2Nm+ 1) +

∞∑
n=1

n−2Nm−1

exp ((2n)Nα)− 1

)

=
(
−β

2N
N+1

)−m 22m(N−1)

N

(
1

2
ζ(2m+ 1) + (−1)

N+3
2

N−1
2∑

j=
−(N−1)

2

(−1)j
∞∑
n=1

n−2m−1

exp
(

(2n)
1
N βe

iπj
N

)
− 1

)

+ (−1)m+N+3
2 22Nm

bN+1
2N

+mc∑
j=0

(−1)jB2jBN+1+2N(m−j)

(2j)!(N + 1 + 2N(m− j))!
α

2j
N+1βN+

2N2(m−j)
N+1 . (2.18)

It is straightforward to see that letting N = 1 in (2.18) gives (1.2). A one-parameter generalization of
a transformation equivalent to that of the Dedekind eta function, that is, of (1.5), is also derived in [37,
Theorem 1.3]. The title of this subsection is in light of the fact that (1.2) gives the classical modular
transformations of the Eisenstein series. A character analogue of (2.18) has been recently derived by
Gupta, Jamal, Karak and Maji [44, Theorem 2.2].

Two different directions were recently undertaken to further generalize (2.18). We begin with the
one in [34] where Gupta, Kumar, Maji and the current author studied the more general Lambert series
considered by Kanemitsu, Tanigawa and Yoshimoto in [53], namely,

∞∑
n=1

nN−2h exp(−anNx)

1− exp(−nNx)
, (2.19)

and obtained a two-parameter generalization of (1.2) containing this series. Their result is as follows.

Theorem 2.9. Let 0 < a ≤ 1, let N be an odd positive integer and α, β > 0 such that αβN = πN+1.
Then for any positive integer m,

α−
2Nm
N+1

((
a− 1

2

)
ζ(2Nm+ 1) +

m−1∑
j=1

B2j+1(a)

(2j + 1)!
ζ(2Nm+ 1− 2jN)(2Nα)2j

+
∞∑
n=1

n−2Nm−1exp
(
−a(2n)Nα

)
1− exp (−(2n)Nα)

)

=
(
−β

2N
N+1

)−m 22m(N−1)

N

[
(−1)m+1(2π)2mB2m+1(a)Nγ

(2m+ 1)!
+

1

2

∞∑
n=1

cos(2πna)

n2m+1

+ (−1)
N+3

2

N−1
2∑

j=
−(N−1)

2

(−1)j
{ ∞∑

n=1

n−2m−1 cos(2πna)

exp
(

(2n)
1
N βe

iπj
N

)
− 1

+
(−1)j+

N+3
2

2π

∞∑
n=1

sin(2πna)

n2m+1

(
ψ
(
iβ
2π

(2n)
1
N e

iπj
N

)
+ ψ

(
−iβ
2π

(2n)
1
N e

iπj
N

))}]
9



+ (−1)m+N+3
2 22Nm

bN+1
2N

+mc∑
j=0

(−1)jB2j(a)BN+1+2N(m−j)

(2j)!(N + 1 + 2N(m− j))!
α

2j
N+1βN+

2N2(m−j)
N+1 . (2.20)

It is not difficult to see that letting a = 1 in Theorem 2.9 gives Theorem 2.8 for m ∈ N. Observe
that through (2.20), we can provide a relation between any number of odd zeta values ζ(2N + 1),
ζ(4N + 1), ζ(6N + 1), · · · , ζ(2Nm + 1), where N is an odd positive integer and m ∈ N, in terms of
generalized Lambert series and generalized higher Herglotz functions (see (3.3) below for the definition
of higher Herglotz functions). Numerous other corollaries resulting from Theorem 2.9 are also given in
[34]. For example, in [34, Corollary 2.5], a transformation linking ζ(3)/π3, ζ(5)/π5, ζ(7)/π7, ζ(9)/π9

and ζ(11)/π11 is obtained.
A generalization of (2.2), with an extra parameter N was recently derived by Banerjee, Gupta and

the current author [9, Theorem 2.3].

Theorem 2.10. Let m ∈ N ∪ {0} and Re(y) > 0. For s ∈ C and N ∈ N, let

σ(N)
s (n) :=

∑
dN |n

ds, S(N)
s (n) :=

∑
dN1 d2=n

d
1+s
N
−1

2 . (2.21)

For Re(s) > −(2m+ 2)N − 1, the following identity holds:
∞∑
n=1

σ(N)
s (n)e−ny +

ζ(−s)
2
− ζ(N − s)

y
− 1

N

Γ
(

1+s
N

)
ζ
(

1+s
N

)
y

1+s
N

=
y

2π2

m∑
k=0

(
− y2

4π2

)k
ζ(−2kN −N − s)ζ(2k + 2) +

2(2π)
1
N
− 1

2N
s−1
2

y
1
N

+ s
2N

×
∞∑
n=1

S
(N)
s (n)

n
s

2N

[
1
2
K

(N)
s

2N
(n)

(
4πN+1n

yNN
, 0

)
− 2

1
2

+ s+1
N π

(1−N)a
2N

−N(
4πN+1n
yNN

)1+ 1
N

+ s
2N

sin
(
π
2
(N − s)

)
2N−1

Cm,N

(
1

2
,
s

2N
, 0,

4πN+1n

yNN

)]
,

(2.22)

where

µK
(N)
ν (z, w) := 2µ+ 2

N
−1π(1−N)νzw+ν− 2

NGN+1, 1
1, 2N+1

(
1 + 1

2N
− µ− ν − w

1
2

+ 1
2N
− ν, 〈 i

N
〉Ni=1; 1 + 1

2N
− w, 〈1 + 3

2N
− i

N
〉Ni=2

∣∣∣∣z2

4

)
,

(2.23)

with Gm,n
p,q

(
a1, · · · , ap

b1, · · · bm; bm+1, · · · , bq

∣∣∣X) being the Meijer G-function [68, p. 415, Definition 16.17], and

Cm,N(µ, ν, w; z) :=
m∑
k=0

(−1)k(N+1)+N

k!
Γ
(

1
2

+ µ+ w + k
)

Γ (1 + µ+ ν + k)
2N−1∏
i=1

Γ
(

i
2N

+ µ+ ν + w + k
) (z

2

)−2k

.

(2.24)

Letting N = 1 in the above theorem gives Theorem 2.2. There are several important corollaries of
the above result. For example, when s = −2Nm−N, where N is an odd positive integer, we get a new
generalization of (1.2).

We note in passing that Gupta and Maji [46, Corollary 3.5] have obtained another generalization of
(1.2). In fact, it is a special case of their general result [46, Theorem 3.1]. See also the last paragraph
of [9, Section 11].

2.4. Ramanujan’s formula through period polynomials and its generalization. As mentioned
in the antepenultimate paragraph of the introduction, Ramanujan’s formula can be rephrased in terms
of a representation for the period polynomials of the Eisenstein series on the full modular group. If
we consider analogous period polynomials for the Eisenstein series of higher level, that would then
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lead us to Ramanujan-type formulas. This was done by Berndt and Straub in [21, Theorem 6.1] for a
generalized Eisenstein series associated with primitive Dirichlet characters χ and ψ modulo L and M
respectively. In particular, when χ ≡ 1 and ψ = χ−4, the non-principal Dirichlet character modulo 4,
defined by χ−4(n) = 0 for even n and χ−4(n) = (−1)(n−1)/2 for odd n, then the special case of their
result is an analogue of (1.2) given by Ramanujan himself [17, p. 277, Entry 21(iii)]:

Theorem 2.11. Let α, β > 0 with αβ = π2. Let L(ψ, k) :=
∑∞

n=1 ψ(n)n−k for k > 1. For m ∈ N,

α−m+1/2

{
1

2
L(χ−4, 2m) +

∞∑
n=1

χ−4(n)n−2m

enα − 1

}
=

(−1)mβ−m+1/2

22m+1

∞∑
n=1

sech(nβ)

n2m

+
1

4

m∑
n=0

(−1)n

22n

E2n

(2n)!

B2m−2n

(2m− 2n)!
αm−nβn+1/2, (2.25)

where Ej denotes the jth Euler number [75, p. 15].

We note in passing that a special case of (2.14) derived in [36, Corollary 1.4] gives an integral

representation for a cousin of the Lambert series occurring in (2.25), namely,
∞∑
n=1

χ−4(n)n2m−1

enβ − 1
, where

m ∈ N,m > 1. The latter does not fall under the purview of the setting in [21].

2.5. Other generalizations. Franke [41] has extended (1.2) in two different ways by considering gen-
eralized Dirichlet series having properties similar to the Dirichlet L-functions. Also see [42]. Recently,
Banerjee, Gupta and Kumar [10, Theorem 1.1] have obtained a generalization of (1.2) in the setting
of the Dedekind zeta function over an arbitrary number field. Bansal and Maji [12] have obtained a
different number field analogue of Ramanujan’s identity which reduces to (1.2) when the field is taken to
be Q. Ramanujan’s theorem has been massively generalized by Katsurada [54] and Lim [62, Theorem
1.1]. Chavan, Chavan, Vignat and Wakhare [25] have shown that Ramanujan’s formula is a special
case of their more general result [25, Theorem 2.2] on the convolution of generalized Dirichlet series [25,
Equation (2.3)] parametrized by a set of zeros and certain weights. Kongsiriwong [56, Theorem 2.5]
has given yet another extension of (1.2) using certain infinite series involving cotangent functions. An
identity wherein the product of Riemann zeta functions in the finite sum on the right-hand side of (1.2)
is replaced by the corresponding one involving Hurwitz zeta functions has been derived by Chavan [24].
Ramanujan’s formula follows as a special case of his identity.

3. Analogues of Ramanujan’s formula (1.2)

3.1. A non-holomorphic counterpart of Ramanujan’s formula. For m ∈ Z,m ≤ −1, Ramanu-
jan’s formula (1.2) essentially involves Eisenstein series of weight −2m on SL2 (Z). Then a natural
question arises - what if we consider non-holomorphic Eisenstein series considered by Maass which are
eigenfunction on the hyperbolic Laplacian, that is, real analytic in the upper half-plane H?

Such a non-holomorphic analogue of (1.2) was recently obtained by O’Sullivan [67, Theorem 1.3]. His
beautiful result is stated below.

Theorem 3.1. Let z = x+ iy ∈ H. Define Vk(z) by

Vk(z) :=
∞∑
n=1

σk−1(n)e−2πinz̄

−k∑
u=0

(4πny)u

u!
. (3.1)

For all k ∈ 2Z,

2
(
zkVk(z)− Vk(−1/z)

)
=

2ζ(2− k)

(2πi)k

(y
π

)1−k (
|z|2k−2 − zk

)
11



− (2πi)1−k
∑

u,v∈Z≥0

u+v=1−k/2

B2u

(2u)!

B2v

(2v)!
z1−2v +


0, if k > 0,

πi/2 + log(z), if k = 0,

(1− zk)ζ(1− k), if k < 0.

(3.2)

For z ∈ H, if we let

Uk(z) :=
∞∑
n=1

σk−1(n)e2πinz =
∞∑
n=1

nk−1

e−2πinz − 1
,

and for, k ∈ 2Z, if we form

Ek(z) := 1 +
ε(k)

ζ(1− k)

[
ζ(2− k)

(2πi)k

(y
k

)1−k
+ Uk(z) + Vk(z)

]
,

where ε(k) = 2 if k ≥ 0 and 1 if k < 0, then Ek(z) is a harmonic Maass form of holomorphic weight k
[69].

Theorem 3.1 has important consequences. For example, it gives a non-holomorphic companion to
Lerch’s formula (1.3) [67, Equation (8.22)]. Adding it to (1.3), a new formula for odd zeta values is
obtained in [67, Equation (1.30)], namely, for even h ≥ 2,

ζ(2h− 1) =
4h−1

π
ζ(2h)−

∞∑
n=1

σ1−2h(n)e−2πn

(
1 +

2h−2∑
k=0

(4πn)k

k!

)
.

Another application of Theorem 3.1 is that it gives a new expression for Ramanujan polynomials which
are introduced in Section 3.5; see [67, Equation (8.24)].

3.2. A Ramanujan-type formula involving the higher Herglotz functions. For k ∈ N, k > 1,
and x ∈ C\(−∞, 0], let Fk(x) be the higher Herglotz function defined by

Fk(x) :=
∞∑
n=1

ψ(nx)

nk
. (3.3)

This function has played an important role in the work of Vlasenko and Zagier [77] on deriving higher
Kronecker “limit” formulas for real quadratic fields. It was first studied by Maier [64, p. 114].

In [33, Corollary 3.4], Gupta, Kumar and the current author obtained an analogue of Ramanujan’s
formula involving Fk(x) given below6.

Theorem 3.2. Let α and β be two complex numbers with Re(α) > 0,Re(β) > 0 and αβ = π2. Then
for m ∈ N,

α−m
{

2γζ(2m+ 1) + F2m+1

(
iα

π

)
+ F2m+1

(
−iα
π

)}
= −(−β)−m

{
2γζ(2m+ 1) + F2m+1

(
iβ

π

)
+ F2m+1

(
−iβ
π

)}
− 2

m−1∑
j=1

(−1)jζ(1− 2j + 2m)ζ(2j + 1)αj−mβ−j. (3.4)

In particular, letting m = 1 in Theorem 3.2 gives the beautiful modular relation [33, Corollary 3.5]:

1

α

{
2γζ(3) + F3

(
iα

2π

)
+ F3

(
− iα

2π

)}
=

1

β

{
2γζ(3) + F3

(
iβ

2π

)
+ F3

(
− iβ

2π

)}
. (3.5)

6They obtain, in fact, a result more general than (3.2); see [33, Theorem 3.2].
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Observe the three different combinations - two even zeta values, one even and one odd zeta value, and
two odd zeta values - occurring in the finite sums on the right-hand sides of (1.2), (2.8) and (3.4)
respectively upon using Euler’s formula (1.1) to write B2k in terms of ζ(2k).

3.3. A Ramanujan-type formula for ζ2(2m + 1). Recently, Gupta and the current author [31,
Theorem 2.1] obtained a Ramanujan-type formula for ζ2(2m+ 1) stated below.

Theorem 3.3. Let ε = eiπ/4 and ε = e−iπ/4. Let d(n) denote the number of divisors of n. For ρ > 0
and x > 0, define Ωρ(x) by

Ωρ(x) := 2
∞∑
j=1

d(j)
(
K0(4ρε

√
jx) +K0(4ρε

√
jx)
)
, (3.6)

where K0(x) denotes the modified Bessel function of the second kind of order zero. Let m be a non-zero
integer. Define Fm(ρ) by

Fm(ρ) := (ρ2)−m

{
ζ2(2m+ 1)

(
γ + log

(ρ
π

)
− ζ ′(2m+ 1)

ζ(2m+ 1)

)
+
∞∑
n=1

d(n)Ωρ(n)

n2m+1

}
. (3.7)

Then for any α, β > 0 satisfying αβ = π2,

Fm(α)− (−1)−mFm(β) = −π24m

m+1∑
j=0

(−1)jB2
2jB

2
2m+2−2j

(2j)!2(2m+ 2− 2j)!2
α2jβ2m+2−2j. (3.8)

Although the appearance of (3.6) and the series
∑∞

n=1 d(n)n−2m−1Ωρ(n) in the above Ramanujan type
formula for ζ2(2m + 1) looks strange, they are natural analogues of 1/(e2πρx − 1) the Lambert series∑∞

n=1 n
−2m−1/(e2πρx − 1), which appear in Ramanujan’s formula (1.2). This is now shown.

The function 1/(e2πx − 1) has simple poles at x = 0,±in, n ∈ N, and hence its partial fraction
decomposition is given by

1

e2πx − 1
= −1

2
+

1

2πx
+
x

π

∞∑
j=1

1

x2 + j2
. (3.9)

The pole at x = ±in has residue 1
2π

. Koshliakov [57] was interested in finding an analogous function
which would have a simple pole at x = ±in at each n ∈ N (analogous to 1/(e2πx− 1)), but with residue
1

2π
d(n). This function is given by

Ω(x) := 2
∞∑
j=1

d(j)
(
K0

(
4πε
√
jx
)

+K0

(
4πε
√
jx
))

. (3.10)

Indeed, we have [57, Equation 7], analogous to (3.9),

Ω(x) = −γ − 1

2
log x− 1

4πx
+
x

π

∞∑
j=1

d(j)

x2 + j2
.

Note that from (3.6), Ωπ(x) = Ω(x). Also, it is well-known that ζ2(s) =
∑∞

n=1 d(n)n−s,Re(s) > 1.
Hence in order to exhibit a Ramanujan-type modular relation involving ζ2(2m + 1) with αβ = π2,
the right analogue of the Lambert series

∑∞
n=1 n

−2m−1/(e2πρx − 1) is
∑∞

n=1(1 ∗ 1)(n)n−2m−1Ωρ(n) =∑∞
n=1 d(n)n−2m−1Ωρ(n), so that the variable ρ can be replaced by α and β satisfying αβ = π2. Here

∗ denotes the Dirichlet convolution of two arithmetic functions. This explains the occurrence of the
functions Ωρ(x) and Fm(ρ) in Theorem 3.3.

Two generalizations of Theorem 3.3 are also derived in the same paper; see [31, Theorems 2.2, 5.1].
A common generalization of (1.2) and Theorem 3.3 has been given by Banerjee and Sahani [11] by
obtaining a Ramanujan-type formula for ζk(2m+ 1) for k ∈ N.
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3.4. A multidimensional analogue of an identity of Ramanujan. Ramanujan has derived another
transformation related to (2.25) (see [17, p. 276, Entry 21(ii)]). As a special case, it gives

∞∑
n=1

χ−4(n)

n
sech

(πn
2

)
=
π

8
. (3.11)

A multidimensional analogue of (3.11) was recently obtained by Daniyarkhodzhaev and Korolev [29,
Theorem 1]. It states7 that for any r ≥ 1,

∞∑
n1,··· ,nr=0

(−1)n1+···+nr(
n1 + 1

2

)
· · ·
(
nr + 1

2

)
cosh

(
π
√(

n1 + 1
2

)2
+ · · ·+

(
nr + 1

2

)2
) =

1

r + 1

(π
2

)r
.

In the same paper [29], the authors also prove (3.11) in three different ways - firstly, using Cauchy’s
residue theorem, secondly, using the functional equation of L(s, χ−4), and thirdly, using the Laplace
equation (and solving a two-dimensional boundary-value problem).

The multi-dimensional analogue raises following two interesting questions:

(1) Are there multi-dimensional analogues of the corresponding specializations of (1.2) and (2.25),
that is, of (1.3) and the identity obtained from (2.25) by letting α = β = π respectively?

(2) Are there multidimensional analogues of (1.2), (2.25) themselves as well as of Ramanujan’s identity
(generalization of (3.11) in α and β) considered by the authors of [29]?

3.5. Ramanujan polynomials and their cousins. In [66], Murty, Smyth and Wang defined Ra-
manujan polynomials to be8

R2m+1(z) :=
m+1∑
k=0

B2kB2m+2−2k

(2k)!(2m+ 2− 2k)!
z2k, (3.12)

which are clearly constructed from the finite sum on the right-hand side of Ramanujan’s formula (1.2)
upon replacing k by m+ 1− k, and then letting α = −iπz and β = iπ/z. Ramanujan polynomials have
nice properties: they are reciprocal polynomials, that is, they satisfy the functional equation

R2m+1(z) = z2m+2R2m+1

(
1

z

)
,

they have real coefficients, and moreover, all of their non-real zeros lie on the unit circle etc. In the
language of modular forms, these polynomials can be thought of in terms of period polynomials of the
Eisenstein series [27, p. 4762]. Other generalizations of the Ramanujan polynomials are considered in
[59], [60], [21, Equations (43), (47)] and [50].

We now explain the importance of studying the zeros of Ramanujan polynomials as described in [66].
Letting α = −iπz and β = iπ/z, where Im(z) > 0, Fk(z) :=

∑∞
n=1 σk(n)n−ke2πinz in (1.2) with m ∈ N,

we get [48]

F2m+1(z)− z2mF2m+1

(
−1

z

)
=

1

2
(z2m − 1)ζ(2m+ 1) +

1

2z
(2πi)2m+1R2m+1(z). (3.13)

Now Murty, Smyth and Wang [66] have proved that for each m ≥ 4, there exists at least one algebraic
number κ (depending on m) with |κ| = 1, κ2m 6= 1, and lying in the upper half plane such that

7The formula, as stated in [29], has a typo, namely, the occurrence of π/2 inside the argument of cosh should be
replaced by π.

8Gun, Murty and Rath [45] have also defined these polynomials although in their definition the power of z is 2m+2−2k
rather than 2k. The reciprocal property in (3.12) is seen to hold in both the definitions.
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R2m+1(κ) = 0. Hence we get the following formula which expresses the odd zeta values ζ(2m+1),m ≥ 4,
in terms of two Eichler integrals:

ζ(2m+ 1) =
2

κ2m − 1

(
F2m+1(κ)− κ2mF2m+1(−1/κ)

)
. (3.14)

Thus, if we have information about the arithmetic nature of F2m+1(κ) − κ2mF2m+1(−1/κ), that would
help shed light on the arithmetic nature of the odd zeta values. In this direction, there is a result
of Gun, Murty and Rath [45] which says that if m ∈ N ∪ {0} and δm = 0, 1, 2 or 3 respectively as
gcd(m, 6) = 1, 2, 3 or 6, then for every algebraic κ ∈ H, the number F2m+1(κ) − κ2mF2m+1(−1/κ) is
transcendental with at most 2m+ 2 + δm exceptions.

O’Sullivan [67, Equation (8.24)] has obtained another representation for ζ(2m + 1) in terms of the
Ramanujan polynomials using his non-holomorphic analogue of (1.2), that is, Theorem 3.1. It states
that for m ∈ N,

ζ(2m+ 1) =
1

(z2m − 1)

{
1

z
(2πi)2m+1R2m+1(z) + 2

(
V−2m(z)− z2mV−2m(−1/z)

)
+

B2m+2

2(2m+ 2)!
z2m(|z|−4m−2 − 1)

}
. (3.15)

If we let α = −iπz and β = iπ/z in each of the finite sums occurring in (2.8) and (3.4), we get cousins
of Ramanujan polynomials (3.12). It may be worthwhile to investigate their properties as well.

4. Conclusion

One of the objectives of this paper was to demonstrate how rich the topic concerning Ramanujan’s
formula for odd zeta values is. There have been incredibly many generalizations and ramifications of it,
and while newer perspectives continue to emerge, sometimes older results also get rediscovered.

For example, consider the following equivalent representation of (1.2) given in [76, Equation (1)]9:

αm−1

∞∑
n=1

coth(πnα−1)

(2πn)2m−1
− (−α)1−m

∞∑
n=1

coth(πnα)

(2πn)2m−1
= −

m∑
n=0

(−1)n
B2n

(2n)!

B2m−2n

(2m− 2n)!
α2n−m, (4.1)

where we consider m ≥ 2. Define

Cm(α) :=
∞∑
n=1

coth(πnα)

(2πn)2m−1
, Gm(α) := −

m∑
n=0

(−1)n
B2n

(2n)!

B2m−2n

(2m− 2n)!
α2n−m. (4.2)

Then (4.1) implies
Gm(α) = αm−1Cm(α−1)− (−α)1−mCm(α). (4.3)

Uhl gives a new proof of (4.3) using Mittag-Leffler expansion10 and then obtains [76, Theorem 4.1],
what he calls, a triangle identity for Gm(α):

Gm(α) = (iα−1 + 1)m−1Gm(α + i)− (iα− 1)m−1Gm(α−1 − i).
It is not difficult to see that the above identity was already discovered in an equivalent form by Vlasenko
and Zagier [77, p. 42, Equation (30)].

In the abstract of his paper, Uhl writes, ‘. . . properties and symmetries of the equation [Ramanujan’s
formula] are far from all uncovered ’.

While the scope of the current survey was quite limited, the above quote certainly hints at a new
survey article to emerge in the years to come!
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[78] S. Wigert, Sur la série de Lambert et son application à la théorie des nombres, Acta Math. 41 (1916), 197–218.
[79] W. W. Zudilin, One of the numbers ζ(5), ζ(7), ζ(9) and ζ(11) is irrational (Russian), Uspekhi Mat. Nauk 56 No. 4

(2001), 149–150; translation in Russian Math. Surveys 56 No. 4 (2001), 774–776.
[80] W. Zudilin, Ramanujan and odd zeta values, to appear in the Encyclopedia of Srinivasa Ramanujan and His Mathe-

matics https://wain.mi-ras.ru/PS/ramaodd.pdf

Department of Mathematics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar
382355, Gujarat, India

Email address: adixit@iitgn.ac.in

18

https://arxiv.org/pdf/1212.5881.pdf
https://arxiv.org/pdf/1212.5881.pdf
https://wain.mi-ras.ru/PS/ramaodd.pdf

	1. Introduction
	2. Generalizations of Ramanujan's formula (1.2)
	2.1. A generalization associated with the Lambert series of ns and its applications
	2.2. A generalization in the setting of Koshliakov zeta functions
	2.3. Generalizing the classical theory of Eisenstein series
	2.4. Ramanujan's formula through period polynomials and its generalization
	2.5. Other generalizations

	3. Analogues of Ramanujan's formula (1.2)
	3.1. A non-holomorphic counterpart of Ramanujan's formula
	3.2. A Ramanujan-type formula involving the higher Herglotz functions
	3.3. A Ramanujan-type formula for 2(2m+1)
	3.4. A multidimensional analogue of an identity of Ramanujan
	3.5. Ramanujan polynomials and their cousins

	4. Conclusion
	References

