NON-RASCOE PARTITIONS AND A RANK PARITY FUNCTION
ASSOCIATED TO THE ROGERS-RAMANUJAN PARTITIONS

ATUL DIXIT, GAURAV KUMAR AND AVIRAL SRIVASTAVA

ABSTRACT. We study the generating function of the excess number of Rogers—Ramanujan parti-
tions with odd rank over those with even rank, and, using combinatorial and analytical techniques,
show that this generating function is closely connected with an interesting class of restricted par-
titions, namely, partitions into distinct parts where the number of parts is not a part. We derive
arithmetic properties of the number of such partitions and conjecture an interesting mod 4 con-
gruence. Generalizations of most of these results in a parameter ¢ are also obtained.
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1. INTRODUCTION

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum
is n, with each positive integer forming the partition termed as a part of that partition. Dyson’s
rank of a partition is defined as the largest part of the partition minus the number of parts. For
example, the rank of the partition 4 +1+4+1of 6is 4 — 3 = 1.

The enumeration of partitions, belonging to a particular class, based on their rank parity is often
fruitful since the generating functions involved turn out to be important g-series with interesting
modular behavior. For instance, the generating function of the excess number of partitions with

even rank over those with odd rank is Ramanujan’s third order mock theta function f(q) :=
o0 qn2

,; (=492
be adopted:

where, here, and throughout the paper, the following standard g-series notation will

(a)o := (a;q)o =1,
(@;q)n=(1—-a)1—aq)---(1—agd""), n>1,

—
Q
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(@)oo := (a;9) 0o = lim (a;q)n, lq| <1,
n—oo

(€)= (1 =a/q") " (1=a/g"™") - (1—a/g)", n=1,
with ¢ denoting the base. We will always consider |¢| < 1 in this paper.
The function f(q) is essentially a weight 1/2 mock modular form. Choi, Kang and Lovejoy [21]
considered the corresponding problem with rank replaced by the Andrews-Garvan crank.
On the other hand, if we consider only the partitions into distinct parts, that is, partitions
whose parts differ by at least 1, then the excess number of such partitions with even rank over
those with odd rank is another famous function of Ramanujan [4] , namely,

> qn(n—l—l)/Q

This function was first considered by Ramanujan in his Lost Notebook in conjunction with two
‘sum-of-tails identities’ [33, p. 14]. See [4] for details. It is a prototypical example of a quantum
modular form [39]. It has connections to algebraic number theory since its coefficients have
properties governed by the arithmetic of Q(\/é) It was this connection which enabled Andrews,

Dyson and Hickerson [14] to prove two mysterious properties of o(q) first conjectured by Andrews
[5]. Cohen [22] proved that if ¢(q) = ¢"/*o(q) + ¢ Y*0*(q) = Y. nez  T(n)q™/** where

n=1 (mod 24)
o*(q) == 232°°  (=1)"q"" /(q; ¢*)n, then T'(n) are the coefficients of a Maass waveform of eigenvalue
1/4. The literature on o(q) is vast. The reader is referred to [16] for an extensive bibliography.
Now consider partitions in which parts differ by at least 2. These are called the Rogers—
Ramanugjan partitionsﬂ for, they are generated by the “sum side” of the first Rogers-Ramanujan
identity [35], namely,

o(q) ==

q" 1
= . (1.1)
HZ:O (@n (6:6°)0(d" ¢°) o0

Here, we are interested in the excess number of Rogers-Ramanujan partitions with even rank
over those with odd rank. To obtain its generating function, define R(m,n) to be the number of
Rogers—Ramanujan partitions of n with rank m. Our first result is

Theorem 1.1.
oo oo o0 Zn_lqn2
R(m,n)z"q" = :
Thus, letting z = —1 in the above result, we find that the generating function of the excess
number of Rogers-Ramanujan partitions with odd rank over those with even rank is the function
o0 2
o2(q) ::ZW =19+ = +2¢" - 2" +¢"—q¢"+2¢° = 3¢" +--- . (1.2)
n=0 n

We call 05(q) as a rank parity function associated to the Rogers—Ramanujan partitions.

Let us illustrate this special case z = —1 of Theorem with an example. Let n = 9. The
only Rogers-Ramanujan partition with odd rank is 742 whereas the Rogers-Ramanujan partition
with even rank are 9,8 + 1,6 + 3 and 5+ 3 + 1. Hence the excess number of Rogers-Ramanujan
partitions with odd rank over those with even rank is 1 —4 = —3, which agrees with the coefficient
of ¢ in ((1.2).

IThey are sometimes called Rogers-Ramanujan partitions of type I.
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Had the (—1)" in the summand of the series in been absent, the above sum would have
been Ramanujan’s fifth order mock theta function fo(q), which has been extensively analyzed from
the perspective of mock modular forms, g-series and partitions. On the other hand, the function
02(q) seems to have been conspicuously missing from the literature. One of the goals of this paper
is to undertake a comprehensive study of this function from combinatorial as well as analytical
point of view. It will be seen here that o2(q) enjoys several interesting properties and so it will
not be surprising if it eventually ends up being in the same league as o(¢) in the future.

Before discussing the combinatorics associated with o9(gq) though, we introduce new restricted
partitions introduced in 2024 by John Tyler Rascoe [34], which we term Rascoe partitions. These
are the partitions of a positive integer into distinct parts in which the number of parts is itself a
part of the partition. For example, if n = 11, then the admissible partitions are 9 +2, 74+ 3+ 1
and 6 + 3 + 2. Let a(n) denote the number of Rascoe partitions of n. Clearly, a(0) = 0. Rascoe
stated [34], without proof, that

o e n qm(mfl)
a(n)q” _ qn(n+1)/2<q)n71 I S—
2o =2 2 ol

Next, we define a non-Rascoe partition of a positive integer n to be a partition of n into distinct
parts in which the number of parts is not a part of the partition. For example, if n = 11, then
the non-Rascoe partitions of 11 are 11,10+ 1,8 +3,8 +2+4+ 1,74+ 4,6 +5,6 +4+ 1,5 +4 + 2
and 5+ 3+ 2+ 1. Let b(n) denote the number of non-Rascoe partitions of n. We take b(0) = 1
because the empty partition has 0 parts which is, of course, not its part.

The sequence {b(n)}32, has been tabulated in the OEIS [2§]. Clearly,

n m(m—1)

3 bn)g" = (~@)ee — 3 @2 (g Y Y

el (Dn-m (D1

Our second result gives a surprising new connection between the generating function of b(n) and
o2(q) as shown in the next theorem.

Theorem 1.2.
D )" = (—0)w02(9) = Y (=1)"¢" (=0 ).

In other words, the non-Rascoe partitions are generated by (—q)s02(q).

One may wonder what do we get if we perform the same exercise as above but without the
restriction that the parts of a partition be distinct. Indeed, as will be shown in Section [6] the
generating function of the number of partitions in which the number of parts is not a part is simply

(1=q+¢)/(0)-
Two applications of Theorem are given in the following two theorems.

Theorem 1.3. The number of non-Rascoe partitions of a number n is odd if and only if n =
m(5m + 1)/2, where m € Z.

Theorem 1.4. Let P(j,n) be the number of partitions of n into distinct parts with the exception
that the smallest part, say 7, is allowed to repeat exactly j number of times. Then the excess
number of such partitions with even smallest part over those with odd smallest part equals the
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number of non-Rascoe partitions of n, that is,
> (=1YP(j,n) = b(n),
§=0
where, P(0,n) is, clearly, the number of partitions of n into distinct parts.

We now illustrate the above theorem by means of an example. Let n = 11. As demonstrated
after defining non-Rascoe partitions, b(11) = 9. On the other hand, since P(j,n) denotes the
number of partitions into distinct parts with the exception that the frequency (number of ap-
pearances) of the smallest part j is equal to j, we have P(0,11) = 12, namely, the number of
partitions of 11 into distinct parts. Moreover, P(1,11) = 5 as the number of admissible partitions
are 10+ 1,84+2+1,7+3+1,6+4+1and 5+3+2+1. Also, P(2,11) = 2, since only 7+ 2+ 2
and 4 + 3 + 2 + 2 are admissible. Then P(0,11) — P(1,11) + P(2,11) = 12 — 5+ 2 = 9, which
agrees with b(11).

We note in passing that Andrews and El Bachraoui [9] Theorem 1] have recently studied par-
titions where the smallest part appears exactly k times, where k € N is fixed, and the remaining
parts are distinct. They have shown that the generating function of the number of such parti-
tions is a linear combination of g-shifted factorials with polynomials in the variable ¢ as coefficients.

The parity of b(n), that is, the number of non-Rascoe partitions of n, was precisely found in
Theorem|[1.3] One may wonder if there exist congruences that b(n) satisfies over certain arithmetic
progressions. We conducted a numerical search for such congruences up to moduli < 31 and found
only one congruence. It is a rather exotic one. We are unable to prove it as of now. Hence we
state it as a conjecture.

Conjecture 1: Let b(n) denote the number of non-Rascoe partitions of an integer n. For k > 1
and k not a multiple of 29, the following congruence holds:

b(29k + 21) = 0 (mod 4).
Remark 1. This conjecture has been verified for the first 10° values in {b(n)}>,.

Remark 2. If k is a multiple of 29, say, k = 29m, then b(29k + 21) may or may not be di-
visible by 4. For example, for 0 < m < 118, b(29 - 29m + 21) is divisible by 4 when m =
0,1,7,8,13,19,22, 27, 28,29, 32, 37, 41, 44, 47, 48,49, 50, 51, 52, 53, 57, 64, 67, 69, 74, 75, 76, 77, 78, 79,
81,82, 83,84, 85, 89,95, 100, 102, 104, 106, 108, 109, 115, 116, 117 and 118, and is not divisible by 4
for the remaining values of m.

Remark 3. If Conjecture 1 is valid, then, along with Theorem (1.3], it implies that a number of
the form 29n + 21, where n # 295 can never be written in the form m(5m + 1)/2 for any m € Z.
This, can, of course, be proved using elementary number theory.

One of the important features of Ramanujan’s rank parity function o(q) is that it has a Hecke-
Rogers type representation, namely [14, Theorem 1],

o(q) = Z (_1>n+jqn(3n+1)/2—j2(1 B q2n+1)'

n>0
l7l<n

A general g-series identity obtained by Liu [30, Theorem 1.9] not only gives, as a special case, an
identity [30, Corollary 6.1] which is a source of obtaining Hecke-Rogers type representations for
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many g-series, but also the representation (i) for 9(q) given in the following theorem. Moreover,
an identity of Andrews [8, Theorem 18, Equation (12.3)] involving the little g-Jacobi polynomials
results in the second representation for o3(q).

Theorem 1.5.

| IR ) (1)
W= {“2 T Ml

. - > "o D21 4+ ) S (D, vm
@) o) = e { Z e > g }

= m=0

The two representations of os(q) given above look quite similar with only a few differences here
and there. Thus, one may wonder if we can derive one from the other. Indeed, in Section [3| we
prove that

n

—1);(—1)igi=in (1 nt
Z( )((q)j)q _ +q") Z

=0 1_q m

1 mq—mn

(1.3)

In Section [, we will generalize most of the above results in conjunction with a generalization of
02(q) as well as with the number of generalized Rascoe partitions, that is, ag(n), and the number
of generalized non-Rascoe partitions by(n), where £ € NU {0}. A generalized Rascoe partition
of an integer n is a partition into distinct parts such that the number of parts plus ¢ is also a
part. Similarly, a generalized non-Rascoe partition is a partition into distinct parts such that the
number of parts plus ¢ is not a part. In the same section, the following surprising generalization
of will be proved.

Theorem 1.6. Forn,l € Z,
(D)1 (@) ] (= Di(= 1)
;0 (a); -, par (@ 4

The reason why (|1.4) is interesting is because, it is an identity between two finite analogues of
Fine’s function F(a,b;t) :== > 2 (aq),t"/(bq), where the number of terms summed on both sides
are arbitrary. Also, it can be put in a completely symmetric form in n and n + ¢, namely,

o (@n S (D (=10 (@t S (21 (=1
S P A v D 7 P

In Section |5, we offer an identity linking the generating functions of b,(n) and byyq(n) by making
use of a mysterious identity of Ramanujan [33]. A congruence involving by(n)(= b(n)), by(n) and
the coefficients of Ramanujan’s tenth order mock theta functions X (¢) and x(q) is given. Similarly,
a congruence involving b(n), by(n) and certain Fourier coefficients of the Hauptmoduln js(7) is
obtained using some recent results of Kang, Kim, Matsusaka and Yoo [29].

2. COMBINATORICS OF 03(¢) AND NON-RASCOE PARTITIONS

In this section, the deep connection between 05(¢) and b(n), the number of non-Rascoe partitions
of n, given in Theorem will be revealed. However, this requires proving several preparatory
results, which are of independent interest.

We begin with obtaining an expression for the generating function of R(m,n).
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Proof of Theorem [I.1]. Let n be the number of parts and k be the largest part of a Rogers—
Ramanujan partition. Since the difference between any two consecutive parts is at least 2, we
separate out the first 27 — 1 nodes from j-th part of the partition counted from the bottom, where
1 < j < n as shown by the dotted region in Figure . This gives us 1 +3+ -+ (2n — 1) = n?
nodes. Next, 1/(zq), generates the partition to the right of the dotted region with z keeping track

Zn—l n

of k—(2n—1). Thus, o

is n and z keeps track of the rank £ — n. Summing over n from 0 to co leads us to the desired
result.

generates a Rogers-Ramanujan partition where the number of parts

[ . . . . . . . . 3
,,,,,,,,,,,,,
[ . . . . . . .
,,,,,,,,,,,,,
[ . o o o
,,,,,,,,,,,,,
L] L]

FIGURE 1. A Rogers-Ramanujan partition

O

Remark 4. This result can also be derived using MacMahon’s 2-operator method by starting with
the representation

o0 o 0o 00 o ~
Z E R(m, n)zmqn =1+ E E E N E an—jqn1+n2+..‘+nj‘
n=0 m=—o0 j=1 n1=1na=n1+2 nj=nj_1+2

Next, we connect R(m,n) with another restricted partition function.

Theorem 2.1. Let L(m, N) be the number of partitions of a number N into m parts, with largest
part, say n, repeating at least n times. Then, L(m, N) equals the Rogers—Ramanugjan partitions of
N with rank m — 1. In other words, L(m,N) = R(m — 1, N).

Proof. In view of Theorem , it suffices to show that the generating function of L(m, N) is

o o o n n2
Z Z L(m, N)z"¢"N = Z 24

N=0m=0 n=0 (2q>”

From Figure [2] it is clear that if n is the largest part of a partition enumerated by L(m, N),

FIGURE 2. A partition generated by L(m, N)
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then the dotted region is generated by q”Q. Also, 1/(zq),, generates the partition below the dotted

n n2
region with z keeping track of the difference between the total number of parts and n. Thus, %
generates a partition enumerated by L(m, N) having n as its largest part and z keeping track of
the number of parts. The desired generating function is then obtained by summing over n from 0

to oo. [l

Remark 5. It is easy to see that the partitions in Figures [1| and [2| can be bijectively mapped to
each other.

We now give representations for the generating functions of a(NN) and b(N). Here, and through-
out the sequel, we denote the Gaussian polynomial or the g-binomial coefficient by [0l p. 35]

(9;9) .
[N} = [N] = {m if0<n <N,
q

n n 0, otherwise.

Theorem 2.2.

= 0 " Ty — 17 gmm=D)
D)) a(N)gh = qrmE Ny [m - ﬂ 1 , (2.1)

N=1 m—1 (Qm—1
(i) Y b(N)gN =) qn IRy L?;__ ﬂ %. (2.2)

Proof. In proving both (i) and (ii),we assume n to be the number of parts in a partition, and m
to be the number of parts greater than n.

We begin by proving (i). Clearly, 0 < m < n — 1. The Ferrers diagram of a typical Rascoe
partition is given in Figure [3] where the number of parts, in this case, 6, is also a part. We divide
the Ferrers diagram into four different regions - A, B,C' and D. Region A is formed by taking k

______________ A .. B 9
: L] L] L] L] L] L] L] L] L] L]
m, e . . . . E E__."" . . i E__o""
. . . . I“o"" . ol
e elle e |
_______ D

FIGURE 3. A Rascoe partition

nodes from the k' part of the partition (counted from below), for 1 < k < n, which is guaranteed
by the fact that a Rascoe partition has distinct parts. Note that the sub-partition forming the
region B has m + 1 parts, each equal to m. This is because, region B is formed out of those parts
in the partition which are > n and distinct. The sub-partition in region C'is generated by 1/(q)m,
as there can be at most m number of parts. Finally, Region D has at most (n —m — 1) parts, each
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< m, and is, therefore, generated by [";Ll} [0, p. 33, Equation (3.2.1)]. Thus, a Rascoe partition
with n number of parts is generated by

n—1 mm

m=0 m

Therefore,

00 N 00 12nl n—1 m(m+1)
Y aN)g¥ =) ¢/ Z[ } .

N=1 n=1 m=0 m

Replacing m by m — 1 in the above equation establishes (2.1)).
To prove (ii), consider a typical non-Rascoe partition shown in Figure , where the number of
parts, that is, n = 6 in this case, is not a part. Clearly, 1 < m < n. We again divide the Ferrers

________________________ A

L] [ ] [ ] [ ] L] L ] L ] [ ] [ ] [ ]
m [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] E l__.____

[ ] [ ] [ ] [ ] [ ] [ ] o«

e e eiie e
B P oo D

[ ] [ ] : : [ ] [ ] :

e ile

FIGURE 4. A non-Rascoe partition

diagram into four different regions - A, B, C' and D. Since the region A is formed from parts > n

which are also distinct, it contains exactly the parts n + 1,--- ,n + m. Therefore, it contributes

gVt D/2 towards the generating function. Since the region B is formed by taking k nodes

from k'™ part of the partition, where 1 < k < n — m, it will contribute ¢»~"®="+1/2 " Region

C' is generated by 1/(q),, as there can be at most m number of parts. Finally, region D is a

sub-partition consisting of at most (n —m) parts, each < (m — 1), and is thus generated by [:;11] )
Therefore, the non-Rascoe partitions with n number of parts are generated by

n |:'I’I, _ 1:| qnm+m(m+1)/2q(n—m)(n—m+1)/2

Z m—1 (@)m

m=1

Hence,

OUGITARD LR Z[M]%

N=1 n=1
]

Next, we make use of the principle of conjugation to obtain an identity which allows us to derive
a new representation of o5(q).
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Theorem 2.3.

> i(i—1)/2
2" q _ n(n+1)/2 Z'q
q . 2.3
N S Z @ 29
o ann2 (_Z_IQ)OO o N/ o s o Z—iqz’(i+1)/2
= (—2)ng" "I/ — gy (24)
RX% (_Q)n (_q)oo nz% (_Q)oo n—0 ; (Q)n-i-z

Proof. Let P(i, N) denote the number of partitions of N into distinct parts, except the smallest
part, say ¢, which repeats exactly i number of times. A partition enumerated by P(i, N) is given
in Figure [5]

L3 3 3 3 . ] ]
L3 3 3 3 . ]
3 3 3 3

e

L. 3 3

I

|

i 3 3 3

3 3 3

FIGURE 5. A partition enumerated by P(i, N)

Then qi2 generates the dotted region and (—¢"™!),, will generate the portion above it. With 2z
keeping track of the smallest part, the generating function of P(7, V) thus turns out to be

>N PN =Y 2 (0 (2.5)

N=0 =0 i=0

We now take the conjugate of the above partition; see Figure[6] In this new partition, the largest

. . . o 3 .

. . . o 3 o ';
(] . . . . .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(2
. . .
. .
(] .

FIGURE 6. Conjugate of the partition in Figure

part, say n, repeats i number of times. No number > (n — i) and < n can be a part since the
smallest part ¢ in the original partition appears exactly ¢« number of times. The portion below the
dotted region must contain all parts < (n —1).
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Thus, the dotted region contributes ¢™ towards the generating function, and g ()q()n R

erates the portion below it. Therefore, the corresponding generating function, where 2z keeps track
of the number of times the largest part repeats, is given by

gen-

(n—i)(n—i+1)/2 ( 1)/2

Z Z z q q _ an(nJrl /2 Z (q)n_i

n=0 =0 nz =0

Using the principle of conjugation, and the above equation gives .
To derive , replace ¢ by n — ¢ on right-hand side of and then use Euler’s theorem [17,
p. 9, Corollary (1.3.2)]
00 w)k k=172

Z = (W  (lw] <o0)

to get
00 g n2 00 1)) o iq(n—i)(n—i—l)/Q
q
nz% (=@)n Z 2; (9)i
1 N -1, 1-n\ii(i—1)/2
_ S g (="'¢'™")'q
(@) = — (9)i
- Zq (_Z q )oo -
(—0)oo = Zznil (9)i
—z_lq ~ © 2 . 1 o o2 00 -1 1 —n zqz(i—l)/Q
e S ety - LS )
9)oo n=0 T)oo n=0 i=n-+1
Now use the fact (—z7'¢'™), = (2 1¢q)"¢ ""*1/2(—2),, in the first sum and replace i by i 4+ n in
the second sum, and then simplify to obtain ([2.4)). O
Two new representations of gy(q) are now obtained.
Corollary 2.4.
o n1Yigi(i-1)/2
n (n+1)/ ( ]-) q
oa(q — (2.6)
n— ; (Q>n71
q)x 1 = n(n - _1)qu(l+1)/2
72(0) = (” P O ot = L i
Proof. Let z = —1in (2.3)) and (2.4]). O

As one of the final steps towards proving Theorem [I.2] we derive a finite analogue of an equivalent
form of an identity of Bhargava and Adiga. This equivalent form is due to Srivastava [37, Equation

(6)].
Theorem 2.5.

" n (—)\/a)mamqm(m+1)/2 (—aq), " n (—)\/b)mbmqm(m+1)/2
[m] (=0q)m (—bq)n, . [m] (—aq)m : (2.7)




NON-RASCOE PARTITIONS AND A RANK PARITY FUNCTION 11

Proof. Andrews’ finite Heine transformation [7, Corollary 3, Equation (2.7)] is given by

i (@)@ m B m _ 1/ B)n(BT) N (¢ ")m(@BT/N)m(B)m m
=0 (@ (V)m (@ /T)m (V) (T)n 0 (@ (BT)m(BL"/V)m ™

Now replace 7 by 7/, let 5 — oo and then use the facts

: (B)m - - - 2 (@n
lim _ qumn m’ q n = -1 mq mn+m(m—1)/ ’
8 B /) (= (1) @
to obtain
- |:n:| (a)m<_1)m7_mqm(m—1)/2 _ (T)n - |:TL:| (O”—/’Y)m<_1)m,qum(m—1)/2'
= Im] (V)m (Mo 2= lm| (7)m
Now, let &« = —A/a,v = —bq and T = —aq so as to arrive at (2.7)). O

Remark 6. As indicated before the statement of Theorem letting a = —x/q,b = —y/q,
replacing A by \/q, and then letting n — oo yields Srivastava’s equivalent form of a finite identity
due to Bhargava and Adiga.

Corollary 2.6.

e S I (SO 2:5)

= m] (=bq)m  (—b@)n 5=

Proof. Let a — 0 in (2.7) to get (2.8). O
Theorem 2.7.

Proof. From ({2.§]),

n

T —

Now, put A = 1 and b = —¢~! in the above equation to get

n

“[n] 2. .. - (—1)mgmim—/2
O R e

We now apply this identity to rephrase (2.6) in the form

1 S~ qn(n+1)/2 n |:TL
oa(q) =
Z O

} " (™)

gl

This proves the result. l

X p=0

Armed with the results developed so far, we are now ready to prove our main theorem.
Proof of Theorem [[.2] The result follows from (2.2)) and Theorem [2.7] O
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Proof of Theorem 1.3 From Theorem [1.2]

2 2 —<_q)n 2 . (mod 2). (2.9)

Now using the first Rogers—Ramanujan identity (l.1) and the following special case of Jacobi’s
triple product identity [0, p. 21, Theorem 2.8], namely,

[ee]

57 (1T = (0 o6 674 ) (2.10)

we arrive at

o 2 o
q" (¢)oo 2. 5 3. 5 5. 5 n, n(5n+1)/2

q)os = =(0%0")(07 0" )0 (4’5 @)oo = —1)%q - (211
D=2 0 = G~ OOl = 3 () 211
From ([2.9) and (2.11]), we conclude that b(n) is odd iff n = w, m € Z. O
Proof of Theorem [1.4] Let z = —1 in (2.5) and make use of Theorem to obtain the desired
result. 0J

3. HECKE-ROGERS TYPE REPRESENTATIONS OF 05(q)
The two representations of 09(q) of Hecke-Rogers type as well as an identity between two finite
analogues of Fine’s function form the content of this section.

Proof of Theorem [I.5. We first prove (i). Use [30, Theorem 1.9] with a,¢ = —1 and a,b — 0 to
get

< (gt ), (14 g2) (1) glnn=1/2)iim
> o = {”ZZ (@, ) }

n=0 n=1 j=0

To prove (ii), let y = —1 in [8, Theorem 18, Equation (12.3)] to get

- g )" (0% ¢*)n1 (1 = ag”™) (1 + @) = (67 m(ag™)m(=0)"
nz:; (=q)n {1 i Z (4% ¢*)n mX::O m(‘])m }
(3.1)
Invoke Heine’s second iterate [0, p. 38|, that is,
— (@ (D)l (7/B)oo(Bt) o Jn(@Bt/¥)n(v/B)"
D N P Z @B 32
with o = aq™,  =q¢™",7v = —a and t = —q so as to get
S S () aq (=)™ gy (T8 (20 5 (47 m(—ag™)”
im0y ST ai—l“ o <—a>oo<—q>oo A

o0 7,”

In Z . (3.3)

O
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Now use Andrews’ “incomplete” summation [2, Equation (2.15)] with a = ¢, b = —¢' ™, N =
n —1 to get
> —n -n n n—1,n2—n n—1
" Z (=M + g (=) g T (—1)m(_qfn)m
= ( (=1 = (@)

= Q)i S Em oy

Substituting the above equation in (3.3)) gives

i 1-+0) S I oy v 32 ooy

Now let @ — —1 in (3.1)) and use the above limit evaluation to get

2

n=0 n n=1 ]' - q

O

We now prove (1.3)) with the help of which one can derive (i) of Theorem from (ii) or
vice-versa.

Proof of [1.3 Use [3, Equation (4.6)] with a,b = —1 to get

1+Z Bl - LU S CREE o

_n2 —n?
Now add 2= 1(1+(‘f]) JEUna™™ o hoth sides, and add and subtract =22= o) 1( 11()(52 on the right-

hand side so that

(1 —1).q
1+Z q)j—1(L+¢¥)(—1);q

(9);
- (_Q)nfl(—l)nq_"Q A+e) g (=D)" (=@ N~ (D (=1 "
N (@)n { (@)n " (Q)nl} " (@)n—1 = (q);
_ (_Q)n(_l)nqﬂﬁ B (—1)"(—q)p-1 < (—=1);(=1)ig7—Im
- n D 2= @ (3.5)

Now replace n by n+ 1 in (3.4]) and then separate the j = n term from the right-hand side to get

1+Z D510+ P00 (Caa(=Vat™ | (1" (= § (<15 (=1g "

— + (3.6)
o O @ 2= @
Now compare (3.5)) and (3.6) to get the required result. O

Remark 7. One can also prove the identity in Theorem by using the recurrence relation for
the finite analogue of Fine’s function, namely F(a,b,t,N), given in [10, Lemma 2.1].
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4. A GENERALIZATION OF 05(q) AND GENERALIZED NON-RASCOE PARTITIONS

Let £ € NU{0}. We define a generalized Rogers—Ramanujan partition of a number N as a
partition of N into parts > ¢ and in which the difference between any two parts is greater than or
equal to 2.

Garrett, Ismail and Stanton [26] Equation (3.5)] showed that the generating function of the

’!’L2 n
number of generalized Rogers-Ramanujan partitions, that is y - %, satisfies the generalized

Rogers—Ramanujan identity
©© qn2+€n (_UZq—é(é—l)/QCg(q) (_1)£q—2(£—1)/2d€(q)

n=0 (@)n - (¢:0%) (0% ¢°) B () (6% oo (4.1)

where

-y | 4 —1 i | £—1
alg) = (- 17" [Vﬂsj J] ) = Y (1) [Vlg,j J]
j 2 j 2
are Laurent polynomials in gq.

Let R;(m, N) denotes the number of generalized Rogers—Ramanujan partitions of N with rank
m. In what follows, we use simple combinatorics to obtain its generating function.

Theorem 4.1. For ¢ € NU {0},

0 _ 2
ZnJrﬂ 1, n“+in

Z Z Rg(m,N)zqu:Z d

N=0m=—o0 n=0 (ZQ)n

(4.2)

Proof. Let n be the number of parts and k be the largest part of a partition enumerated by
Re(m, N)

{+2n—1
L] L] [ ] L ] L] L] L ] L ] L] L] L]
L] L] [ ] [ ] L] L] L ] [ ] (]
L[] L[] L] L] ° L]

FIGURE 7. A generalized Rogers—Ramanujan partition

Observe from Figure [7| that the number of nodes in the dotted region is equal to (¢ + 1) +
(l+3)+-+({+2n—1) =n%+ In. Also, 1/(zq), generates the partition to the right of the
q

dotted region with z keeping track of k — (¢ 4+ 2n — 1). Thus, an(_z lq)ZQHn gives us the generalized
Rogers—Ramanujan partitions into n number of parts, with each part > ¢, and where z keeps track
of the rank of the partition, which is k& — n. The desired generating function is then obtained by
summing these terms corresponding to n from 0 to oo. U

Theorem 4.2. Let Ly(m, N) be the number of partitions of a number N into m parts, with largest
part, say n, repeating at least n + ¢ times. Then, Ly(m, N) is equal to the generalized Rogers—
Ramanugjan partitions of the number N with rank m—1. In other words, Ly(m,N) = Ry,(m—1,N).
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Proof. This result is proved by showing that the generating function of L,(m, N) is

oo o0 o n Tl2 n
S5 Li(m, N)zmgh =3 M’
N=0m=0 n=0 (ZC_I)n

. . . .
L] L] L] L]
. . . .

n+€§

' e L] L] L]

. . . .
. . . .
L] L] L] L]
. .

FIGURE 8. A partition enumerated by L,(m, N)

partition enumerated by Ly(m, N), then we construct a rectangle whose width is n + ¢. It is clear
that 1/(zq), generates the partition below the rectangle with z keeping track of the total number

of parts minus (n + ¢). So % generates partitions with n as the largest part, and where 2

keeps track of the number of parts of the partition.
O

We now define generalized Rascoe and non-Rascoe partitions. Let £ € NU{0} and let n denote
the number of parts of a partition. A generalized Rascoe partition of N, associated with £, is a
partition of NV into distinct parts containing n + ¢ as a part. Similarly a generalized non-Rascoe
partition of a number N, associated with /¢, is a partition of N into distinct parts not containing
n + ¢ as a part.

Let ag(N) and by(N) respectively denote the number of generalized Rascoe and non-Rascoe
partitions of N, associated with ¢. Clearly, ag(N) = a(N) and by(N) = b(N), where a(N) and
b(N) are defined in the introduction. The generating functions of a,(/V) and b,(N) are obtained
below using combinatorics.

Theorem 4.3. For ¢ € NU {0},

oo oo n—1
i n+?0—1 q(m—i-f)(m-l-l)
S ane' =t | (1
n=1

N=1 m=0 m+ ¢ <Q)m
bg(N)qN _ qn(n+1)/2 |: :| ) (44)
2 2

Proof. Assume n to be the number of parts of a partition of N, and m to be the number of parts
greater than n + /.
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_____________ A ... B_ _____ C
| . . . . . . . . . .
m. e
. . . . "o"“ . . . I"a""
"""" D
« !l ;

FIGURE 9. A generalized Rascoe partition

Consider a generalized Rascoe partition given in Figure [0, where ¢ = 2 and n = 5. Note that
n+f = T7is a part. Also, m = 2 since there are 2 parts larger than 7. Note that region A
has n(n + 1)/2 nodes which contribute ¢""+1/2 towards the generating function of a,(N). The
region B has m+ 1 rows of exactly m+ ¢ nodes each, thereby contributing ¢ +9(m+1) towards the
generating function. Next, the region C' contributes 1/(q),, as there can be at most m number of
parts. Finally, the region D has at most n —m — 1 parts, each < m + /¢, and therefore contributes
[”H_l}. So, the generalized Rascoe partitions of N, associated with ¢, having n as the number of

m-+£
parts, are generated by

n—1 m m
S Z [n +0— 1} gm0 +1)'
m+ ¢ (@)m

m=0

This proves (4.3). We next prove (4.4)).

Consider a generalized non-Rascoe partition shown in Figure [10] Again, we let £ = 2 and
n = 5. Observe that n + ¢ = 7 is not a part of the partition. We have m = 2 since there are two
parts greater than 7. Note that the region A consists of exactly m parts, namely, n + ¢+ 1,n +

_________________________ A
| e ° ° ° ° ° ° ° ° e
¢ % ————— ;

I [ ) L] L[] L] L] [ L] L[] I__.____
BE . . I"o_“_ ] E

N ED

[ ] I L] I

FIGURE 10. A generalized non-Rascoe partition

{+2,---,n+ £+ m, thereby contributing ¢"m+fm+m(m+1)/2 4 the generating function of by(IV).
The region B consists of n — m rows with exactly (n —m)(n — m + 1)/2 nodes, contributing to
q—m)(n=m+D/2 - From region C, we get 1/(q),, whereas region D has at most n — m parts, each

< m+ ¢ — 1, and hence gives [;ﬁi:ﬂ Thus, the generalized non-Rascoe partitions, associated



NON-RASCOE PARTITIONS AND A RANK PARITY FUNCTION

with ¢, and having n number of parts are generated by

i n+/0—1
m=0 m—i_g_l

Summing over n from 1 to oo leads us to (4.4)).

(@)m

:| qnm+€m+m(m+1)/2q(n—m) (n—m+1)/2

Theorem 4.4.
n  n24fn — 0 Ziqi(ifl)/Q

Z Z(zq) Z n(n+1)/2— an

n=0 =0 = (@i

17

(4.5)

Proof. Let Py(j, N) be the number of partitions of N into distinct parts with the exception that
the smallest part, say j, is allowed to repeat exactly j + ¢ number of times. Arguing similarly as

in the proof of (2.3, one obtains

oo N
Z ZPE(Z>N)ZZQ Zzz i +€z z+1>

N=0 i=0
Indeed, following the remainder of the proof of , one is also led to
n n2+in i i(i—1)/24-4i

f: g _ gD/ f:q”(”“w_e" z": Ziq
(_Q)n (_q)oo n—0

Now replace i by ¢ — ¢ in the above identity to arrive at ({4.5]).
Theorem 4.5. For ( € 7" U {0},

n=0 m=0

Proof. First let z = —¢* in (2.3)) so as to get

i (—1)nqn2+€n _ 1 i qn(n+1)/2 Xn: (_1)mq€m+m(mfl)/2
n=0 (_q>n (_Q)oo n=0 m=0 (Q)n—m

Now, put A = ¢‘ and b = —¢*~! in (2.8 to obtain

2L -2

m=0

(_1)mqim+m(m—1)/2
(@)n—m

Using the above identity to represent the inner sum of (4.8)) leads to

oo (_1)nqn2+én n(nt1)/2 |:TL + /— 1:| qm2+€m
Z (—q)n Zq Z m+L—1] (@)m

i (_1)nqn2+en _ 1 i (QZ)nqn(nH)/Q i [n} quHm
n=0 (_q)n (_Q)OO n—0 (q)n s m (qﬁ)m
n m2 m
n(n+1)/2 Z (qé)n gt
n=0 m=0 (qg)m(q)n*m (Q)m

m2+4m

n(n+1)/2z [n+€—1]q '
=0 m=0 m+=1] (¢)n

(4.6)

(4.7)

(4.8)
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Now we define a rank parity function associated to the generalized Rogers—Ramanujan parti-
tions, namely,

n n+€n

[o@)
Uze = E
n=

Letting z = —1 in , we see that if £ is even, 0'27@((]) is the generating function of the excess
number of generalized Rogers-Ramanujan partitions corresponding to odd rank over those with
even rank, and when /£ is odd, it is the excess number of such partitions with even rank over those
with odd rank. Clearly, 02(q) = 02(q).

Theorem 4.6. Let ¢ € NU{0}. Then,

sz = )0002 Z(Q)

In other words, (—q)x024(q) generates the generalized non-Rascoe partitions.

Proof. The result follows from (4.4)) and (4.7)). O
We now obtain a generalization of Theorem for any ¢ € NU{0}.

Theorem 4.7. Let Py(j,n) be defined as in the proof of Theorem . Then the excess number
of such partitions with even smallest part over those with odd smallest part equals the number of
generalized non-Rascoe partitions of n, that is,

n

Z(—l)jpg(j, n) = be(n).
§=0
Proof. The proof follows from (4.6) with z = —1 and Theorem [4.6| O
The theorem we now derive allows one to explicitly obtain the parity of by(n) for any ¢. We

illustrate this for / = 1 and 2 in the corollary following its proof.

Theorem 4.8. Let { € NU {0} and let by(n) denote the generalized non-Rascoe partitions of n
defined before Theorem . Also, let p(N, M, k) denote the number of partitions of k into at most
M parts, each < N. Then, we have

S b= 0 (0= (SR SR (01 [ S )

3(3§=3) | mGmt1) (=)

X q 2 2 2 (mod 2).

Proof. From (4.1) and Theorem and using the two special cases of the Jacobi triple product
identity, namely, (2.10]) and

[e.e]

(=1 = (4:67) 0o (0" %) oo (675 070

n=—oo

we have

£(0—1)/2 (_1)£CZ(Q) (_1)éd€(Q) mo
St =) . —} moa2)

G °)o(05 %) (6%6°)0e(d®; ¢°
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—£(0—1)/2 lZ(_l)JQJ(sjz 3) {Le+15jj} Z (_1)mqm(5m+1)/2
7 2 m=—o0
. J(5J+1) /-1 > m, m(5m—3)/2
+Z == > (=1
2 m=—o0
_ Z p(0—1- Vﬂz_f)jj 7 V+12—5jj k) qj<5j;3>+m(5’§“>—‘“;”Jrk
j’”é:E‘X’
bOYD p(m 1 [ | ) g nod )
P ——
k=0

where in the last step, we used the fact [0, p. 33, Theorem 3.1] that

N+M &
{ y } > p(N, M, k)¢"
k=0
Now interchange 5 and m in the second triple sum to arrive at the desired result. 0

Corollary 4.9. (i) b1(n) is odd if and only if n = 5+3), where m € 7,

(i) ba(n) is odd if and only if n = M 1orn= w — 1, where m € Z.

Proof. (i) Let ¢ =1 in Theorem [4.8} and simplify, thereby obtaining

D = > (=[5 15 k) e (- =) [ F5m)k)) o (mod 2)

j,m=—o0

> 5 (mod2)

j=—o0

where we used the facts p (— Lﬂj , Lﬂj ,k:) =0 forall j € Z and p (— L%—mj , L’E’—mj ,k) =1

2 2 2 2
only when m = k£ = 0, and is 0 for all other values of m and k.

(ii) Put ¢ = 2 in Theorem [4.8 and simplify to get

ébzwq L)) (1 ] i )

Il
M
)
3
—
—_

=
o« qy’(5j2—3)+m(572n+1),1+k (mod 2).
_ Z q 572n+1 + Z J(5J mod 2)
m=—00 j=—o00
smcip — 3 5] L‘g’;’jj ,k;) =1 only when j = k£ = 0, and is 0 for all other values of j and k,
and, smlﬂarly, (1 — Ll’QE’mJ , Ll’é’mj ,k) = 1 only when m = k£ = 0, and is 0 for all other values
of m and k. O

20bserve that p(N,0,0) = p(0,M,0) = 1 for N, M > 0, which is not clear in [6, p. 34, Equation (3.2.4)].
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Theorem 4.10.
1 00 (5n1) n+l—1 (_1)
72(0) = =5 {(—(])e = (=0T P A g (@ e Y = (—q‘”)m}.
(4.9)

Proof. The idea is to take the limit a — —¢° on both sides of (3.1)). Using second iterate of
Heine’s transformation, that is, (3.2), we get

n=1 m=0

lim (1+ a)

a——q’

=~ ()n(aq) (=)™ (=" = @m mem
> >

(=a)m(@)m N (" )na —")m

n+l—1
(@e(1+ g")(=1)H gt " (),

(_qn)é m—0 <Q)m
where, in the last step, we used [2, Equation (2.15)] with a = ¢, b= —¢'™", N = n+/{—1. Now,
let @ — —q* in (3.1)) and use the above limit to arrive at (4.9)). ([l
Theorem 4.11.
_ 1 o - —1)" nn=1) 4orm 1 {4+2n\/ n+l - <_1)m _ 1-n—f\m
020(q) = ——13 (—q)e+ Y _(-1)"q" > L+ (=" > (—g" ™ ¢
(—@)oo ot = (Om

Proof. Use [30, Theorem 1.9] with o = —¢%,c = —1 and a,b — 0 to get the desired result. 0

We can also derive Theorem from Theorem by using an identity between two finite sums
given in Theorem [1.6] This identity is proved next. We begin with a lemma first.

Lemma 4.12. Forn,/ € N,
n-+4 N a2 n n+/¢ i iln
§ D0+ ) () § (DD

Pt (@) (@Dne 5=, (9);
(—1)"(=@)a <= (=1);(=1)ig"
. jz,;l (@; (410

Proof. Let A(q; ¢) denote the expression on the left-hand side of (4.10)), and let B(g; ¢) and C(g; ()
denote the first and the second expressions on the right-hand side respectively. We proceed by
induction on /.

It is trivial to see that the result holds for £ = 1. Assume that it is true for a general ¢, that is,

A(g; 0) = B(g; ) + C(g; ). (4.11)
Our aim is to prove
Al 0+ 1) =B(g; 0+ 1)+ C(q; £+ 1). (4.12)
We have
_ -1 1 2n+20+2\ ,—(n+0+1)2
Al 0+ 1) = A(g; 0) + (=@n+e(—Dnsesa( l )q | (4.13)
(Q)n+e+1
and
_1\+1_ _ —n(n+6+1)

<Q)n(Q)n+e+1
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Separating out the term corresponding to j =n+ ¢+ 1 in B(g; ¢ + 1), we see that
B(g; 0 +1) — B(q; )

(_Q)n+z+1(_1)n+£+1

O™ e G (D (AP0 { (L+gm) qj}

TR @ 2 (@) (=)
:(_Q)n+€+1<_1)n+£+1q_(n+€+1)2 N (= 1) (=) se ”i:f (=1)j41(=1)ig I HEHD)
(@) st (@ntes1 o (9);
GV G Y Z (—1);(~1Yg G700ty
(Dt it (Q)jﬂ
:(_q>”+€+1(_1)"+f+1 _ (—@)nse(—Dnpoprq” TOOHED n (=D (=@npe(=1)npag "+
Q(HMH)Q(Q)iMH (@)n+e41(@n+e (Dn+e+1(Dn
I (—1)”+z+1(—q)n+e{ ”+Z€‘1 (1)1 (=1)7g3trH+D) . "Z” (_1>j(_1)jq—(j—1)(n+z+1)}
(@ntes1 i (9); Ja—" (¢)j-1
(Dt Dpag™ { (14 ) } o R Y ki
(Dnte41(D)n+e (1 —qgntttt) (@nte+1(@)n
:(_Q)n+z(_1)n+é+1(1 + q2n+2€+2)q_(n+€+1)2 n (=1D)“(=1)pser1(—q)ng "D
(@)7rei1 (Dnrer1(@)n '

Using , and the above equation, we see that

B(g;t+1) = B(q;0) = Alg; £ + 1) — Ag; £) + C(g; £) — Clg; £+ 1).
An application of the induction hypothesis now leads to (4.12). 0
Proof of Theorem [1.6] It is easy to see that the identity is trivial for n < 0. So let n > 0, and

: 2
first assume ¢ > 1. Replace n by n+ 1 in (3.4), then add S 7** (@140 4 ot

sides of the resulting identity to obtain = @
1+ ni‘j 211 +(qq)? ) (—1);q47
_ Z () (1 +(qq)j;><—1>jq-f e, Z <—1>j<(;)i>fq—fn
R e "

Now replace n by n+ ¢+ 1 in (3.4) to get
n-‘,—@

1+Z Q)j—1(1 4 ¢¥)(—=1);477° (=)™ (=) NZM (=1);(=1)igin+0)

()3 (@ & (9);
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(=D (=g ”Z“f (—1);(=1)7g 70 (—1>””<—q)n+ei(—1)j(—1)jq‘j<"“). (4.16)

Duve 2, @), T e &= (@);

Now compare (4.15) and (4.16)), then use Lemma to get the required result for ¢ > 1.
We now prove the identity for the remaining values of £. Observe that the case ¢ = 0 is trivial.
Now let —n < ¢ < —1. We let £ = —m, where 1 < m < n. Then the identity to be proved is

n (_1)j(_1)jq*j(n*ﬂ1) L Y Ygqm
2 (9); =y ¢"*) Z '

J=0

Now replace n by n + m and use the fact that (( ;:::2) = ((_(1',11+1)) to see that what one needs

to prove is nothing but (| . ) for £ =m > 1. But this is already proved above.
nt1)

Finally, for ¢ < —n, the identity is seen to be true once we multiply both sides by o +1) £ and
observe that the resulting identity is trivial.

5. A CONGRUENCE INVOLVING b(n), bj(n) AND COEFFICIENTS OF TENTH ORDER MOCK
THETA FUNCTIONS

A generalized modular relation found on page 27 of Ramanujan’s Lost Notebook [33] states that
for a € C\{0}, and b € C,

o0 a—qum2 S nbn n?/4 —2m—1 m+m 0 nbn (n+1)2
mE_ZO (60)m Z *Z 2y,
1
Z w11 g Zb_) (5.1)
n=-—00 n=1 =0

Andrews [I] obtained the first proof of the above identity. The first and the second authors [24]
have recently generalized Ramanujan’s identity using an extra parameter s € N, and have shown
that their generalization reduces to for s = 2.

In what follows, we show that using Ramanujan’s identity , we can obtain a relation between
the generating functions of by(n) and byy1(n) for any ¢ € N.

Theorem 5.1. For { € NU {0},

S D70 S8 (S (1) S (1)
(_Q)m n=0 (Q)Qn (Q)Qn—f—l

- o ety 52)

m,m2+m+ml X (_1)nqn2+n—nZ+Z/2

=0 (@)2n

=LY (gt ”f+2z Y- MZ (5.3)

Proof. We prove the results for —1 < g < 1. They can be extended for |¢| < 1 by the principle of
analytic continuation.
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Let a = iq*£/2 and b = —1 in (5.1]). This gives

Z m m 24me > (_i>nqn2/4—n£/2 . % i m m 24+m(e+1) (_i)nq(n+1)2/4—n€/2
1 o8] n—1 ( 1>k
_ in n2/4 né/2 2 ,ln n?/4—nt/2 — . (54)
(—@)oo n:zoo Z kzo (@)x

Now split the two sums over n on the left—hand side based on its parity, and then group the real
terms together and imaginary terms together so as to get

io: (_1)mqm2+me i (_Z-)nqn2/4—n€/2 B Z'qﬁ/Q f: (_1)mqm2+m+mg oo (—i)”q(”ﬂ)z/‘l_”z/?
m=0 (_Q)m n=0 (q)n m=0 (_Q)m n=0 (q)n
_ i (_1)mqm2+mﬁ i (—1)nqn2 nd _ i m m 2im+4ml X (_1)nq(n+1)27n£
. 0 -1 mqm2+mf 0 -1 nqn +n—n[—€/2 ‘ 0 m 24+m4ml X -1 nqnz—i-n—nﬁ
REE! (1) QZ (1) |
m=0 (_Q)m n=0 (q>2n+1 n=0 (Q)Qn

(5.5)
Similarly, split the two sums over n on the right-hand side of (5.4) based on its parity to get

; i n n2/4 né/2 22 n n2/4 nZ/ZnZI( ]')k
(@)oo (@)

n=—o00 n=1 k=0
1 00 e B [e's] - 2n— 1
T (0w nzzoo(_l) I 22(
—3 1/4 —1 S n_ n?+n—nl n n2+n nt
! {<—q>oo D e 22 Z } (5.6)

Now substitute the left-hand side of ( . 5.4]) by the rlght—hand side of 1} and likewise, the right-
hand side of (5.4 by the right-hand side of (5.6). The identities in (5.2]) and (5.3)) then follow

upon equating the real and imaginary parts on both sides of the resulting identity. 0

Corollary 5.2.

= (D" = (D) () SN (=)
n;) (=@Dm ; (0)2n T;) (—=Om ; Q)2n+1
S M S o
S e N e D I N G D L R N e
DB D Dhs v rai) Dl s e D /7
_ —1 . n_ n2+n - n, n%+n & (_1)k

(— @)oo n_zoo( e +2;( e — (@

Proof. Let £ =0 in (5.2)) and (5.3). O
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2 7l n
Remark 8. The sums ZZO:O(TQZ and > 7 0%

n n2
(5.7) remind us of the tenth order mock theta functions X(q) = > -, (t)q)gn and x(q) =

occurring on the left-hand side of

§ooo (gt

n=0  (=q)2nt1

Indeed, the observation in the above remark helps us to obtain the following result.

Theorem 5.3. Define
= Z Z ex(m)q™,
n=1
o0 (n+1)2 o0
= Z q =: Z ey (m
n=1

2n+1 m—=0
Then, for k € N,
k
Z b(n)ex(k —n)+ bi(n)cy(k —n) = 0(mod 2).

n=0

n+1)

Proof. First note that > (q)Qn = X(¢) (mod2) and Y 7 (qT)Lg—:m = x(¢) (mod2). Now

multiplying both sides of (/5.7] . by (—¢)so, then reducing the resulting identity modulo 2 and then
using the above congruences, we get

o)

(—0)x02(0) X (q) = (=) w021(0)x(q) = D (=1)"¢" (mod 2) = 1 (mod 2).

n=—0oo

The result now follows from the fact that

(~0)202(0) X (q) = (=021 ()X (@) = Y D _(b(n)ex (k= n) = bi(n)ey (k — n))g".

Remark 9. From [29] Theorem 1.3], we have ¢5(40n—1) = cx,,(n) = (mod 2) and c5(40n —9) =
Cxio(n) = (mod 2), where c5(n) is the Fourier coefficient of the Hauptmoduln js(7), that is, of

. U N
T) = =——06+ c5(n)q
J5(7) (@)% ,;1 ()
Hence, we have
k
Z b(n)cs(40k — 40n — 1) + by(n)es(40k — 40n — 9) = 0 (mod 2).

n=0
6. UNRESTRICTED RASCOE AND NON-RASCOE PARTITIONS

As alluded to in the introduction, we now remove, from the definition of Rascoe and non-Rascoe
partitions, the restriction that the parts of such a partition be distinct, that is, we consider the
unrestricted Rascoe and non-Rascoe partitions. Let c¢(n) denote the partitions of n in which the
number of parts is a part, and let e(n) denote the partitions of n in which the number of parts
is not a part. We now obtain two different representations for their generating functions. Out of
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these, only the second representation of the generating function of e(n) derived in the theorem
below is known, namely, in [32], where it is given without proof.

Theorem 6.1.

00 o n oM —m — 2 qmn+2n—1 q
o(N)g™ = q+ { 1 = , (6.1)
2 22 w1 @ @
° 2 i n mn—+n 2
q 2n —m — 2| q 1—q+gq
N)g¥ =1+ ——+ { } - . 6.2
&N 22| wew @ om (62)

Proof. We begin by showing that the double sum in (6.1)) generates ¢(N). To that effect, let n
denote the number of parts of a partition 7 of N and m denote the number of parts greater than
n. Note that n itself is a part of 7. We initially assume n > 2.

The Ferrers diagram of 7 consists of a rectangle of size m x (n + 1) lying just above the first
occurrence of n, and a partition next to the right of the rectangle, generated by 1/(q)m.

Moreover, the portion lying below the first occurrence of n constitutes a sub-partition into
exactly n —m — 1 parts each of which is less than or equal to n, which is generated by [0, p. 34]
gt [2::;”:12}. Therefore, part of the complete generating function we get this way is given by

> n mn+2n—1

9N e (09

n=2 m=0 m
The case n = 0, corresponding to the empty partition, is not a part of the generating function for
¢(N), and is considered, instead, in the one for e(N). Moreover, the only partition corresponding
ton = 11is 1 itself. Therefore, its contribution towards the generating function of ¢(N) is q. Hence,
adding it to gives the first equality in (6.1)).

To derive the equality between the extreme sides of , we show that the partitions enumer-
ated by ¢(NN) can be bijectively mapped to the set of partitions in which 1 appears exactly once.
To see this, let k£ be the number of parts in a partition 7 enumerated by ¢(N). Then there is at
least one part in 7 with k£ nodes in its Ferrers diagram. We remove the k& nodes corresponding to
the first occurrence of this part and distribute them, one each, to the remaining k£ — 1 parts, with
an additional one node conceived as the smallest part of the modified partition. This, clearly, is a
partition enumerated by ¢q/(¢*)s. Since the process is reversible, we get a bijection, which proves
that ¢(N) is generated by ¢/(¢*)s. This completes the proof of (6.1).

The proof of first equality of is along the similar lines. The only thing to note is that if a
partition generated by e(N) has a single part, say k, then £ > 1. Such partitions are generated
by ¢*/(1 — q). Finally, the equality between the extreme sides of (6.2)) follows from the fact that
¢(N) +e(N) = p(N) and the equality between the extreme sides o. O

Remark 10. George Beck [32] has conjectured that e(n) is the total number of distinct parts of
each partition of 2n + 2 with rank n + 1.

7. CONCLUDING REMARKS

The study of 05(¢) undertaken in this paper arose by asking ourselves a natural question - if the
generating function of the excess number of partitions into distinct parts with even rank over those
with odd rank, that is, o(q), has rich properties from the point of view of partition theory, algebraic
number theory, Maass wave forms as well as quantum modular forms, it might be interesting to
wmvestigate a similar function starting with partitions in which the difference between any two parts
15 at least 2.
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As demonstrated in this paper, o2(q) does satisfy beautiful properties. For example, it is inti-
mately connected to an interesting class of partition functions, namely, the non-Rascoe partitions,
and this connection not only enables us to precisely understand the parity of b(n), the number
of non-Rascoe partitions of n, but also help represent b(n) as a sum involving the number of
partitions where only the smallest part is allowed to repeat and its frequency is the smallest part
itself.

A result analogous to Theorem but for o(q), was obtained very recently in [25, Theorem
1.1], namely,

U > omE(e (1)

where omex(n) := > 5, mex(n) with mex(r) denoting the minimal excludant of the overlined
parts of an overpartition 7. (Overpartitions are partitions in which the first (or equivalently the
final) occurrence of a part may or may not be overlined.)

While we have initiated the study of o2(q) as well as of b(n), a lot of questions still remain to
be seen. We have collected them below. Each of these problems is worth exploring.

(1) In his Lost Notebook, Ramanujan gave the following new representation of o(q) (see [4,
Equation (1.6)] for a proof):

o(q) =1+q)_(@)al—0)" (7.2)

Our first problem asks whether there exists an analogous representation for os(gq). Our
attempts toward finding such a representation did not work. The importance of having it,
if at all it exists, is highlighted in (2) below.

(2) Find modular properties of o5(q). As shown by Zagier [39, p. 663], the function ¢/**¢(q)
is one of the first examples of what he calls a quantum modular form. This establishes the
modularity of o(g). What kind of modular behavior does o5(q) exhibit?

Cohen established an analogue of for 0*(q), namely, 0*(q) = =237, " (¢*; ¢*)n,
and then discovered the beautiful relation o(q) = —c*(¢!), which holds whenever ¢ is a
root of unity:.

Zagier [39, p. 664] used this relation to show that if ¢ = e, then as t — 07,

o, 955 4 1073 , 32671 ., 286333
0(g) =22t +56° — o8 =St = St S ,
and Doneto [25, Theorem 1.3] used this result along with to show that omex(n) ~
e™™ /(4n) as n — oo.

Thus, if there exists a representation for o3(q) analogous to and one is able to
proceed in a similar manner as that for o(q), it may allow us to find an asymptotic formula
of b(n) as n — 0.

After shifting from unrestricted partitions to partitions into distinct parts, one observes
a stark difference in the modular nature of the concerned objects. For example, in the first
case, the rank parity function is the third order mock theta function f(g) whereas in the
second, it is the quantum modular form o(q). Similarly, while the generating function of
unrestricted non-Rascoe partitions, considered in Section [6] is simply a linear combination
of simple modular objects, the generating function of non-Rascoe partitions themselves is
(—q)2002(q) whose modularity is yet to be understood.
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(3) If pa(n) denotes the number of partitions of n into distinct parts, then Theorems and

[1.2] imply that
Z Z )" R(m, j)pa(n — j)-

7=0 m=—0o0
Our proof of Theorem involves a mix of analytic and combinatorial methods. It would
be of interest to see if the above equation could be proved directly.

(4) It seems that the arithmetic progression 29k + 21 in our mod 4 congruence conjecture
appears from nowhere. Probably its appearance can be better understood once the mod-
ularity of o5(q) is established. If true, what are the implications of such a congruence?
We weren’t able to make sense of why the exceptions to the condition k # 29m given in
Remark [2| exist. Do the values of m given there hint at something important?

Our search for congruence satisfied by b;(n) did not yield anything. It seems highly
unlikely that there exists a congruence for by(n) for higher ¢.

On a side note, coefficients of several mock theta functions over certain arithmetic pro-
gressions obey mod 4 congruences; see, for example, [18], [19], [20], [27] and [31].

(5) Can 02(q) be represented as a Hecke-Rogers series? Theorem [L.5] hints at such a possibility,
however, we weren’t able to further simplify our representations. If not in general, can the
expressions in Theorem be reduced to simpler objects at least modulo 47 There exist
precedents where complicated objects reduced to simpler ones modulo 4.

For example, Andrews, Schultz, Yee and the first author [I3] Theorem 1.3] showed that
the following series involving the little g-Jacobi polynomials which arises in a representation
of the generating function of p,(n), that is, the number of overpartitions of n in which all
odd parts are less than twice the smallest parts, obeys the congruence

i( (4 8%)n(~0)" i (L0 oy = 1M(mod4).

¢ )1 +¢*") = (¢:9); 2(—¢; o

However, mimicking its simpler proof given in [23] for either of the representations in
Theorem [I.5] unfortunately, did not work.
(6) Give g-series proofs of the results in Theorem
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