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ABSTRACT. A new sums-of-tails identity involving two parameters b and d is obtained and is used
to derive more results of similar type. One of Ramanujan’s sums-of-tails identities from the Lost
Notebook is shown to be a special case of our result. In the course of deriving Ramanujan’s identity,
we obtain a new result of combinatorial significance. Two new representations for an infinite series
associated to a mock theta function are derived. Also, we give an application of an identity of
Andrews and Onofri.
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Ramanujan’s Lost Notebook [21] is a source of inspiration to studying the implications of several
original concepts ensconced in it. One such concept is a pair of what are now known as the “sums-

of-tails” identities [21], p. 14]. These are given by

[e.9]

(=4 Qe = (=G @)n) = (=G D)oo (—% +> & ) + %0’(61),

and

00 1 1 B 1 _1 0 g 10
Z <<C]592)oo - (q;qz)n-i—l) (0% < 2 +Z 1 —q2"> + B (9),

n=0 n=1
where o(q) is a famous function of Ramanujan defined by

0 qn(n+1)/2

0= 2 g
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Here, and throughout the paper, we consider |¢| < 1 and use the standard g-series notation

( 1,
(A), = (A;¢)n = (1 — A)(1 — Aq)--- (1 — Ag™™ ") for any positive integer n,
(D)oo = (A ¢)oe = lim (A;q)n,  g| < 1.

The function o(g) enjoys many surprising properties and is linked to many areas of Mathematics.
Andrews’ paper [2], which contains the first proof of and , also explains the interesting
combinatorics of o(q). Andrews conjectured two properties of o(q) in [3]. They were subsequently
proved by Andrews, Dyson and Hickerson [7], who also showed that o(q) is intimately connected
with the arithmetic of Q(v/6). This interesting connection with algebraic number theory enabled
them to prove Andrews’ conjectures. Another beautiful paper of Cohen [14] involves a construction
of a Maass waveform from o(q) and its companion series 0*(q) := 23.°° (=1)"¢"*/(¢; ¢*)n. The
function o(q) also serves as a prototypical example of Zagier’s quantum modular forms [24].

Zagier [23] found another identity of the sums-of-tails type associated with the Dedekind eta
function n(7) and used it to obtain values of a certain L-function at negative integers. Andrews,
Jiménez-Urroz and Ono [§] found two infinite families of sums-of-tails identities connected with
the sums

and

- ((a)m(b)oo _ (a)n(b)n>

S , (1.4)

0 (oo(@os (E)n(@)n

and showed that they can be used to obtain values of general L-functions at negative integers.

There is an extensive literature on sums-of tails identities and their applications. See [L1] for an

extensive bibliography on the topic as well as [13], [15], [16], and [I8] for a few further references.
In this paper we obtain a sums-of-tails identity for the series

2 ((b)oo(d)oo - (b)n(d)n> ' (1.5)

n=0

The motivation behind studying this sum is now given. As shown in Andrews [2], o(q) is the
excess number of partitions into distinct parts with even rank over those with odd rank, and it
occurs as the “error term” of the series on the left-hand side of , constructed using partitions
into, again, distinct parts!

The question then arises - does there exist a corresponding sums-of-tails identity if we begin,
instead, with partitions in which parts differ by at least 2 (the so-called Rogers-Ramanugjan par-
titions) and see if the corresponding o-type function associated to them occurs as the “error
term” in the sums-of-tails identity wherein the series on the left-hand side is associated with the
Rogers-Ramanujan partitions?

Recently, in [I7], we studied, in detail, some properties of o-type function corresponding to the
Rogers-Ramanujan partitions, where it was naturally denoted by o9(q), that is, 02(q) is the excess
number of partitions into parts differing by at least 2 with odd rank over those with even rank.
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In the same paper, it was shown that [I7, Theorem 1.1]
S 1 nqn2
nlg =y CLL (1.6
n=0 (_Q)n

As mentioned above, we were curious to see if there is a connection between o9(q) and the series

- 1 1
; ((q; )o@ P (g q5)n(q4;q5)n) ' o

While we haven’t been able to figure out such a connection yet, if at all it exists, it naturally led
us to consider the sum in ([L.5)).

Observe that one cannot reduce to (L.5)). Moreover, unlike ;7; summation formula and
Heine’s transformation which were the principal tools in the sums-of-tails identities associated with
and respectively, there isn’t any specific identity from the theory of basic hypergeometric
series which is a natural choice here. Nevertheless, the following result holds.

Theorem 1.1. For b,d € C, we hav(ﬂ

- 11 ¢ X (=) S (@)™
Z <(b)00(d)oo (b)n(d)n> { Z 1—gq" Z L—qgm

n=0 n=1

”12°°(q")(/)qm
—Z 1_q 3 ) } (1.8)

m=1 (q m

A symmetric version of the above identity is given in (2.5]).
While the derivation of the known identity [8, Equation (6.7)], namely,

—( 1 1\ 1 [ ¢ (=gt
Z((W (q)2>_(q)2< = — g ) (1.9)

]_ _
n=0 o0 n © \k=1 q n=1

is a trivial consequence of Theorem upon letting b = d = ¢, deriving Ramanujan’s identity
from it is not that easy as we shall see in this paper. One can derive from the sums-
of-tails identity for the sum in given in [8, Theorem 2| in an easier way than ours (see [8]
p. 404-405]) since there are three free parameters in the sum in whereas ours in has
only two. However, our derivation of in Section (3| below gives the following new result along
the way.

Theorem 1.2. We have

1\ o=, > T 1
(1_5)2(‘]’(1)”‘1—1—(1%_2(q)nll—q ZHq (1.10)

The above identity has an interesting combinatorial interpretation given next.

Theorem 1.3. Let n > 1. Let pi(n) denote the weighted count of partitions of n with the largest
part even, all parts less than the largest part are odd, dz’stz’nct and not equal to one less than the
largest part, and the weight of such partition 7 being (—1)#°(™)  where #,(r) is the number of odd
parts of .

1To set b or d (or both) equal to 1, first multiply both sides by (b)s or (d)oo (0r (b)so(d)so), and then specialize
them.
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Let .(n) (resp. To(n)) denote the number of even (resp. odd) divisors of n. Let pa(n) be the
weighted count of partitions of n with the largest part even, no number between (and including)
half the largest part and one less than the largest part can appear as a part, the weight of such
partition 7 being (—1)#™=A™) where #(m) and \(7) denotes the number of parts of @ and the
number of appearances of the largest part respectively. Then

pi(n) = pi(n +1) = pa(n) + 7e(n) — 7o(n). (1.11)
In particular, for any N > 1,

-1

Pi(N) = D (7o(n) = 7e(n) = pa(n)) . (1.12)

=z

3
Il

For example, if n = 6, then the partitions enumerated by p;(6) are 6 and 2 4+ 2 + 2, and hence
p1(6) = 2. Similarly, the only partitions enumerated by p;(7) is 6 4+ 1 so that p(7) = —1. Also,
the partitions enumerated by p2(6) are 6, 4 + 1 + 1 and 2 + 2 + 2 so that py(6) = 3. Since
Te(6) = 2 = 7,(6), we see that p;(6) —p1(7) =2 —(—=1) =3 =342 —2 = py(6) + 7(6) — 7,(6).

We note that Merca [I9, Corollary 2.1] has represented 7,(n) — 7.(n) as a finite sum involving
partitions with restrictions on the parity of the number of parts.

The two free parameters b and d in Theorem [1.1] allow for differentiation with respect to them,
thereby giving rise to new identities. For example, Corollaries and [5.3] via differentiation and
then specialization of d, yield the following identity.

Theorem 1.4. We have
1 i (=1)"Lpgnn+1/2 i g 1 ¢ T % (_1)nqn(n—1)/2 (Q)rd*
(9)% &= 1—qn S\ EZ @)1= (0 (@a(1 =gk ) ) =gt
(1.13)

In particular, the function on the left-hand side has positive coefficients in its power series expan-
s10M.

The series on the left-hand side of ([1.13)) arises in the representation of the generating function
of the number of concave compositions of n obtained by Andrews [4, Theorem 1]. Later, Andrews,
Rhoades and Zwegers [10, Theorem 1.2] showed that the following expression containing the same

series, that is,
-1/8 o —_1)»1 n(n+1)/2 1 0 n
(T — -y
(9)3 I 4 (1+q")

© n=1 n=1

2miT

is a mock theta function of weight 1/2 with shadow proportional to 73(7), where g = ¢

2. PROOF OF THEOREM [L.1]

We begin with a lemma of Abel type first derived in [8, Proposition 2.1]; see [5, pp. 158-160]
for a proof. It will be used in the proof of Theorem [I.1]

Lemma 2.1. Suppose that f(z) = " a(n)z" is analytic for |z| < 1. If a is a complex number
for which "7 (o — a(n)) < 0o and lim,, oo n (o — a(n)) = 0, then

o

Jm (1= 2)f(2) = (a —aln)
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Proof of Theorem [I.1]. The idea is to apply Lemma with
1 1
DR C R R ONG
The hypotheses of the lemma are seen to be true using a logic similar to that given in [5, pp. 161-
162] and so we will be brief. Indeed, employing Euler’s theorem [12, p. 9, Corollary (1.3.2)]

ok gk(k=1)/2

ST~ (el <o) 2.)

k=0

in the second step below, we see that for any b,d € C,

2l —aml < s T Z“ oo )oc|

i io: (=b)(—d)*q T+ T ()
(Bl faD)ec !d\ D = | (@):(0)s

(r,8)#(0,0)

r(r—1) + s(s—1)

= [b]"|d|*|q| = 2
lq|"
(Ibl 9)so Idl 1q]) oo Z Z (Iql; la])-(lql; |al)s

r,s=0

(r,)#(0,0)
1
= (=10l [gD oo (=1dl; al) oo — 1)
(161 la)oo (Idl; lal) oo (1 — al)
< Q.
Moreover, since r +s — 1 > 0,
[e’e} r(r—1)  s(s—1)
' ] _nqn (_b)r<_d)qu+T+n(r+sfl)
lim n (o —a(n)) = lim —————— = 0.
n—00 n—=00 (b5 ¢) oo (d; @)oo E:O (@)r(q)s
(r,5)#(0,0)
Therefore, applying Lemma we see that
- 1 1 d
— = lim —(1— 2.2
2 (<b>oo<d>oo <b>n<d>n) g (=21 22)
where
Z'fl
f(z) = —_—
2w,

Using Euler’s theorem ([2.1)) in the second step below, we see that

IR N N O VO it
a (d) oo mz_:o (O)m ; (Dn
LS GO S )
- (d)oo ;} (@)n n;) (0)m
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(@ i (2)n(=d)"q"""1/2 i (2¢")m (bg" ) ma™

(2)o0 (D)oo (d) oo =0 (@)n =0 (@)m (23)
(@ 1 N (—d)ngr Y2 SN (g™
Dl \ O 2 @aa 2= e
— (—=d)"q" " (b g™
T 2 G } (24)

where, in the second last step, we used Heine’s transformation [Il p. 38] with @ = 0,b = ¢, then
c=band t=zq".

Now multiply both sides of (2.4)) by (1 — z), differentiate both sides with respect to z, then let
z — 17 and use to get where we repeatedly use the facts that

d (1—2) -1 &< d N 1 <= ¢
— = — log(1 — 2¢")
dz (D)oo |,my  (20)e0 ,; dz . @ ,; 1-
and, for j > 1,
d(1- d = zhgit 1
4=z = Ta-nY 2 S
dz (2¢7) |,y dz k] (@
OJ
Remark 1. The second iterate of Heine’s transformation [1 p. 38] with ¢ — 0 and t = q gives
i (@) (b)mg™ bq % Z )i/
— (Dn Q)

If we let b = zq"™ and a = b/q in the above equation, we get

2 (2¢)m (g V) mg™ 20" o o= (2¢") i (=D) g —1)/2
Z(Q)(q)q_(q)z(q)()q ‘

(@)m B (@)oo =0 (Dm (2" )m

If we substitute the right-hand side of the above equation for the sum over m in (2.3) and then
follow the same procedure as in the proof of Theorem we arrwe at its following symmetric
Version:

= I -1 = (—d)ngn/2
2 ((b)oo<d)oo (b)n(d>n) - (b)oo(d)oo{z (@)a(1 = ") +Z q>m( q")

m=0

n=0 n=1
. 00 (_d)nqn(n 1)/2 i b m m(m 1)/2
n=1 (Q)n m:l 1 o qm+n)
1 q" d/ q nq — (0/@)ma™
2 N HmA
k=1 =1 m=1
i (_d)nqn(n—l /2 X ) m(m—1) /2} (2 5)
n=1 (q>n m:l 1 o qm+n)

where, in the last step, we used [20, Theorem 1.16].
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3. PROOF OF RAMANUJAN’S IDENTITY (|1.2)

e q2n q > qm
; (=@)n(l—q") 1-—g¢ ( ),; (=@)m(1 —g™)(1 — gm™*)
Proof.
o 2n 2 o 2n
Z : ny : 2 + Z : n
= (=qha(l=q") 1-¢> = (=gl —q")
2 e m-+1
q q 1
= + 1—
1—¢ mz::l (—=@)m(1 —qm“){ 1+qm+1}
2 o m—+1 o m-+1
q q q
— + J—
IR mZ:l (=@ (1 —gmt1) mzzl (=@m+1(1 —gm™*)
¢  q i gt Re q"
l—q 1-¢ (L =) = (=)l — ™)
q qm+1 o qm
= — _|_ _
1—¢q mzzl (—=@)m(l —gmt) mzzl (=@)m (1 —q™)

[
Proof of Theorem [1.2] From [II, p. 29, Exercise 2] (see also [5, p. 8, Entry 1.2.6]) with ¢t = ¢ that

=~ (0)206™" (0o o~ (B)mg™
2 (@0 (Do mzzo (@) (—bg)m

n=0

Separate out the n = 0 term, subtract 1 from both sides and divide by (1 — bq) to get

— (bg*)2n—2¢™" o1 _ (=)o o~ (D)™
(1-02 - <—q>m;<q>m<—bq>m}' (&1)

2. 42
— (¢*4°)n

We now wish to let b — ¢~! on both sides. The right-hand side is easily seen to be of 8 form.
Hence we use L’Hopital’s rule. Observe that

R I B ) I O L e
bﬂifh—bq{ ”(—q)oo;)@m(—bq)m} . (32)
where
B R NN O
Lo Jim il -1 m:0<q>m<—bq>m}‘ 33
Now
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fe'e) m—1 n m n
—q g
+m§::1 —bq {;1—bqn_;1+bqn}]'

(3.4)

Note that

m—1 n

(b)mqm —q
— (@) m(=0q)m 2 1 — bgn

S 00: (b)mqm

Zl—bq 3 o
S S o U7/ o 0 G o i G U7
_1—bZ(Q)m(—bq)m 1_bq;(q)m(_bq)m+21_bqn > O 39)

m=1 n=2 m=n+1

gk

Observe that when we let b — ¢!, the double sum on the right-hand side tends to zero. Therefore,

from (3.3), (3.4) and (3.5)), we have

¢ 4 0 . q"
L=2-_21 4Ny T 40— . 3.6
2 T T T PO oA e (36)
From (3.2) and (3.6]), we see that in the limit b — ¢~*, (3.1)) becomes
N (G¢)nag™ -1 1 &K ¢ S q"
DI e ~(1-q) .
( Q> ; 1— g 2 1-q Zl+4g mz;l (=@)m(1 = gm)(1 —gm+1)

Finally, to obtain the desired result, we invoke Lemma in the above equation and simplify. [

We are now ready to prove Ramanujan’s sums-of-tails identity.

Proof of (1.2). In Theorem (1.1]), separate n = 0 term on the left-hand side, replace n by n + 1,
q by ¢%, and then set d = 0,b = ¢ so as to have

N 1 1 L e { (1/4; ¢*)md’ }
- = +1- +
; { (¢ (@ q2)n+1} (43¢0 &= 1= ¢?* Z 1— ¢2m
— {_1 Ly } +1
(@6%) | 2 = 1—g* (43 6%)oc
S St
D T D (3.7)
(456%)o0 L 144" ;;: (=@)n(1—q")

where, in the last step, we used Theorem
From [22, p. 378] and Euler’s theorem (—¢; q)oo = 1/(¢;¢?)oo, We see that

2 -2 Z (_q)n

(¢ %) oo (¢ %) oo =
Substituting the above equation in , we get

R T LD pit ) NESLE |
— (60 (66 (6 L 2 = 1-¢*]  (6:¢°) Lz 1+
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_i 1—q)} (38)

Now use the elementary fact 1/(—q), = (¢;¢*)n/(¢"™), to write

1 o o0
2o @ 2n+aq2>oo

n=

1
_ 1 ¢
= —5ol) + Zan?

*© n=0

(4

where the last step follows from [0, p. 8, Theorem 3.3]. Finally substituting the above equation in
(3.8)) leads us to (1.2]), thereby completing the proof. d

4. A COMBINATORIAL EQUIVALENT OF THEOREM [[.2] AND ITS PROOF

In this section, we prove Theorem [I.3] Observe that

> i

m=1

2m o

W =Y (1—q)(1—¢"---(1- qu-3>1fW-

m=1

Thus, in a typical partition generated by the above sum, the largest part must be even, in this
case 2m, and is allowed to repeat. However, any other part less than 2m must be odd, distinct
and strictly less than 2m — 1. Moreover, whenever an odd part appears, it comes with the weight
(—1). Thus, we get a partition 7 weighted by (—1)#°(™ where #,(m) is the number of odd parts
of 7, which is clearly enumerated by p;(n). Thus,

<1_3)2<q;q2>m Zpl n)q" —Zpl =3 (m(n) = pln+ 1) "

m=1 —
(4.1)
since p;(1) = 0. Next, consider
e 2n o 1 om
q
- : 4.2

This is the generating function of ps(n) because, a typical partition has 2n as its largest part, no
number between (and including) n and 2n — 1 can appear as a part, and every occurrence of a
part less than n comes with the weight —1. Finally,

o0

> 7 fqn = Z i D ' _ 3 (ro(n) = 7(n)) g (4.3)

n=1 n=1 n=1

From (1), (£2), (&3) and (L.10), we arrive at (T.1T).

Equation ([1.12]) follows by summing both sides of ((1.11)) from n = 1 to NV — 1 and making use
of the fact that p;(1) = 0.
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5. FURTHER SUMS-OF-TAILS IDENTITIES
Theorem 5.1. For b,d € C,

n=0 j=1 j=1
(5.1)

8

Proof. From Theorem [1.1]

m=0

1 — ¢ o 0/D)nd" (40" S (@i (0/ @) g™
_(b)oo(d)oo{zl—qk 2 L—qm 2 () 2 (@)m (L —qm™") }

6 S WU 1 S o H (b) (—d)" n(n_wg}
= ) 2o — 2T g - - — ] q
(b)oo(d)oo{ —l-g" = 1-—g Hl-d I \a/; .\ d
e e sl (), ) e
= - . - — ] """ (5.2)
(b)oo(d)oo{gl—q’“ ;1—613,; nf\a/;n\ 4
. . 2
Multiply both sides of (1.9)) by (b)Z)(ﬁ)oo to get
o0 1 n+1)2 1 o0 k 0 —1)" n(n+1)/2
"0 (0)oc(d)os (b)oo(d)oo (D)oo (d)os —1 l—q i l—¢q
Equation (5.1)) now follows from subtracting ([5.2) from (5.3]), and then multiplying both sides by
(oo (e 0

Corollary 5.2. Forb e C,

o0 0o i J B\ " X (=1} +1)/2
. ¢ b b i 1)7¢g7U+
- -2 L)) L) R S
n=0 j=1 T 1/ j-n \ 4 j=1 q
Proof. Set d =10 in (5.1)). O

Corollary 5.3. For d € C,

o . . . > j q])qJ(J 1)/2
D (@ oo ((dg™)oe — (") Z =) . (5.4)
n=0 j=1

Proof. Set b= ¢ in (5.1 and simplify. O

Corollary 5.4. Ford € C,

b J
>

Jj=1

<
\_/
3
—
<

} (c_l) qn(nfl)/Q _ i (_d)jqj(j‘fl)/z.
n q j—n (1 - q])

J
4 0 j=1

:
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Proof. Let d =g in (5.1)). Then replacing b by d in the resulting identity, we get

o 00 P . ©  1ViAiGH1)/2
¢ jl [d Iy (—1)igil+
S () = @) = 30 g Sy ] (5) ey
(5.5)
The result now follows by equating the right-hand sides of (5.4)) and ((5.5)). 0J
We now prove ([1.13]).

Proof of Theorem [1.4, We first differentiate both sides of Corollary with respect to b and
then let b = ¢. Observe that

0 n-‘,—k
n+1 2

00 1 — qn+k+1

Also, for n # j,

b=q
= —¢""(q)j-n-1-

Now separating out the n = j term in the first sum on the right-hand side of Corollary [5.2] then
differentiating both sides of the resulting identity with respect to b followed by letting b = ¢, and
using the above two results, yields

[e.e]

ni1y2 ¢t 2 (=1)7jg G/ Ga
_22 )5 1_ 1 — gntk+l _Z 1—qi Zl ¢
n=0

k=0 j=1 j=1 n=0

Multiplying both sides by ¢ gives, upon simplification,

< oyt & = (E (10 (g
S 3 (S ) - S (S ) 2 6o

Jj=1 j=1 \n=0

Now differentiating both sides of Corollary [5.3|with respect to d, letting d = ¢, and then multiplying
both sides by ¢ results in

X (1) Ligi+)/2 Gy
Z( )1;7qu _ (q)m’; (Z o ) s (5.7)

j=1 =0

Equation ([1.13)) now follows from (5.6)) and (5.7)). O
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6. SOME RESULTS ON FINITE SUMS, AN IDENTITY OF ANDREWS AND ONOFRI, AND ITS
APPLICATION

In a beautiful paper, Andrews and Onofri gave the following identity [9 p. 182, Entry (72)]E|
Z Z (n — b/ @) (b/a)ma™ g™ (a—b)(bg)3,
(@)a(@)m (@)%

It is valid for |a| < |b] and |g| < 1. In this section, we begin with a symmetric identity, namely
(6.2), and then use a corollary of (6.1)) to derive an identity for a special case of the finite sum
b=d of (6.2)). It is, in turn, used to obtain an identity whose combinatorial proof is given too.

Theorem 6.1. For b,d € C,

00, Ge -5, G e

(6.1)

n=0 m=0

Proof. Let .
N x4 (0 —d\" 1)
T(j) :=T(j.q) = 2 n} (5)1'71 (7) g/
Then
TG _ g~ [d] (b —d\" v 2
; (9); ;; {n (q)jn< q ) ! (9);
e ()T SN (0/q)
_; (@)n ; (@)j-n
e (=dz/q)" g & (b/g),
_; (@)n =0 (9);
(d2/9) oo (b2/q) oo

- EI (6.3)

where the last step follows from two special cases of the g-binomial theorem [12] p. 9, Corollary
(1.3.2)]. Since the g-product on the right-hand side of (6.3) is symmetric in b and d, the result
follows. OJ

Theorem 6.2. Forb,d € C,

[ (S)M (—)

gizt: (2n = 1)(d/q*)n(d/q*)1—n (1)1 gUmmHG=OG=D/2 (6.4)
(1- d/q pordort (@n(@)e—n(@)j+1-1

Proof. Letting b =d in (6.3]), we get

GELENE.C s e

The factor of ¢™ in the summand of the double sum is missing in [9].
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Now (6.1]) with a = z and b = dz/q? gives
(dz/a)5 _ Z Z (n —m)(d/q*)n(d/q*)mg™ 2"

(2)oc 1—d/q bt et (@)n(@)m
L O (0= m)dfaldf (L) D
B (1—d/q2)nZ:0mZ:0§ (@)n(@)m(@)n
1 oo jH+1 ¢ (2n—t)(d/q) (d/q2)t ( 1)]+1 —t o (t=n)+ (=) (G—t+1)/2
QP 3 (D @@ (69

where we used (2.1} . ) to obtain the second step, and in the last step ma,de the substitution m +n —|—
k—1=jand m +n =t. On comparing the coefficients of 27 in and (6.6} ., we get .

Corollary 6.3. For any j > 0,

i n n(n+1 i ] +1 —TL 1)nqn(n—1)/2 B (]"’ 1)(_1)jqj(j+1)/2 J n(_1>nqn(n—l)/2
e0 (q>n (9); (@)n .

n=0 n

(6.7)

Proof. The first identity follows upon letting d — ¢ in Theorem . Indeed, upon taking this
limit on both sides of (6.4) and observing that only the terms corresponding to n = 0 and n = ¢
on the right-hand side survive, we obtain

J Jrgnnt /2 jt+l (—t)( 11—t (=) (—t+1)/2
Q)1 (1) g
(@ : ~ Y

- —1 (@)¢(@)j+1-¢
ity 1)i+1=t (=) —t+1)/2
# 3o M }
@)e(@)j+1-1

! t(_l)J+1—tq<H><rt+1)/
—1 (4)j+1-¢

J 1 —1)(=1)t t(t—1)/2
-3 e e

where in the last step, we replaced ¢t by j + 1 —¢.

We now give a combinatorial proof of the same result which will naturally lead us to the second
equality as well.

We begin with the left-hand side of the first equality. Let a.(m, j) (resp. a,(m,j)) denote the
number of partitions of m into distinct parts where the number of parts is even (resp. odd) and
< j. Then

n nn+l

J
n=0 n

= Z(CLe(muj) - a’0<m7j))qm'
m=0
Next, we write

(@)n '
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n(& > il generates partitions into exactly n or n — 1 distinct parts. Therefore, the partitions
n(n+1)/2 d qn('n 1)/2

into distinct parts exactly n in number can come only from < Dot
coming from the partitions into exactly n number of parts thus

Now 4

. The contribution

(_1)7L+1qn(n+1)/2 (_1)nqn(n71)/2
(q.)nJrl (@n . . )
gets nullified, because of opposite parity, for every 0 < n < j — 1. Thus, when we sum these terms

from n = 0 to j, we are left with only the partitions into exactly j distinct parts with weight

(—1)7. However, the latter are clearly generated by W We have thus proved
J

in

gD/ (Z1)igiGn/2

3.5 W o

n=0 n

Thus, from and , we obtain the second equality in (6.7)). To complete the combinatorial
proof of the first equality of (6.7)), we now show that

n n(n—l)/2 n n(n+1)/

i . (6.10)

n=0 n

(J + D(=1)/gutDr2 in

(q)] 0 (q n

j n(_l)nqn(nfl)/Q
We first analyZE;nE?/Q—(q)n [he
from ("J’l)(_a)wf and =Y (Z)n with weights (n + 1)(—1)""! and n(—1)" respectively.

Thus, for every 0 < n < j — 1, the partitions into exactly n number of parts coming from
_1\n+1, n(n+1)/2 _1\n,n(n—1)/2 . . .. . .
(n+1)( 2) if 0P 4 n=h) (q) will have weight (—1)""!. Now the partitions into exactly j

distinct parts coming from ](1)](‘;—;;1)/2 will have weight j(—1).

n

. The partitions into distinct parts, exactly n in number, come

(j+1)(,1)jq1(j+1)/2 . j(,l)jqj<j—1>/2
(@); (@);

Therefore, the partitions into exactly j distinct parts resulting from
will have weight (—1)7. Therefore, the above analysis clearly gives (6.10]).

Remark 2. The equality between the first and the third terms in (6.7)) can be proved by induction
on j. Same is the case with .

7. CONCLUDING REMARKS

It would be nice to see if the original question which led us to study the sums-of-tails identity
in Theorem can be investigated, namely, if there exists a sums-of-tails identity associated with

= 1 1
,; ((q; )o@ P (g q5)n(q4;q5)n) ’

and whether or not it involves o3(q) defined in (1.6]).
Observe that Andrews’ proof of (|1.1)) and (1.2)) begins by obtaining alternate representations
for their left-hand sides, namely [2, Equations (2.3), (2.4)],

D (=@ = (=g 0)n) = D kd"(=a)k1,

n=0 k=1
=0 (:6%)oc  (4:6%)nt1 a =0 (4 ¢%)k+1
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We have derived an identity similar to the above for the sum in (1.7, namely,

[e.o]

1 1 B s kq5k—4 s kq5k:—1
Y (G~ o)~ >3 =

— — (: )i ) e—1 (G O)r(ah )
n=0 k=1 k=1

Indeed, this identity can be proved as follows. Observe that any partition enumerated by W

00 (9%:4°) oo

has to have its largest part either of the form 5k — 4 or 5k — 1, where k£ > 1. Any partition with
largest part 5k —4 is counted £ times on the left-hand side of , namely, once by each of its first
k terms, and is not counted by the rest. The logic is similar when the largest part of a partition is
of the form 5k — 1. This establishes . It would be nice to see if it is feasible to proceed from
it towards obtaining a sums-of-tails identity similar to and .

Andrews [2] proved and using Ramanujan’s reciprocity theorem, namely, for |a| <
L ]b] <1,

a

(1 1Y (aq/b)so(bq/ )0 (q) oo
p(“’b>_p<b’“)‘<5_‘) ETNE—

where

. 1 0 (_1)nqn(n+1)/2anb—n
pla,b) = (1 + E) Z :

n=0 (—CEQ)n

This raises a natural question - does there exist a corresponding reciprocity theorem associated
with o9(q)? Indeed, if it exists, it may throw light on the previous question.
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