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ABSTRACT. We consider two sequences a(n) and b(n), 1 ≤ n <∞, generated by Dirichlet series
∞∑
n=1

a(n)

λsn
and

∞∑
n=1

b(n)

µsn
,

satisfying a familiar functional equation involving the gamma function Γ(s). Two general identities are
established. The first involves the modified Bessel function Kµ(z), and can be thought of as a ‘mod-
ular’ or ‘theta’ relation wherein modified Bessel functions, instead of exponential functions, appear.
Appearing in the second identity areKµ(z), the Bessel functions of imaginary argument Iµ(z), and or-
dinary hypergeometric functions 2F1(a, b; c; z). Although certain special cases appear in the literature,
the general identities are new. The arithmetical functions appearing in the identities include Ramanu-
jan’s arithmetical function τ(n); the number of representations of n as a sum of k squares rk(n); and
primitive Dirichlet characters χ(n).

1. INTRODUCTION

Our goal is to establish two general identities involving arithmetical functions whose generat-
ing functions are Dirichlet series satisfying Hecke’s functional equation. For example, two of these
arithmetical functions are rk(n), the number of representations of n as a sum of k squares, and Ra-
manujan’s arithmetical function τ(n). Our general theorems involve the Bessel function of imaginary
argument Iν(z) and the modified Bessel function Kν(z), defined, respectively, in (2.1) and (2.2)
below.

One of the identities is a modular or theta relation in which, roughly, the exponential functions
are replaced by modified Bessel functions. The other is a transformation formula in which ordinary
hypergeometric functions appear on one side. Certain special cases, which we cite in the sequel, of
each of the two primary identities have appeared in the literature. However, the general theorems and
the majority of the examples are new.

We consider the class of arithmetical functions studied by K. Chandrasekharan and R. Narasimhan
[9]. Let a(n) and b(n), 1 ≤ n <∞, be two sequences of complex numbers, not identically 0. Set

ϕ(s) :=
∞∑
n=1

a(n)

λsn
, σ > σa; ψ(s) :=

∞∑
n=1

b(n)

µsn
, σ > σ∗a, (1.1)

where throughout our paper, σ = Re(s), {λn} and {µn} are two sequences of positive numbers, each
tending to ∞, and σa and σ∗a are the (finite) abscissae of absolute convergence for ϕ(s) and ψ(s),
respectively. Assume that ϕ(s) and ψ(s) have analytic continuations into the entire complex plane C
and are analytic on C except for a finite set S of poles. Suppose that for some δ > 0, ϕ(s) and ψ(s)
satisfy a functional equation of the form

χ(s) := (2π)−sΓ(s)ϕ(s) = (2π)s−δΓ(δ − s)ψ(δ − s). (1.2)
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Chandrasekharan and Narasimhan proved that the functional equation (1.2) is equivalent to Theorems
1.1 and 1.2 below [9, p. 6, Lemmas 4, 5], the first of which is due to Bochner [8]. Hence, the validity
of any one of (1.2), Theorem 1.1, and Theorem 1.2 implies the truth of the other two identities.

Theorem 1.1. The functional equation (1.2) is equivalent to the ‘modular’ relation
∞∑
n=1

a(n)e−λnx =

(
2π

x

)δ ∞∑
n=1

b(n)e−4π
2µn/x + P (x), Re(x) > 0, (1.3)

where
P (x) :=

1

2πi

∫
C
(2π)zχ(z)x−zdz,

where C is a curve or curves encircling all of S.

Recall that the ordinary Bessel function Jν(z) is defined by [24, p. 40]

Jν(z) :=
∞∑
n=0

(−1)n
(
1
2z
)ν+2n

n!Γ(ν + n+ 1)
, z ∈ C.

Theorem 1.2. Let x > 0 and ρ > 2σ∗a − δ − 1
2 . Then the functional equation (1.1) is equivalent to

the Riesz sum identity

1

Γ(ρ+ 1)

∑
λn≤x

′
a(n)(x− λn)ρ =

(
1

2π

)ρ ∞∑
n=1

b(n)

(
x

µn

)(δ+ρ)/2

Jδ+ρ(4π
√
µnx) +Qρ(x), (1.4)

where the prime ′ on the summation sign on the left side indicates that if ρ = 0 and x ∈ {λn}, then
only 1

2a(x) is counted. Furthermore, Qρ(x) is defined by

Qρ(x) :=
1

2πi

∫
C

χ(z)(2π)zxz+ρ

Γ(ρ+ 1 + z)
dz, (1.5)

where C is a curve or curves encircling S.

Chandrasekharan and Narasimhan [9, p. 14, Theorem III] show that the restriction ρ > 2σ∗a −
δ − 1

2 can be replaced by ρ > 2σ∗a − δ − 3
2 under certain conditions. Because we later use analytic

continuation, this extension is not important here.
Theorem 1.1 is not explicitly used in the sequel. However, Theorem 1.2 is the key to our primary

theorems, Theorem 3.1 and Theorem 10.1.
Our examples include the following arithmetical functions: rk(n), the number of representations

of n as a sum of k squares; σk(n), the sum of the kth powers of the divisors of n; Ramanujan’s
arithmetical function τ(n); both odd and even primitive characters χ(n); and F (n), the number of
integral ideals of norm n in an imaginary quadratic number field.

2. FACTS ABOUT BESSEL FUNCTIONS

The Bessel function of imaginary argument Iν(z) is defined by [24, p. 77]

Iν(z) :=

∞∑
n=0

(12z)
ν+2n

n!Γ(ν + n+ 1)
, z ∈ C, (2.1)

while the modified Bessel function Kν(z) is defined by [24, p. 78]

Kν(z) :=
π

2

I−ν(z)− Iν(z)

sin νπ
, z ∈ C, ν /∈ Z, (2.2)

Kn(z) := lim
ν→n

Kν(z), n ∈ Z.
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As special cases [24, p. 80],

I1/2 (z) =

√
2

πz
sinh z, (2.3)

K1/2 (z) =

√
π

2z
e−z. (2.4)

For ν ∈ C [24, p. 79],
Kν(z) = K−ν(z). (2.5)

For Re(ν) > 0 [5, p. 329],
lim
z→0

zνKν(z) = 2ν−1Γ(ν). (2.6)

The three foregoing Bessel functions satisfy the differentiation formulas [24, pp. 66, 79]
d

dz
(zνJν(z)) =zνJν−1(z), (2.7)

d

dz
(zνIν(z)) =zνIν−1(z), (2.8)

d

dz
(zνKν(z)) =− zνKν−1(z). (2.9)

We shall need their asymptotic formulas as z →∞, namely [24, pp. 199, 203, 202],

Jν(z) =

√
2

πz

(
cos(z − 1

2νπ −
1
4π) +O

(
1

z

))
, (2.10)

Iν(z) =

√
1

2πz
ez
(

1 +O

(
1

z

))
, (2.11)

Kν(z) =

√
π

2z
e−z

(
1 +O

(
1

z

))
. (2.12)

Lemma 2.1. [24, p. 417] Let a > 0, Re(µ) > −1, and ν ∈ C. Then,∫ ∞
0

Kν(a{t2 + z2})
(t2 + z2)ν/2

t2µ+1dt =
2µΓ(µ+ 1)

aµ+1zν−µ−1
Kν−µ−1(az).

Lemma 2.2. [24, p. 416] For a, b > 0, Re(z) > 0,Re(µ) > −1, and ν ∈ C,∫ ∞
0

Jµ(bx)
Kν(a

√
z2 + x2)

(z2 + x2)ν/2
xµ+1dx =

bµ

aν

(√
a2 + b2

z

)ν−µ−1
Kν−µ−1(z

√
a2 + b2).

3. THE FIRST PRIMARY THEOREM

Theorem 3.1. Let Re(ν) > −1, Re(c),Re(r) > 0, and ρ > −1. Then,

1

Γ(ρ+ 1)

∞∑
n=1

a(n)

∫ ∞
λn

(x− λn)ρ(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx

=
1

(2π)ρ+1rνcν−δ−ρ−1

∞∑
n=1

b(n)

(r2 + µn)(δ+ρ−ν+1)/2
Kδ+ρ+1−ν(4πc

√
r2 + µn)

+

∫ ∞
0

Qρ(x)(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx, (3.1)

where it is assumed that the integral Qρ(x), defined by (1.5), converges absolutely.
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Proof. Assume that ρ > 2σ∗a − δ − 1
2 . Multiply both sides of (1.4) by

(c2 + x)−ν/2Kν(4πr
√
c2 + x), c, r > 0,

and integrate over 0 ≤ x < ∞. Let F1(δ, ρ, ν) denote the left-hand side and let F2(δ, ρ, ν) and
F3(δ, ρ, ν) denote, in order, the two terms on the right-hand side that we so obtain.

First,

F1(δ, ρ, ν) =
1

Γ(ρ+ 1)

∫ ∞
0

∑
λn≤x

′
a(n)(x− λn)ρ(c2 + x)−ν/2Kν(4πr

√
c2 + x)dx

=
1

Γ(ρ+ 1)

∞∑
n=1

a(n)

∫ ∞
λn

(x− λn)ρ(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx. (3.2)

Second, after we invert the order of summation and integration by absolute convergence on the
right-hand side, we are led to the integral

I(δ, ρ, ν) :=

∫ ∞
0

x(δ+ρ)/2(c2 + x)−ν/2Jδ+ρ(4π
√
µnx)Kν(4πr

√
c2 + x)dx

=2

∫ ∞
0

uδ+ρ+1Jδ+ρ(4πu
√
µn)

Kν(4πr
√
c2 + u2)

(c2 + u2)ν/2
du. (3.3)

Apply Lemma 2.2 with

µ = δ + ρ, a = 4πr, and b = 4π
√
µn.

Hence, from (3.3), for δ + ρ > −1,

I(δ, ρ, ν) =2
(4π
√
µn)δ+ρ

(4πr)ν

(√
(4πr)2 + (4π

√
µn)2

c

)ν−δ−ρ−1
×Kν−δ−ρ−1

(
c
√

(4πr)2 + (4π
√
µn)2

)
=

µ
(δ+ρ)/2
n

2πrνcν−δ−ρ−1
(r2 + µn)(ν−δ−ρ−1)/2Kν−δ−ρ−1(4πc

√
r2 + µn). (3.4)

In summary, with the use of (3.4) and (2.5), we have

F2(δ, ρ, ν) =
1

(2π)ρ+1rνcν−δ−ρ−1

∞∑
n=1

b(n)

(r2 + µn)(δ+ρ−ν+1)/2
Kν−δ−ρ−1(4πc

√
r2 + µn)

=
1

(2π)ρ+1rνcν−δ−ρ−1

∞∑
n=1

b(n)

(r2 + µn)(δ+ρ−ν+1)/2
Kδ+ρ+1−ν(4πc

√
r2 + µn). (3.5)

Thirdly,

F3(δ, ρ, ν) =

∫ ∞
0

Qρ(x)(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx. (3.6)

We now gather together (3.2), (3.5), and (3.6) to conclude (3.1), which we have proved for ν, r, c >
0. However, in view of (2.12), we see that by analytic continuation, (3.1) holds for Re(ν) > −1, and
Re(c),Re(r) > 0. The conditions ρ > 2σ∗a − δ − 1

2 and δ + ρ > −1 can be discarded by analytic
continuation in ρ. �
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4. THE SPECIAL CASE ρ = 0

We consider Theorem 3.1 in the special case ρ = 0.

Theorem 4.1. Let Re(ν) > −1 and Re(c),Re(r) > 0. Assume that the integral below converges
absolutely. Then,

1

2πr

∞∑
n=1

a(n)

(c2 + λn)(ν−1)/2
Kν−1(4πr

√
c2 + λn)

=
1

2πrνcν−δ−1

∞∑
n=1

b(n)

(r2 + µn)(δ−ν+1)/2
Kδ+1−ν(4πc

√
r2 + µn)

+

∫ ∞
0

Q0(x)(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx.

Proof. First, set

u = 4πr
√
c2 + x ⇒ dx =

u

8π2r2
du.

Hence, in turn, using (2.5), (2.9), and (2.5), we find that∫ ∞
λn

(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx =

∫ ∞
4πr
√
c2+λn

( u

4πr

)−ν ( u

8π2r2

)
Kν(u)du

=
2

(4πr)2−ν

∫ ∞
4πr
√
c2+λn

u−ν+1Kν(u)du

=2(4πr)ν−2
∫ ∞
4πr
√
c2+λn

u−ν+1K−ν(u)du

=− 2(4πr)ν−2
∫ ∞
4πr
√
c2+λn

d

du

(
u−ν+1K−ν+1(u)

)
du

=2(4πr)ν−2(4πr
√
c2 + λn)−ν+1K−ν+1(4πr

√
c2 + λn)

=
1

2πr
(c2 + λn)−(ν−1)/2Kν−1(4πr

√
c2 + λn).

Thus, the sum on the left-hand side of (3.1) reduces to

1

2πr

∞∑
n=1

a(n)

(c2 + λn)(ν−1)/2
Kν−1(4πr

√
c2 + λn).

The remaining part of the proof is immediate after setting ρ = 0 in Theorem 3.1. �

Before giving examples in illustration of Theorem 4.1, we offer remarks on previous work. Theo-
rem 3.1 is new. The first author’s paper [2, p. 342] contains the first statement and proof of Theorem
4.1 [2, pp. 342–344]. Our proof here is completely different from that in [2]. Theorem 4.1 was also
established via the Voronoı̈ summation formula in [3, p. 154]. The special case, δ = 1, of Theorem
4.1 was first established by F. Oberhettinger and K. Soni [20, p. 24] in 1972.

To illuminate the equivalence of the functional equation (1.2), the modular relation (1.3), and the
Riesz sum identity (1.4), Chandrasekharan and Narasimhan [9] examine the three identities with
particular arithmetical functions. For more details about the functional equations associated with
these arithmetical functions, and for calculations of Q0(x), see their paper [9].

In the examples below we refer to calculations made by Chandrasekharan and Narasimhan [9] to
illustrate Theorem 1.2. In particular, we use a few of their determinations of Qρ(x).
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5. EXAMPLE: rk(n)

Let rk(n) denote the number of representations of the positive integer n as a sum of k squares,
where k ≥ 2. Then

ζk(s) :=

∞∑
n=1

rk(n)

ns
, σ > k/2,

satisfies the functional equation

π−sΓ(s)ζk(s) = πs−k/2Γ(k/2− s)ζk(k/2− s). (5.1)

In the notation of (1.2),

a(n) = b(n) = rk(n), δ =
k

2
, and λn = µn =

n

2
.

From the functional equation (5.1), ζk(0) = −1, and ζk(s) has a simple pole at s = 2k with residue
πk/2/Γ(k/2). It readily follows that

Q0(x) = −1 +
(2πx)k/2

Γ(1 + k/2)
. (5.2)

Appealing to Theorem 4.1 and (5.2), we find that

1

2πr

∞∑
n=1

rk(n)

(c2 + n/2)(ν−1)/2
Kν−1(4πr

√
c2 + n/2)

=
1

2πrνcν−k/2−1

∞∑
n=1

rk(n)

(r2 + n/2)(k/2−ν+1)/2
Kk/2+1−ν(4πc

√
r2 + n/2)

+

∫ ∞
0

(
−1 +

(2πx)k/2

Γ(1 + k/2)

)
(c2 + x)−ν/2Kν(4πr

√
c2 + x)dx. (5.3)

First, making the trivial change of variable x = t2, and applying Lemma 2.1 with a = 4πr, z = c,
and µ = 0, we find that

−
∫ ∞
0

(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx = − 1

2πrcν−1
Kν−1(4πrc). (5.4)

Second, again making the trivial change of variable x = t2, and applying Lemma 2.1 with a =
4πr, z = c, and µ = 1

2k, we find that∫ ∞
0

(2πx)k/2

Γ(1 + k/2)
(c2 + x)−ν/2Kν(4πr

√
c2 + x)dx =

1

2πrk/2+1cν−k/2−1
Kν−k/2−1(4πrc). (5.5)

Now, put (5.4) and (5.5) into (5.3). If we define rk(0) = 1 and use (2.6), we see that (5.4) can be
written as the term for n = 0 in the series on the left-hand side of (5.3), while (5.5) can be considered
as the term for n = 0 in the series on the right-hand side. Multiplying both sides of the resulting
identity by 2πr, and replacing ν by ν + 1, we conclude that

∞∑
n=0

rk(n)

(c2 + n/2)ν/2
Kν(4πr

√
c2 + n/2)

=
1

rνcν−k/2

∞∑
n=0

rk(n)

(r2 + n/2)(k/2−ν)/2
Kk/2−ν(4πc

√
r2 + n/2). (5.6)
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The identity (5.6) was also established by the first author, Y. Lee, and J. Sohn [7, p. 39, Equation
(5.5)]. For k = 2, (5.6) was first proved by A. L. Dixon and W. L. Ferrar [12, p. 53, Equation (4.13)]
in 1934. A different proof for k = 2 was given by Oberhettinger and Soni [20, p. 24].

6. EXAMPLE: σk(n)

Let σk(n) denote the sum of the kth powers of the divisors of n, where it is assumed that k is an
odd positive integer. The generating function for σk(n) is given by

ζk(s) := ζ(s)ζ(s− k) =
∞∑
n=1

σk(n)

ns
, σ > k + 1,

and it satisfies the functional equation

(2π)−sΓ(s)ζk(s) = (−1)(k+1)/2(2π)−(k+1−s)Γ(k + 1− s)ζk(k + 1− s). (6.1)

In the notation of the Dirichlet series and functional equation in (1.1) and (1.2), respectively,

a(n) = σk(n), b(n) = (−1)(k+1)/2σk(n), λn = µn = n, δ = k + 1.

Now Q0(s) is the sum of the residues of

R(z) :=
Γ(z)ζ(z)ζ(z − k)xz

Γ(z + 1)
.

(In Chandrasekaran and Narasimhan’s paper [9], they utilize a different convention for Bernoulli
numbers, and so our representation for Q0 takes a different form from theirs.) Observe that R(z) has
simple poles at z = 0,−1, k + 1. Using Euler’s formula,

ζ(2n) = (−1)n−1
(2π)2nB2n

2(2n)!
, n ≥ 1.

where n is a positive integer and Bn denotes the nth Bernoulli number, we readily find that

Q0(x) =
Bk+1

2(k + 1)
−
δ1,kx

2
+

(2π)k+1(−1)(k−1)/2Bk+1x
k+1

2(k + 1)Γ(k + 2)
, (6.2)

where

δ1,k =

{
1, if k = 1,

0, otherwise.
Applying Theorem 4.1 and employing (6.2), we find that

1

2πr

∞∑
n=1

σk(n)

(c2 + n)(ν−1)/2
Kν−1(4πr

√
c2 + n)

=
1

2πrνcν−k−2

∞∑
n=1

(−1)(k+1)/2σk(n)

(r2 + n)(k+2−ν)/2Kk+2−ν(4πc
√
r2 + n)

+

∫ ∞
0

(
Bk+1

2(k + 1)
−
δ1,kx

2
+

(2π)k+1(−1)(k−1)/2Bk+1x
k+1

2(k + 1)Γ(k + 2)

)
(c2 + x)−ν/2Kν(4πr

√
c2 + x)dx.

(6.3)

Let I1, I2, and I3 denote, respectively, the three integrals on the right side of (6.3). In each instance
below, we initially make the change of variable x = t2. First, by Lemma 2.1, as in the calculation of
(5.4),

I1 =
Bk+1

2(k + 1)

∫ ∞
0

(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx =

Bk+1

k + 1

1

4πrcν−1
Kν−1(4πrc). (6.4)
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Secondly, apply Lemma 2.1 with a = 4πr, z = c, and µ = 1. Hence,

I2 = −
δ1,k
2

∫ ∞
0

(c2 + x)−ν/2Kν(4πr
√
c2 + x)x dx = −δ1,k

2

(4πr)2cν−2
Kν−2(4πrc). (6.5)

Thirdly, we apply Lemma 2.1 with a = 2πr, z = c, and µ = k + 1. Therefore,

I3 =
(2π)k+1(−1)(k−1)/2Bk+1

2(k + 1)Γ(k + 2)

∫ ∞
0

(c2 + x)−ν/2Kν(4πr
√
c2 + x)xk+1 dx

=
(−1)(k−1)/2Bk+1

4π(k + 1)rk+2cν−k−2
Kν−k−2(4πrc). (6.6)

In summary, putting (6.4)–(6.6) into (6.3), we deduce that

1

2πr

∞∑
n=1

σk(n)

(c2 + n)(ν−1)/2
Kν−1(4πr

√
c2 + n)

=
1

2πrνcν−k−2

∞∑
n=1

(−1)(k+1)/2σk(n)

(r2 + n)(k+2−ν)/2Kk+2−ν(4πc
√
r2 + n) +

Bk+1

k + 1

1

4πrcν−1
Kν−1(4πrc)

− δ1,k
2

(4πr)2cν−2
Kν−2(4πrc) +

(−1)(k−1)/2Bk+1

4π(k + 1)rk+2cν−k−2
Kν−k−2(4πrc). (6.7)

We now put (6.7) in a more palatable form. From (6.1),

ζk(0) = ζ(0)ζ(−k) = −1

2
· −Bk+1

k + 1
=

Bk+1

2(k + 1)
,

by [13, p. 12]. Define

σk(0) = −ζk(0) = − Bk+1

2(k + 1)
. (6.8)

Thus, by (6.8), the first expression after the series on the right-hand side of (6.7) can be expressed as
the term for n = 0 in the series on the left-hand side. Similarly, the last expression on the right-hand
side of (6.7) can be represented as the term for n = 0 in the series on the right-hand side of (6.7).
Thus, we can write (6.7) in the more simplified form

1

2πr

∞∑
n=0

σk(n)

(c2 + n)(ν−1)/2
Kν−1(4πr

√
c2 + n)

=
1

2πrνcν−k−2

∞∑
n=0

(−1)(k+1)/2σk(n)

(r2 + n)(k+2−ν)/2Kk+2−ν(4πc
√
r2 + n)− δ1,k

2

(4πr)2cν−2
Kν−2(4πrc).

(6.9)

Multiplying both sides of (6.9) by 2πr, and replacing ν by ν + 1, we deduce that
∞∑
n=0

σk(n)

(c2 + n)ν/2
Kν(4πr

√
c2 + n)

= −
δ1,k

4πrcν−1
Kν−1(4πrc) +

1

rνcν−k−1

∞∑
n=0

(−1)(k+1)/2σk(n)

(r2 + n)(k+1−ν)/2 ·Kk+1−ν(4πc
√
r2 + n). (6.10)

This identity appears to be new.



ARITHMETICAL IDENTITIES 9

In a 3-page fragment published with his lost notebook [22, p. 253], Ramanujan offered a kindred
formula to (6.10). If α and β are positive numbers such that αβ = π2, and if s is any complex
number, then

√
α
∞∑
n=1

σ−s(n)ns/2Ks/2(2nα)−
√
β
∞∑
n=1

σ−s(n)ns/2Ks/2(2nβ)

=
1

4
Γ
(s

2

)
ζ(s){β(1−s)/2 − α(1−s)/2}+

1

4
Γ
(
−s

2

)
ζ(−s){β(1+s)/2 − α(1+s)/2}. (6.11)

Note that (6.11) is not a special case of (6.10), and also note that (6.11) is valid for all complex s,
while k in (6.10) is an odd positive integer.

Unaware that (6.11) was first established by Ramanujan [22, p. 253], A. P. Guinand gave the first
proof in print in 1955 [17]. The identity (6.11) is now known as Guinand’s formula or the Ramanujan–
Guinand formula. See also [7, pp. 25–27] for a proof. Letting s = 0 in (6.11), we obtain a well-known
formula of Koshliakov [7].

7. EXAMPLE: τ(n)

Recall that the Dirichlet series for Ramanujan’s arithmetical function τ(n)

f(s) :=
∞∑
n=1

τ(n)

ns
, σ >

13

2
, (7.1)

satisfies the functional equation

χ(s) := (2π)−sΓ(s)f(s) = (2π)−(12−s)Γ(12− s)f(12− s). (7.2)

The function χ(s) is an entire function, and so Q0(x) ≡ 0. Clearly,

λn = µn = n δ = 12. (7.3)

Applying Theorem 4.1 and replacing ν by ν + 1, we deduce that, for Re(ν),Re(c),Re(r) > 0,
∞∑
n=1

τ(n)

(c2 + n)ν/2
Kν(4πr

√
c2 + n) =

1

rνcν−12

∞∑
n=1

τ(n)

(r2 + n)(12−ν)/2
K12−ν(4πc

√
r2 + n). (7.4)

The identity (7.4) was first established by the first author, Lee, and Sohn [7, p. 40, Equation (5.7)].

8. EXAMPLE: PRIMITIVE CHARACTERS χ(n)

Let χ denote a primitive character modulo q. Because the functional equations for the Dirichlet
L-series

L(s, χ) =

∞∑
n=1

χ(n)

ns
, σ > 0,

are different for χ even and χ odd, we separate the two cases.
Suppose first that χ is odd. Then the functional equation for L(s, χ) is given by [11, p. 71]

χ(s) :=

(
π

q

)−s
Γ(s)L(2s− 1, χ) = − iτ(χ)

√
q

(
π

q

)−( 32−s)
Γ
(
3
2 − s

)
L(2− 2s, χ), (8.1)

where χ(n) denotes the complex conjugate of χ(n), and τ(χ) denotes the Gauss sum

τ(χ) :=

q∑
n=1

χ(n)e2πin/q. (8.2)
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Hence, in the notation of (1.1) and (1.2),

a(n) = nχ(n), b(n) = − iτ(χ)
√
q
nχ(n), λn = µn =

n2

2q
, δ =

3

2
. (8.3)

Also, χ(s) is an entire function, and consequently Q0(x) ≡ 0. Applying Theorem 4.1, multiplying
both sides of the resulting identity by 2πr, and replacing ν by ν + 1, we conclude that

∞∑
n=0

nχ(n)

(c2 + n2/(2q))ν/2
Kν(4πr

√
c2 + n2/(2q))

= − iτ(χ)

rνcν−3/2
√
q

∞∑
n=0

nχ(n)

(r2 + n2/(2q))(3/2−ν)/2
K3/2−ν(4πc

√
r2 + n2/(2q)),

which is new.
Second, let χ be even. Then the functional equation of L(s, χ) is given by [11, p. 69]

χ(s) :=

(
π

q

)−s
Γ(s)L(2s, χ) =

τ(χ)
√
q

(
π

q

)−( 12−s)
Γ
(
1
2 − s

)
L(1− 2s, χ). (8.4)

Hence, by (1.1) and (1.2),

a(n) = χ(n), b(n) =
τ(χ)
√
q
χ(n), λn = µn =

n2

2q
, δ =

1

2
. (8.5)

Also, χ(s) is an entire function, and consequentlyQ0(x) ≡ 0. Appealing to Theorem 4.1, multiplying
both sides of the identity so obtained by 2πr, and replacing ν by ν + 1, we conclude that

∞∑
n=0

χ(n)

(c2 + n2/(2q))ν/2
Kν(4πr

√
c2 + n2/(2q))

=
τ(χ)

rνcν−1/2
√
q

∞∑
n=0

χ(n)

(r2 + n2/(2q))(1/2−ν)/2
K1/2−ν(4πc

√
r2 + n2/(2q)),

which is also a new identity.

9. EXAMPLE: IDEAL FUNCTIONS F (n) OF IMAGINARY QUADRATIC NUMBER FIELDS

Let F (n) denote the number of integral ideals of norm n in an imaginary quadratic number field
K = Q

(√
−D

)
, where D is the discriminant of K. Then the Dedekind zeta function

ζK(s) :=

∞∑
n=1

F (n)

ns
, σ > 1,

satisfies the functional equation [10, p. 211](
2π√
D

)−s
Γ(s)ζK(s) =

(
2π√
D

)s−1
Γ(1− s)ζK(1− s). (9.1)

We note from (1.1) and (1.2) that

a(n) = b(n) = F (n), λn = µn = n/
√
D, δ = 1.

The function ζK(s) has an analytic continuation to the entire complex plane where it is analytic except
for a simple pole at s = 1. From [10, p. 212],

lim
s→1

(s− 1)ζK(s) =
2πh(K)R(K)

w(K)
√
D

, (9.2)
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where h(K), R(K), and w(K) denote, respectively, the class number of K, the regulator of K, and
the number of roots of unity in K. Furthermore, from (9.1) and (9.2),

ζK(0) = lim
s→0

√
D

2π
· 1

sΓ(s)
· sζK(1− s) =

√
D

2π
· −2πh(K)R(K)

w(K)
√
D

= −h(K)R(K)

w(K)
. (9.3)

For simplicity, set d =
√
D,h = h(K), R = R(K), and w = w(K). From (9.3) and (9.2),

Q0(x) =
1

2πi

∫
C

Γ(z)

Γ(z + 1)
dzζK(z)xzdz = −hR

w
+

2πhRx

w
. (9.4)

By Theorem 4.1 and (9.4),

1

2πr

∞∑
n=1

F (n)

(c2 + n/d)(ν−1)/2
Kν−1(4πr

√
c2 + n/d)

=
1

2πrνcν−2

∞∑
n=1

F (n)

(r2 + n/d)(2−ν)/2
K2−ν(4πc

√
r2 + n/d)

+

∫ ∞
0

(
−hR
w

+
2πhRx

w

)
(c2 + x)−ν/2Kν(4πr

√
c2 + x)dx. (9.5)

Let I1 and I2 denote, respectively, the two integrals on the right-hand side of (9.5). First, by Lemma
2.1, as we did in our calculations in (5.4) and (6.4),

I1 = −hR
w

∫ ∞
0

(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx = −hR

w

1

2πrcν−1
Kν−1(4πrc). (9.6)

Second, by Lemma 2.1 with the same calculation as in (6.5),

I2 =
2πhR

w

∫ ∞
0

x(c2 + x)−ν/2Kν(4πr
√
c2 + x)dx =

hR

2w πr2cν−2
Kν−2(4πrc). (9.7)

Suppose that we define

F (0) =
hR

w
. (9.8)

Then, substituting (9.6) and (9.7) into (9.5) and employing the definition (9.8) to identify (9.6) and
(9.7) as the terms for n = 0 on the left- and right-hand sides below, we find that

1

2πr

∞∑
n=0

F (n)

(c2 + n/d)(ν−1)/2
Kν−1(4πr

√
c2 + n/d)

=
1

2πrνcν−2

∞∑
n=0

F (n)

(r2 + n/d)(2−ν)/2
K2−ν(4πc

√
r2 + n/d). (9.9)

Lastly, multiplying both sides of (9.9) by 2πr and replacing ν by ν+ 1, we conclude with the identity

∞∑
n=0

F (n)

(c2 + n/d)ν/2
Kν(4πr

√
c2 + n/d) =

1

rνcν−1

∞∑
n=0

F (n)

(r2 + n/d)(1−ν)/2
K1−ν(4πc

√
r2 + n/d).

(9.10)
The identity (9.10) was first proved in 1934 by N. S. Koshliakov [18, p. 555, Equation (15)], who

used the Abel-Plana summation formula.
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10. THE SECOND PRIMARY THEOREM

Theorem 10.1. For Re(ν) > −1, ρ > −1, δ+ρ+Re(ν)+1 > δ∗a > 0, and Re(
√
α) > Re(

√
β) > 0,

1

Γ(ρ+ 1)

∞∑
n=1

a(n)

∫ ∞
λn

(t− λn)ρ
d

dt

{
Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))}

dt

= − 2

(2π)δ+2ρ

Γ(ν + δ + ρ+ 1)

Γ(ν + 2)

∞∑
n=1

b(n)√
4µn + α

√
4µn + β

(√
4µn + α−

√
4µn + β√

4µn + α+
√

4µn + β

)ν+1

×
(

1√
4µn + α

+
1√

4µn + β

)2δ+2ρ−2

2F1

[
ν − δ − ρ+ 2, 1− δ − ρ; ν + 2;

(√
4µn + α−

√
4µn + β√

4µn + α+
√

4µn + β

)2
]

− Qρ(0)

2(ν + 1)

(√
α−
√
β√

α+
√
β

)ν+1

−
∫ ∞
0

Q′ρ(t)Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))

dt,

(10.1)

where it is assumed that Qρ(0) exists, and where 2F1(a, b; c; z) denotes the ordinary hypergeometric
function.

Proof. Replace x by t in (1.4), multiply both sides of (1.4) by

Iν+1(α, β, t) :=
d

dt

{
Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))}

, (10.2)

and finally integrate with respect to t over (0,∞). We see that the left-hand side becomes

1

Γ(ρ+ 1)

∞∑
n=1

a(n)

∫ ∞
λn

(t− λn)ρIν+1(α, β, t)dt =
1

(2π)ρ
F1(α, β, ρ) + F2(α, β, ρ), (10.3)

where

F1(α, β, ρ) :=

∞∑
n=1

b(n)

∫ ∞
0

(
t

µn

)(δ+ρ)/2

Jδ+ρ
(
4π
√
µnt
)
Iν+1(α, β, t)dt

and

F2(α, β, ρ) :=

∫ ∞
0

Qρ(t)Iν+1(α, β, t)dt. (10.4)

First, examine F1(α, β, ρ). Integrating by parts while using (2.7) in the form
d

dt

(
t(δ+ρ)/2Jδ+ρ

(
a
√
t
))

=
a

2
t(δ+ρ−1)/2Jδ+ρ−1

(
a
√
t
)
,

we find that

F1(α, β, ρ)

=
∞∑
n=1

b(n)

µ
(δ+ρ)/2
n

∫ ∞
0

t(δ+ρ)/2Jδ+ρ
(
4π
√
µnt
) d

dt

{
Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))}

dt

=−
∞∑
n=1

b(n)

µ
(δ+ρ)/2
n

∫ ∞
0

d

dt

(
t(δ+ρ)/2Jδ+ρ

(
4π
√
µnt
))
Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))

dt

=− 2π
∞∑
n=1

b(n)

µ
(δ+ρ−1)/2
n

∫ ∞
0

t(δ+ρ−1)/2Jδ+ρ−1
(
4π
√
µnt
)
Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))

dt,

(10.5)
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where we have used the asymptotic formulas (2.10)–(2.12), the hypothesis δ+ρ > 0, and the existence
of

lim
t→0

Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))

,

which is explicitly calculated in (10.9) below.
We next employ an integral evaluation from [5, p. 315]. For Re(µ) > −1, Re(µ + ν) > −1, and

Re(π(z + w)) > |Re(π(z − w))|+ |Im(ξ)|,∫ ∞
0

xµ+1Jµ(ξx)Iν(π(z − w)x)Kν(π(z + w)x)dx

=
Γ(µ+ ν + 1)

Γ(ν + 1)

(ξ/2)µ√
ξ2 + 4π2z2

√
ξ2 + 4π2w2

(√
ξ2 + 4π2z2 −

√
ξ2 + 4π2w2√

ξ2 + 4π2z2 +
√
ξ2 + 4π2w2

)ν

×

(
1√

ξ2 + 4π2z2
+

1√
ξ2 + 4π2w2

)2µ

× 2F1

ν − µ,−µ; ν + 1;

(√
ξ2 + 4π2z2 −

√
ξ2 + 4π2w2√

ξ2 + 4π2z2 +
√
ξ2 + 4π2w2

)2
 . (10.6)

The Hankel inversion of the formula given above with the same kernel, that is, Jµ, was given by
Koshliakov [19, Equation (1)] and is a generalization of an integral evaluation by V. A. Fock and
V. Bursian [15, pp. 361–363] arising in their study on electromagnetism (see also [14, Equations (31),
(33)]).

In the integral on the extreme right-hand side of (10.5), make the change of variable t = x2 and
then apply (10.6) with ξ = 4π

√
µn, µ = δ + ρ − 1, z =

√
α, w =

√
β, and ν replaced by ν + 1.

Thus, for Re(ν + δ + ρ) > −1 and δ + ρ > 0, we find that

F1(α, β, ρ) = −2π

∞∑
n=1

b(n)

µ
(δ+ρ−1)/2
n

{
2Γ(ν + δ + ρ+ 1)

Γ(ν + 2)

(2π
√
µn)δ+ρ−1√

16π2µn + 4π2α
√

16π2µn + 4π2β

×
(√

4µn + α−
√

4µn + β√
4µn + α+

√
4µn + β

)ν+1
(

1√
16π2µn + 4π2α

+
1√

16π2µn + 4π2β

)2δ+2ρ−2

× 2F1

[
ν − δ − ρ+ 2,−δ − ρ+ 1, ν + 2,

(√
4µn + α−

√
4µn + β√

4µn + α+
√

4µn + β

)2
]}

= − 2

(2π)δ+ρ
Γ(ν + δ + ρ+ 1)

Γ(ν + 2)

∞∑
n=1

b(n)√
4µn + α

√
4µn + β

(√
4µn + α−

√
4µn + β√

4µn + α+
√

4µn + β

)ν+1

×
(

1√
4µn + α

+
1√

4µn + β

)2δ+2ρ−2

2F1

[
ν − δ − ρ+ 2,−δ − ρ+ 1; ν + 2;

(√
4µn + α−

√
4µn + β√

4µn + α+
√

4µn + β

)2
]
.

(10.7)

Second, from (10.4) and (10.2),

F2(α, β, ρ) =

∫ ∞
0

Qρ(t)
d

dt

{
Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))}

dt. (10.8)
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Now, by the definitions of Iν and Kν in (2.1) and (2.2), respectively, and by the use of the functional
equation and reflection formula for Γ(z), we find that

lim
t→0

Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))

= lim
t→0

π

2 sin(π(ν + 1))

(
1
2π
√
t(
√
α−
√
β)
)ν+1

Γ(ν + 2)

(
1
2π
√
t(
√
α+
√
β)
)−ν−1

Γ(−ν)

=
π

2 sin(π(ν + 1))(ν + 1)Γ(ν + 1)Γ(−ν)

(√
α−
√
β√

α+
√
β

)ν+1

=
1

2(ν + 1)

(√
α−
√
β√

α+
√
β

)ν+1

. (10.9)

Utilizing (10.9), (2.11), and (2.12) in performing an integration by parts in (10.8), we deduce that, for
Re(ν) > −1,

F2(α, β, ρ) =− 1

2(ν + 1)

(√
α−
√
β√

α+
√
β

)ν+1

Qρ(0)

−
∫ ∞
0

Q′ρ(t)Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))

dt, (10.10)

where, for Re(
√
α) > Re(

√
β), the boundary term at∞ vanishes, since by (2.11) and (2.12), respec-

tively, as t→∞,

Iν(π(
√
tα−

√
tβ) ∼ eπ(

√
tα−
√
tβ)

π
√

2(
√
tα−

√
tβ)

(10.11)

and

Kν(π(
√
tα+

√
tβ)) ∼ e−π(

√
tα+
√
tβ)√

2(
√
tα+

√
tβ)

. (10.12)

Finally, from (10.3), (10.7), and (10.10), we deduce that

1

Γ(ρ+ 1)

∞∑
n=1

a(n)

∫ ∞
λn

(t− λn)ρ
d

dt

{
Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))}

dt

=− 1

2(ν + 1)

(√
α−
√
β√

α+
√
β

)ν+1

Qρ(0)

− 2

(2π)δ+2ρ

Γ(ν + δ + ρ+ 1)

Γ(ν + 2)

∞∑
n=1

b(n)√
4µn + α

√
4µn + β

(√
4µn + α−

√
4µn + β√

4µn + α+
√

4µn + β

)ν+1

×
(

1√
4µn + α

+
1√

4µn + β

)2δ+2ρ−2

2F1

[
ν − δ − ρ+ 2, 1− δ − ρ; ν + 2;

(√
4µn + α−

√
4µn + β√

4µn + α+
√

4µn + β

)2
]

−
∫ ∞
0

Q′ρ(t)Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))

dt.

The proof of Theorem 10.1 is now complete. �
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11. THE SPECIAL CASE: ρ = 0

When ρ = 0 in Theorem 10.1, by (10.11) and (10.12), the left-hand side of (10.1) reduces to
∞∑
n=1

a(n)

∫ ∞
λn

d

dt

{
Iν+1

(
π
√
t
(√

α−
√
β
))

Kν+1

(
π
√
t
(√

α+
√
β
))}

dt

= −
∞∑
n=1

a(n)Iν+1

(
π
√
λn

(√
α−

√
β
))

Kν+1

(
π
√
λn

(√
α+

√
β
))

.

Hence, we have our second main theorem.

Theorem 11.1. Assume that Re(ν) > −1 and Re(
√
α) > Re(

√
β) > 0. Also assume that δ +

Re(ν) + 1 > σ∗a > 0. Suppose that the integral on the right side below converges absolutely and that
Q0(0) exists. Then,
∞∑
n=1

a(n)Iν+1

(
π
√
λn

(√
α−

√
β
))

Kν+1

(
π
√
λn

(√
α+

√
β
))

=
2(2π)−δΓ(ν + δ + 1)

Γ(ν + 2)

∞∑
n=1

b(n)√
4µn + α

√
4µn + β

(√
4µn + α−

√
4µn + β√

4µn + α+
√

4µn + β

)ν+1

×
(

1√
4µn + α

+
1√

4µn + β

)2δ−2

2F1

[
ν − δ + 2, 1− δ; ν + 2;

(√
4µn + α−

√
4µn + β√

4µn + α+
√

4µn + β

)2
]

+
Q0(0)

2(ν + 1)

(√
α−
√
β√

α+
√
β

)ν+1

+

∫ ∞
0

Q′0(x)Iν+1

(
π
√
x
(√

α−
√
β
))

Kν+1

(
π
√
x
(√

α+
√
β
))

dx.

(11.1)

Next, we show that Theorem 4.1 from [6] can be obtained as a special case of Theorem 11.1. To
that end, divide both sides of (11.1) by (

√
α−
√
β)ν+1, and let α→ β. In the course of doing so, we

need the limit

lim
α→β

Iν+1

(
π
√
λn
(√
α−
√
β
))
Kν+1

(
π
√
λn
(√
α+
√
β
))

(
√
α−
√
β)ν+1

=
(π

2

)ν+1
λ(ν+1)/2
n

Kν+1(2π
√
λnβ)

Γ(ν + 2)
,

(11.2)

where the definitions of Iν and Kν in (2.1) and (2.2), respectively, were used. On the left side
of (11.1), by (2.8) and (2.9), the series converges absolutely and uniformly with respect to α for
0 ≤
√
α < ε, for each fixed ε > 0. Thus, we can interchange summation and the limit as α → β on

the left-hand side of (11.1) to find that

lim
α→β

∞∑
n=1

a(n)Iν+1

(
π
√
λn

(√
α−

√
β
))

Kν+1

(
π
√
λn

(√
α+

√
β
))

=

(
π
2

)ν+1

Γ(ν + 2)

∞∑
n=1

a(n)λ(ν+1)/2
n Kν+1(2π

√
λnβ). (11.3)

We also take the limit as α → β inside the integral on the far right side of (11.1) by using a similar
argument with λn replaced by x in (11.2). Hence,

lim
α→β

∫ ∞
0

Q′0(x)Iν+1

(
π
√
x
(√

α−
√
β
))

Kν+1

(
π
√
x
(√

α+
√
β
))

dx
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=

(
π
2

)ν+1

Γ(ν + 2)

∫ ∞
0

Q′0(x)x(ν+1)/2Kν+1(2π
√
βx)dx. (11.4)

Next, recall that 2F1(a, b; c; 0) = 1. Thus, it remains to evaluate the limit

lim
α→β

(√
4µn + α+

√
4µn + β

)−ν−1
√

4µn + α
√

4µn + β

(√
4µn + α−

√
4µn + β√

α−
√
β

)ν+1(
1√

4µn + α
+

1√
4µn + β

)2δ−2

= lim
α→β

(√
4µn + α+

√
4µn + β

)−2ν−2
√

4µn + α
√

4µn + β
(
√
α+

√
β)ν+1

(
1√

4µn + α
+

1√
4µn + β

)2δ−2

=
22δ−2

(4µn + β)δ

( √
β

2(4µn + β)

)ν+1

. (11.5)

Bringing together (11.3)–(11.5), we conclude that(
π
2

)ν+1

Γ(ν + 2)

∞∑
n=1

a(n)λ(ν+1)/2
n Kν+1(2π

√
λnβ) =

2δ−ν−2π−δβ(ν+1)/2Γ(ν + δ + 1)

Γ(ν + 2)

∞∑
n=1

b(n)

(4µn + β)δ+ν+1

+

(
π
2

)ν+1

Γ(ν + 2)

∫ ∞
0

Q′0(x)x(ν+1)/2Kν+1(2π
√
βx)dx. (11.6)

Let s = 2π
√
β. Multiplying both sides of (11.6) by 2/s and by

(
π
2

)−ν−1
Γ(ν+2) and then integrating

by parts with the aid of (2.9) and (2.12), we conclude that

2

s

∞∑
n=1

a(n)λ(ν+1)/2
n Kν+1(s

√
λn) =23δ+ν+1πδsνΓ(ν + δ + 1)

∞∑
n=1

b(n)

(16π2µn + s2)δ+ν+1

+
2

s

∫ ∞
0

Q′0(x)x(ν+1)/2Kν+1(s
√
x)dx

=23δ+ν+1πδsνΓ(ν + δ + 1)

∞∑
n=1

b(n)

(16π2µn + s2)δ+ν+1

+

∫ ∞
0

Q0(x)xν/2Kν(s
√
x)dx.

We state this last result as a corollary.

Corollary 11.2. For Re(ν) > −1, δ + Re(ν) + 1 > σ∗a, and Re(s) > 0,

2

s

∞∑
n=1

a(n)λ(ν+1)/2
n Kν+1(s

√
λn) =23δ+ν+1πδsνΓ(ν + δ + 1)

∞∑
n=1

b(n)

(16π2µn + s2)δ+ν+1

+

∫ ∞
0

Q0(x)xν/2Kν(s
√
x)dx,

where it is assumed that the integral converges absolutely.

Corollary 11.2 was also established in [6, Theorem 4.1].

12. EXAMPLE: rk(n)

Recall (5.1)–(5.2). Applying Theorem 11.1 with α and β replaced by 2α and 2β, respectively, and
ν replaced by ν − 1, for Re(ν) > 0, we find that

∞∑
n=1

rk(n)Iν

(
π
√
n
(√

α−
√
β
))

Kν

(
π
√
n
(√

α+
√
β
))

=
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=
Γ(k/2 + ν)

πk/22k−1Γ(ν + 1)

∞∑
n=1

b(n)√
n+ α

√
n+ β

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)ν
×
(

1√
n+ α

+
1√
n+ β

)k−2
2F1

[
ν − k/2 + 1, 1− k/2; ν + 1;

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)2
]

− 1

2ν

(√
α−
√
β√

α+
√
β

)ν
+

∫ ∞
0

Q′0(x)Iν

(
π
√

2x
(√

α−
√
β
))

Kν

(
π
√

2x
(√

α+
√
β
))

dx.

(12.1)

To evaluate this integral, we use an integral in [16, p. 717, Equation 6.576, no. 5], namely, for a > b,
Re(2ν) > λ− 1, and Re(λ) < 1,∫ ∞

0
x−λKν(ax)Iν(bx)dx =

bνΓ
(
1−λ+2ν

2

)
Γ
(
1−λ
2

)
2λ+1Γ(ν + 1)a1−λ+ν

2F1

(
1− λ+ 2ν

2
,
1− λ

2
; ν + 1;

b2

a2

)
.

(12.2)

Using (5.2) and (12.2), wherein we make the change of variable t =
√

2x and note that λ = 1 − k,
a = π(

√
α+
√
b), and b = π(

√
α−
√
b), we deduce that∫ ∞

0
Q′0(x)Iν

(
π
√

2x
(√

α−
√
β
))

Kν

(
π
√

2x
(√

α+
√
β
))

dx

=
k(2π)k/2

2Γ(1 + k/2)

∫ ∞
0

xk/2−1Iν

(
π
√

2x
(√

α−
√
β
))

Kν

(
π
√

2x
(√

α+
√
β
))

dx

=
k2k/2−1πk/2

2k/2−1Γ(1 + k/2)

∫ ∞
0

tk−1Iν

(
πt
(√

α−
√
β
))

Kν

(
πt
(√

α+
√
β
))

dt

=
kπk/2

Γ(1 + k/2)

(
π
(√
α−
√
β
))ν

Γ
(
k
2 + ν

)
Γ
(
k
2

)
22−kΓ(ν + 1)

(
π
(√
α+
√
β
))ν+k · 2F1

(
k

2
+ ν,

k

2
; ν + 1;

(√
α−
√
β√

α+
√
β

)2
)

=
2k−1Γ

(
k
2 + ν

)
πk/2Γ(ν + 1)

(√
α−
√
β√

α+
√
β

)ν (
1√

α+
√
β

)k
2F1

(
k

2
+ ν,

k

2
; ν + 1;

(√
α−
√
β√

α+
√
β

)2
)
.

(12.3)

Invoking Euler’s formula [1, p. 68, Theorem 2.2.5],

2F1 (a, b; c;x) = (1− x)c−a−b2F1 (c− a, c− b; c;x) .

in (12.3), we find that∫ ∞
0

Q′0(x)Iν

(
π
√

2x
(√

α−
√
β
))

Kν

(
π
√

2x
(√

α+
√
β
))

dx

=
2k−1Γ

(
k
2 + ν

)
πk/2Γ(ν + 1)

(√
α−
√
β√

α+
√
β

)ν (
1√

α+
√
β

)k
2F1

(
k

2
+ ν,

k

2
; ν + 1;

(√
α−
√
β√

α+
√
β

)2
)

=
21−kΓ

(
k
2 + ν

)
(
√
αβ)1−k

πk/2Γ(ν + 1)

(√
α−
√
β√

α+
√
β

)ν (
1√

α+
√
β

)2−k

2F1

(
1− k

2
+ ν, 1− k

2
; ν + 1;

(√
α−
√
β√

α+
√
β

)2
)

=
Γ
(
k
2 + ν

)
πk/22k−1Γ(ν + 1)

(√
α−
√
β√

α+
√
β

)ν (
1√
α

+
1√
β

)k−2 1√
αβ
· 2F1

(
1− k

2
+ ν, 1− k

2
; ν + 1;

(√
α−
√
β√

α+
√
β

)2
)
.

(12.4)



ARITHMETICAL IDENTITIES 18

Now put (12.4) in (12.1). To obtain the final equality below, we define rk(0) = 1. To that end,
∞∑
n=1

rk(n)Iν

(
π
√
n
(√

α−
√
β
))

Kν

(
π
√
n
(√

α+
√
β
))

=
Γ(k/2 + ν)

πk/22k−1Γ(ν + 1)

∞∑
n=1

rk(n)√
n+ α

√
n+ β

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)ν
×
(

1√
n+ α

+
1√
n+ β

)k−2
2F1

[
ν − k/2 + 1, 1− k/2; ν + 1;

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)2
]

− 1

2ν

(√
α−
√
β√

α+
√
β

)ν
+

Γ
(
k
2 + ν

)
πk/22k−1Γ(ν + 1)

(√
α−
√
β√

α+
√
β

)ν (
1√
α

+
1√
β

)k−2 1√
αβ

× 2F1

(
1− k

2
+ ν, 1− k

2
; ν + 1;

(√
α−
√
β√

α+
√
β

)2
)

= − 1

2ν

(√
α−
√
β√

α+
√
β

)ν
+

Γ(k/2 + ν)

πk/22k−1Γ(ν + 1)

∞∑
n=0

rk(n)√
n+ α

√
n+ β

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)ν
×
(

1√
n+ α

+
1√
n+ β

)k−2
2F1

(
1− k

2
+ ν, 1− k

2
; ν + 1;

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)2
)
.

(12.5)

By a different method, the identity (12.5) was also established in [5, Theorem 1.6].

13. EXAMPLE: RAMANUJAN’S TAU-FUNCTION τ(n)

Let τ(n) denote Ramanujan’s famous arithmetical tau-function. Recall the associated facts and
parameters given in (7.1)–(7.3). Then, from Theorem 11.1, for Re(ν) > −13/2,

∞∑
n=1

τ(n)Iν+1

(
π
√
n
(√

α−
√
β
))

Kν+1

(
π
√
n
(√

α+
√
β
))

=
2(2π)−12Γ(13 + ν)

Γ(ν + 2)

∞∑
n=1

τ(n)√
4n+ α

√
4n+ β

(√
4n+ α−

√
4n+ β√

4n+ α+
√

4n+ β

)ν+1

×
(

1√
4n+ α

+
1√

4n+ β

)22

2F1

[
ν − 10,−11; ν + 2;

(√
4n+ α−

√
4n+ β√

4n+ α+
√

4n+ β

)2
]
.

(13.1)

Letting ν = −1
2 in (13.1) and using (2.3) and (2.4), we are led to

1

π
√
α− β

∞∑
n=1

τ(n)√
n
e−π
√
n(
√
α+
√
β) sinh(π

√
n(
√
α−

√
β))

=
2(2π)−12Γ(25/2)

Γ(3/2)

∞∑
n=1

τ(n)√
4n+ α

√
4n+ β

(√
4n+ α−

√
4n+ β√

4n+ α+
√

4n+ β

)1/2

×
(

1√
4n+ α

+
1√

4n+ β

)22

2F1

[
−21/2,−11; 3/2;

(√
4n+ α−

√
4n+ β√

4n+ α+
√

4n+ β

)2
]
. (13.2)
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Employing [21, p. 461, no. 107]

2F1 (a, a+ 1/2; 3/2; z) =
1

2(2a− 1)
√
z

{
(1−

√
z)1−2a − (1 +

√
z)1−2a

}
,

with a = −11, we find that

2F1 (−21/2,−11; 3/2; z) = − 1

46
√
z

{
(1−

√
z)23 − (1 +

√
z)23

}
. (13.3)

With (13.3) in (13.2) and with considerable simplification, we deduce that
∞∑
n=1

τ(n)√
n
e−π
√
n(
√
α+
√
β) sinh(π

√
n(
√
α−

√
β))

= 2
3 · 5 · · · 21

π11

∞∑
n=1

τ(n)

(
1

(4n+ β)23/2
− 1

(4n+ α)23/2

)
. (13.4)

If we differentiate both sides of (13.4) with respect to α, let β = α, and simplify, we find that
∞∑
n=1

τ(n)e−2π
√
nα = 2

3 · 5 · · · 21 · 23

π12

∞∑
n=1

√
α τ(n)

(4n+ α)25/2
,

which, with α = s2/(4π2), gives [6, Equation (7.4)]
∞∑
n=1

τ(n)e−s
√
n = 236π23/2Γ

(
25

2

) ∞∑
n=1

sτ(n)

(s2 + 16π2n)25/2
.

14. EXAMPLE: PRIMITIVE DIRICHLET CHARACTERS

Let χ denote a primitive character modulo q. Depending on the parity of χ, we separate two cases.
First, consider odd χ. Recall that the functional equations for the associated Dirichlet L-series is
given in (8.1), the Gauss sum τ(χ) is defined in (8.2), and the relevant parameters are given in (8.3).
Consequently, by Theorem 11.1 and the fact that Q0(x) ≡ 0, for Re(ν) > −5/2,
∞∑
n=1

nχ(n)Iν+1

(
πn√
2q

(√
α−

√
β
))

Kν+1

(
πn√
2q

(√
α+

√
β
))

=
−iπ−3/2Γ(ν + 5/2)√

2qΓ(ν + 2)
τ(χ)

∞∑
n=1

nχ̄(n)√(
2n2

q + α
)√(

2n2

q + β
)

√

2n2

q + α−
√

2n2

q + β√
2n2

q + α+
√

2n2

q + β

ν+1

×

 1√(
2n2

q + α
) +

1√(
2n2

q + β
)
 2F1

ν + 1/2,−1/2; ν + 2;


√

2n2

q + α−
√

2n2

q + β√
2n2

q + α+
√

2n2

q + β

2


=
−iπ−3/2Γ(ν + 5/2)√

2qΓ(ν + 2)
τ(χ)

∞∑
n=1

nχ̄(n)(
2n2

q + α
)(

2n2

q + β
)
(√

2n2

q + α−
√

2n2

q + β
)ν+1

(√
2n2

q + α+
√

2n2

q + β
)ν

× 2F1

ν + 1/2,−1/2; ν + 2;


√

2n2

q + α−
√

2n2

q + β√
2n2

q + α+
√

2n2

q + β

2
 . (14.1)
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Letting ν = −1/2 in (14.1), using (2.3) and (2.4), appealing to the trivial fact,

2F1 (0,−1/2; 3/2;x) = 1,

and multiplying both sides by π
√
α− β/

√
2q, we deduce that

∞∑
n=1

χ(n)e
− πn√

2q (
√
α+
√
β) sinh

(
πn√
2q

(√
α−

√
β
))

=
−iπ−1/2Γ(2)

√
α− β

2qΓ(3/2)
τ(χ)

∞∑
n=1

nχ̄(n)(
2n2

q + α
)(

2n2

q + β
)
(√

2n2

q + α−
√

2n2

q + β
)1/2

(√
2n2

q + α+
√

2n2

q + β
)−1/2

=
−iqτ(χ) (α− β)

π

∞∑
n=1

nχ̄(n)

(2n2 + αq) (2n2 + βq)
. (14.2)

Next, let χ be even. Recall that the functional equation and relevant parameters are given in (8.4)
and (8.5), respectively. Therefore, by Theorem 11.1, for Re(ν) > −3/2,

∞∑
n=1

χ(n)Iν+1

(
πn√
2q

(√
α−

√
β
))

Kν+1

(
πn√
2q

(√
α+

√
β
))

=

=

√
2Γ(ν + 3/2)
√
πqΓ(ν + 2)

τ(χ)

∞∑
n=1

χ̄(n)

(√
2n2

q + α−
√

2n2

q + β
)ν+1

(√
2n2

q + α+
√

2n2

q + β
)ν+2

× 2F1

ν + 3/2, 1/2; ν + 2;


√

2n2

q + α−
√

2n2

q + β√
2n2

q + α+
√

2n2

q + β

2
 . (14.3)

Letting ν = −1/2 in (14.3) and using the evaluation [16, p. 1067, Formula 9.121, no. 7]

2F1 (1, 1/2; 3/2;x) =
1

2
√
x

log

(
1 +
√
x

1−
√
x

)
, (14.4)

we obtain, after considerable simplification,
∞∑
n=1

χ(n)

n
e
− πn√

2q (
√
α+
√
β) sinh

(
πn√
2q

(√
α−

√
β
))

=
τ(χ)

2q

∞∑
n=1

χ̄(n) log

(
2n2 + αq

2n2 + βq

)
. (14.5)

Equations (14.1), (14.2), (14.3), and (14.5) are new.

15. A GENERALIZATION OF A THEOREM OF G. N. WATSON

The functional equation of the Riemann zeta function is given by [13, p. 14]

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1− s)/2)ζ(1− s).

Hence, replacing s by 2s, we see that it can be transformed into the form (1.2) with δ = 1/2,
a(n) = b(n) = 1, and λn = µn = n2/2. Note that in (1.5),

Q0(x) = −1

2
+
√

2x.
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Employing (12.2) with x replaced by
√
x, and then with ν replaced by ν + 1, and letting λ = 0,

a = π
(√
α+
√
β
)
, and b = π

(√
α−
√
β
)
, we find that Theorem 11.1 yields, for Re(ν) > −1/2,

1

4(ν + 1)

(√
α−
√
β√

α+
√
β

)ν+1

+
∞∑
n=1

Iν+1

(
πn√

2

(√
α−

√
β
))

Kν+1

(
πn√

2

(√
α+

√
β
))

=
Γ(ν + 3/2)√
2πΓ(ν + 2)

(√
α−
√
β
)ν+1(√

α+
√
β
)ν+2 · 2F1

(
ν + 3/2, 1/2; ν + 2;

(√
α−
√
β√

α+
√
β

)2
)

+

√
2Γ(ν + 3/2)√
πΓ(ν + 2)

∞∑
n=1

(√
2n2 + α−

√
2n2 + β

)ν+1

(√
2n2 + α+

√
2n2 + β

)ν+2 · 2F1

ν + 3/2, 1/2; ν + 2;

(√
2n2 + α−

√
2n2 + β

√
2n2 + α+

√
2n2 + β

)2
 .

Replacing α by 2α and β by 2β, we find that

1

4(ν + 1)

(√
α−
√
β√

α+
√
β

)ν+1

+
∞∑
n=1

Iν+1

(
πn
(√

α−
√
β
))

Kν+1

(
πn
(√

α+
√
β
))

=
Γ(ν + 3/2)

2
√

2πΓ(ν + 2)

(√
α−
√
β
)ν+1(√

α+
√
β
)ν+2 · 2F1

(
ν + 3/2, 1/2; ν + 2;

(√
α−
√
β√

α+
√
β

)2
)

+
Γ(ν + 3/2)√
πΓ(ν + 2)

∞∑
n=1

(√
n2 + α−

√
n2 + β

)ν+1

(√
n2 + α+

√
n2 + β

)ν+2 · 2F1

ν + 3/2, 1/2; ν + 2;

(√
n2 + α−

√
n2 + β

√
n2 + α+

√
n2 + β

)2
 .

(15.1)

Dividing both sides by (
√
α−
√
b)ν+1, letting α→ β, multiplying both sides of the resulting identity

by 2(ν + 1)Γ(ν + 1)(2
√
β)ν+1, replacing ν by ν − 1 and β by z2/(4π2), and rearranging, for

Re(z) > 0, we recover an important result of Watson [23, Equation (4)]:

1

2
Γ(ν) + 2

∞∑
n=1

(
1

2
nz

)ν
Kν(nz) = Γ

(
1

2

)
Γ

(
ν +

1

2

)
z2ν

{
1

z2ν+1
+ 2

∞∑
n=1

1

(z2 + 4n2π2)ν+
1
2

}
.

We now provide a generalization of yet another identity of Watson [23, Equation (6)].

Corollary 15.1. Let K(k) denote the complete elliptic integral of the first kind defined by

K(k) :=

∫ π/2

0

dθ√
1− k2 sin2(θ)

, 0 ≤ |k| < 1. (15.2)

For Re(
√
α) > Re(

√
β) > 0,

∞∑
n=1

I0

(
πn
(√

α−
√
β
))

K0

(
πn
(√

α+
√
β
))

=
1

π
(√
α+
√
β
)K ((√α−√β√

α+
√
β

)2
)

+
γ + log

(√
α+
√
β
)
− log 4

2

+

∞∑
n=1

 2

π
(√

n2 + α+
√
n2 + β

)K
(√n2 + α−

√
n2 + β

√
n2 + α+

√
n2 + β

)2
− 1

2n

 . (15.3)
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Proof. Corollary 15.1 follows by analytically continuing (15.1) to the region Re(ν) > −3/2 and then
letting ν → −1. Since the argument is similar to that given in Section 5 of [5], we discuss it only
briefly here.

Let g(n) denote the nth summand in the series on the right-hand side of (15.1). It is not difficult to
show that, as n→∞,

g(n) ∼ (α− β)ν+1

(2n)2ν+3
.

Therefore, for Re(ν) > −1,
∞∑
n=1

g(n) =

∞∑
n=1

(
g(n)− (α− β)ν+1

(2n)2ν+3

)
+

(α− β)ν+1

22ν+3
ζ(2ν + 3).

Substituting this in (15.1) and rearranging, we find that, for Re(ν) > −1,
∞∑
n=1

Iν+1

(
πn
(√

α−
√
β
))

Kν+1

(
πn
(√

α+
√
β
))

=
Γ(ν + 3/2)

2
√

2πΓ(ν + 2)

(√
α−
√
β
)ν+1(√

α+
√
β
)ν+2 2F1

(
ν + 3/2, 1/2; ν + 2;

(√
α−
√
β√

α+
√
β

)2
)

+

√
2Γ(ν + 3/2)√
πΓ(ν + 2)

∞∑
n=1

(
g(n)− (α− β)ν+1

(2n)2ν+3

)

+ (
√
α−

√
β)ν+1

(
Γ(ν + 3/2)√
πΓ(ν + 2)

(
√
α+
√
β)ν+1

22ν+3
ζ(2ν + 3)− 1

4(ν + 1)
(√
α+
√
β
)ν+1

)
.

(15.4)

Observe that both sides of (15.4) are analytic in Re(ν) > −2 with a removable singularity at
ν = −1, because

lim
ν→−1

(
Γ(ν + 3/2)√
πΓ(ν + 2)

(
√
α+
√
β)ν+1

22ν+3
ζ(2ν + 3)− 1

4(ν + 1)
(√
α+
√
β
)ν+1

)

=
γ

2
+

1

2
log(
√
α+

√
β)− log 2, (15.5)

which can be seen from expanding each side of (15.5) in Taylor series about ν = −1. Thus, letting
ν → −1 on both sides of (15.4) and using (15.5), we arrive at (15.3), where we used the identity [16,
p. 908, Formula 8.113, no. 2]

2F1

(
1

2
,
1

2
; 1;x2

)
=

2

π
K(x)

where K(x) is defined in (15.2). �

As previously indicated, the identity (15.3) is a generalization of the following identity of Watson
[23].

Corollary 15.2. For Re(β) > 0,

2

∞∑
n=1

K0(nβ) = π

{
1

β
+ 2

∞∑
n=1

(
1√

β2 + 4π2n2
− 1

2nπ

)}
+ γ + log

(
β

2

)
− log 2π. (15.6)
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Proof. If we let α→ β in (15.3) and use the trivial facts

lim
α→β+

I0(π(
√
nα−

√
nβ))K0(π(

√
nα+

√
nβ)) = K0(2π

√
nβ)

and K(0) = 1
2π, we obtain (15.6). �

Remark 15.3. Each of the identities (13.1), (14.1), and (14.3) can be analytically continued in the
same manner as that for (15.1) for Corollary 15.1.

Letting ν = −1/2 in (15.1), and using (2.3), (2.4), and (14.4), we obtain

1

2

(√
α−
√
β√

α+
√
β

)1/2

+

√
2

π
√
α− β

∞∑
n=1

e
− πn√

2
(
√
α+
√
β)

n
sinh

(
πn√

2

(√
α−

√
β
))

=
1

2
√

2π
√
α− β

log

(
α

β

)
+

1√
2π
√
α− β

∞∑
n=1

log

(
2n2 + α

2n2 + β

)
. (15.7)

A rearrangement of (15.7) leads to

π

2
(
√
α−

√
β) +

√
2

∞∑
n=1

e
− πn√

2
(
√
α+
√
β)

n
sinh

(
πn√

2

(√
α−

√
β
))

=
1

2
√

2
log

(
α

β

)
+

1√
2

∞∑
n=1

log

(
2n2 + α

2n2 + β

)
. (15.8)

Using the elementary Maclaurin series

− log(1− x) =
∞∑
k=1

xk

k
, |x| < 1,

in (15.8), we conclude that

π

2
(
√
α−

√
β) +

1√
2

log

(
1− e−π

√
2α

1− e−π
√
2β

)
=

1

2
√

2
log

(
α

β

)
+

1√
2

∞∑
n=1

log

(
2n2 + α

2n2 + β

)
.
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