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Abstract. General summation formulas have been proved to be very useful in analysis, number theory

and other branches of mathematics. The Lipschitz summation formula is one of them. In this paper,

we give its application by providing a new transformation formula which generalizes that of Ramanujan.

Ramanujan’s result, in turn, is a generalization of the modular transformation of Eisenstein series Ek(z)

on SL2(Z), where z → −1/z, z ∈ H. The proof of our result involves delicate analysis containing Cauchy

Principal Value integrals. A simpler proof of a recent result of ours with Kesarwani giving a non-modular

transformation for
∑∞
n=1 σ2m(n)e−ny is also derived using the Lipschitz summation formula. In the pursuit

of obtaining this transformation, we naturally encounter a new generalization of Raabe’s cosine transform

whose several properties are also demonstrated. As a corollary of this result, we get a generalization of

Wright’s asymptotic estimate for the generating function of the number of plane partitions of a positive

integer n.
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1. Introduction

Let α, β > 0 with αβ = π2 and m ∈ Z\{0}. Ramanujan’s famous formula for ζ(2m + 1) is given by1

[42, p. 173, Ch. 14, Entry 21(i)], [41, p. 319-320, formula (28)], [6, p. 275-276]

α−m

{
1

2
ζ(2m+ 1) +

∞∑
n=1

n−2m−1

e2nα − 1

}
= (−β)m

{
1

2
ζ(2m+ 1) +

∞∑
n=1

n−2m−1

e2nβ − 1

}
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1Ramanujan’s formula is actually valid for any complex α, β such that Re(α) > 0,Re(β) > 0 and αβ = π2.
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− 22m
m∑
k=0

(−1)kB2kB2m+2−2k

(2k)!(2m+ 2− 2k)!
αm+1−kβk, (1.1)

where, as customary, ζ(s) denotes the Riemann zeta function and Bn denotes the nth Bernoulli number.

The above formula has received enormous attention from several mathematicians over the years and has

been rediscovered many times, for example, see [23, Theorem 9] and [33]. It is an impressive result,

for, it encapsulates not only the transformation formulas of the Eisenstein series on SL2(Z) and the

corresponding ones for their Eichler integrals but also the transformation property of the logarithm of

the Dedekind eta function. For a delightful historical account on it, we refer the reader to the excellent

survey [8]. There are several generalizations of (1.1) in the literature, for example, [11], [12], [14], [16], [17],

[29] and [24]. In his second notebook [42][p. 269], Ramanujan himself provided the following generalization

of (1.1).

Let α and β be two positive real numbers such that αβ = 4π2. Then for Re(s) > 2, we have

αs/2

{
Γ(s)ζ(s)

(2π)s
+ cos

(πs
2

) ∞∑
n=1

ns−1

enα − 1

}
= βs/2

{
cos
(πs

2

) Γ(s)ζ(s)

(2π)s
+

∞∑
n=1

ns−1

enβ − 1

− sin
(πs

2

)
PV

∫ ∞
0

xs−1

e2πx − 1
cot

(
1

2
βx

)
dx

}
, (1.2)

where PV denotes the principal value integral. The above formula has been proved in [7, p. 416]. Also

see [9, Section 9] for a recent generalization of (1.2).

Unfortunately, Ramanujan’s formula (1.2) has not received as much attention as (1.1). But it is also a

noteworthy result because it not only gives the transformation formula for the Eisenstein series on SL2(Z)

in the special case s = 2m,m ∈ N,m > 1, but also reveals the obstruction to modularity for other values

of s, which is evident due to the appearance of the integral on its right-hand side. Note that the last

term involving the integral disappears for s = 2m.

One of the goals of this paper is to derive a generalization of (1.2):

Theorem 1.1. Let Re(α),Re(β) > 0 such that αβ = 4π2. Let 0 ≤ a < 1. Then, for Re(s) > 2, the

following transformation holds

αs/2

{
Γ(s)ζ(s)

(2π)s
+

1

2

∞∑
n=1

ns−1

(
eπis/2

enα−2πia − 1
+

e−πis/2

enα+2πia − 1

)}

= βs/2

{
Γ(s)

(2π)s

∞∑
k=1

cos
(
πs
2 + 2πak

)
ks

+

∞∑
n=1

(n− a)s−1

e(n−a)β − 1

− 1

2i
PV

∫ ∞
0

xs−1

(
eπis/2

e2πx−2πia − 1
− e−πis/2

e2πx+2πia − 1

)
cot

(
1

2
βx

)
dx

}
. (1.3)

The above theorem reduces to Ramanujan’s formula (1.2) for a = 0. Also for s = 2m,m ∈ N and

a = 0, it gives (1.1).

A special case of Theorem 1.1 is the new transformation given below.
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Corollary 1.2. Let m ∈ N. For Re(α),Re(β) > 0 such that αβ = 4π2, we have

αm
∞∑
n=1

n2m−1

enα + 1
+ (−β)m

∞∑
n=1

(n− 1/2)2m−1

e(n−1/2)β + 1
= −

{
αm − (21−2m − 1)(−β)m

} B2m

4m
. (1.4)

Equation (1.4) is a “hybrid” analogue of the following transformation formula for the Eisenstein series

over SL2(Z) in that the role of n in the first series is played by n− 1/2 in the second.

αm
∞∑
n=1

n2m−1

enα − 1
− (−β)m

∞∑
n=1

n2m−1

enβ − 1
= {αm − (−β)m} B2m

4m
.

As an application of Corollary 1.2, we obtain closed-form evaluations of two infinite series, which, to the

best of our knowledge, are new.

Corollary 1.3. For any odd positive integer m greater than 1,
∞∑
n=1

n2m−1

e2nπ + 1
= (1− 22−2m)

B2m

4m
,

and

∞∑
n=1

n2m−1

e4nπ − 1
= 2−1−2mB2m

m
.

First, let s = 2m and a = 1/4 in (1.3), then let s = 2m and a = 3/4 in (1.3), and add the corresponding

sides of the resulting identities. This leads to the transformation between just the infinite series which

we record below in (1.5). Similarly subtracting the corresponding sides of the two resulting identities

expresses a principal value integral in terms of a Lambert series, which is given in (1.6).

Corollary 1.4. Let Re(α),Re(β) > 0 such that αβ = 4π2. For m ∈ N,m > 1,

αm24m−1

{
Γ(2m)ζ(2m)

(2π)2m
+ (−1)m+1

∞∑
n=1

n2m−1

e2nα + 1

}

= βm

{
(−1)m+1 Γ(2m)ζ(2m)(22m−1 − 1)

(2π)2m
+
∞∑
n=1

(4n− 1)2m−1

e(4n−1)β/4 − 1
+
∞∑
n=1

(4n− 3)2m−1

e(4n−3)β/4 − 1

}
, (1.5)

and,

PV

∫ ∞
0

sech(x) cot (2βx)x2m−1dx = (−1)m+141−2m
∞∑
n=1

χ(n)n2m−1

enβ − 1
, (1.6)

where χ(n) is a Dirichlet character modulo 4 given by

χ(n) =


1, if n ≡ 1 (mod 4),

−1, if n ≡ 3 (mod 4),

0, if n ≡ 0, 2 (mod 4).

(1.7)

We note that the series on the right-hand side of (1.6) cannot be treated using [11, Theorem 1].

We now transition towards to the second goal of our paper. Recently, the current authors, along with

Kesarwani [16], extensively studied a more general Lambert series

∞∑
n=1

ns

eny − 1
=
∞∑
n=1

σs(n)e−ny (s ∈ C, Re(y) > 0) (1.8)
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than the ones appearing in (1.1). Here σs(n) :=
∑

d|n d
s is the generalized divisor function. Among other

things, they obtained [16, Theorem 2.5] an explicit transformation for any Re(s) > −1 and Re(y) > 0,

which is given next.

∞∑
n=1

σs(n)e−ny +
1

2

((
2π

y

)1+s

cosec
(πs

2

)
+ 1

)
ζ(−s)− 1

y
ζ(1− s)

=
2π

y sin
(
πs
2

) ∞∑
n=1

σs(n)

(
(2πn)−s

Γ(1− s)1F2

(
1;

1− s
2

, 1− s

2
;
4π4n2

y2

)
−
(

2π

y

)s
cosh

(
4π2n

y

))
, (1.9)

where 1F2(a; b, c; z) :=
∑∞

n=0
(a)nzn

(b)n(c)nn! , z ∈ C, (a)n = Γ(a+n)
Γ(a) is the generalized hypergeometric function.

The explicit transformations of the type (1.9) are always desirable due to their possible applications in

analytic number theory, especially in the theory of zeta functions. See the recent paper [3] for a beautiful

application of (1.9) in the theory of ζ(s) by applying the operator d
ds

∣∣
s=0

on both sides, thereby resulting

in a transformation of the Lambert series of the logarithm, that is,
∞∑
n=1

log(n)

eny − 1
.

The authors of [16, Theorem 2.5] also analytically continued (1.9) to Re(s) > −2m− 3, m ∈ N ∪ {0}.
Then, as a special case, they not only obtained Ramanujan’s formula (1.1) and the transformation formula

of the logarithm of the Dedekind eta function but also new transformations when s is an even integer.

For example, they established an explicit result [16, Theorem 2.11] for (1.8) when s = 2m, m > 0. We

record it in the following theorem. It comprises two special functions Shi(z) and Chi(z), known as the

hyperbolic sine and cosine integrals, respectively defined by [36, p. 150, Equation (6.2.15), (6.2.16)]

Shi(z) :=

∫ z

0

sinh(t)

t
dt, Chi(z) := γ + log(z) +

∫ z

0

cosh(t)− 1

t
dt, (1.10)

where γ is Euler’s constant.

Theorem 1.5. Let m ∈ N. Then for Re(y) > 0, we have

∞∑
n=1

σ2m(n)e−ny − (2m)!

y2m+1
ζ(2m+ 1) +

B2m

2my
= (−1)m

2

π

(
2π

y

)2m+1 ∞∑
n=1

σ2m(n)

{
sinh

(
4π2n

y

)
Shi

(
4π2n

y

)

− cosh

(
4π2n

y

)
Chi

(
4π2n

y

)
+

m∑
j=1

(2j − 1)!

(
4π2n

y

)−2j
}
.

(1.11)

The modular transformation for
∑∞

n=1 σ2m+1(n)e−ny transforms it into

∞∑
n=1

σ2m+1(n)e−4π2n/y = −
∞∑
n=1

σ2m+1(n)

{
sinh

(
4π2n

y

)
− cosh

(
4π2n

y

)}
. (1.12)

In view of this, it is important to note that while going from s = 2m+ 1 to s = 2m in
∑∞

n=1 σs(n)e−ny,

the expression sinh
(

4π2n
y

)
− cosh

(
4π2n
y

)
in (1.12) is to be replaced by the corresponding one on the

right-hand side of (1.11). (Note that the finite sum
∑m

j=1(2j − 1)!
(

4π2n
y

)−2j
in the summand of the

series on the right-hand side of (1.12) is essential for its convergence; for details, see the proof of Theorem

1.5 in Section 4.)

Theorem 1.5 readily gives the following asymptotic estimate for
∑∞

n=1 σ2m(n)e−ny:



LIPSCHITZ SUMMATION FORMULA AND RAABE’S COSINE TRANSFORM 5

Corollary 1.6. Let m ∈ N. As y → 0 in | arg(y)| < π/2,

∞∑
n=1

σ2m(n)e−ny =
(2m)!

y2m+1
ζ(2m− 1)− B2m

2my
− 2

π(2π)2m−1

r+1∑
j=1

Γ(2m+ 2j)ζ(2m+ 2j)ζ(2j)

(2π)4j
y2j−1 +O

(
y2r+3

)
.

(1.13)

The case m = 1 of the series on the left-hand side of (1.11) (or (1.6)) has the following interesting

connection with the generation function for plane partitions studied by MacMahon [1, p. 184]:

∞∑
n=1

σ2(n)e−ny = x
d

dx
log(F (x)), (1.14)

where F (x) :=
∞∏
n=1

1

(1− xn)n
, with y = log(1/x), where |x| < 1. In his work on finding the asymptotic

estimate of q(n), the number of plane partitions of a positive integer n, Wright [46, Lemma 1] first found

the asymptotic estimate of F (x) as x → 1−. His result on F (x) follows readily from our Corollary 1.6

and is rephrased in the following corollary.

Corollary 1.7. As x→ 1−, we have

F (x) = ec(log x)1/12 exp

(
ζ(3)

log2 x

)
exp

r+1∑
j=1

δj(log x)2j

(1 +Or
(
(log x)2r+4

))
, (1.15)

where, c is a constant, and

δj :=
Γ(2j + 2)ζ(2j + 2)ζ(2j)

2π2j(2π)4j
. (1.16)

It is important to note that Wright obtained the above result through a long calculation (see [46, pp.

180-184] whereas it is a trivial consequence of our Corollary 1.6 as shown in Section 5. On the other hand,

the advantage of his method is that it gives a representation of the constant c in terms of an integral,

namely, c = 2

∫ ∞
0

y log(y)

e2πy − 1
dy.

The Lambert series (1.8), whose special cases were considered in (1.1) and (1.5), has been studied by

many mathematicians over the years. For a detailed survey, see [16]. One of the earliest mathematicians

to study it was Wigert, who wrote several papers on this subject. In [45], Wigert examined the Lambert

series when 0 < s < 1. Later, Kuylenstierna [30] provided a simple proof of Wigert’s result using double

zeta ζ2(s, τ) :=
∑∞

m,n=0
1

(m+nτ)s , Re(s) > 2, τ ∈ C\(−∞, 0]. However, both of them were interested

only in the asymptotics of the series in (1.8), not in explicit transformations. In his work, Kuylenstierna

essentially uses the Lipschitz summation formula [32]:

Theorem 1.8. Let 0 ≤ a < 1. Then for Re(s) > 1 and τ ∈ H, we have

∞∑
n=1

e2πiτ(n−a)

(n− a)1−s =
Γ(s)

(−2πi)s

∑
k∈Z

e2πiak

(k + τ)s
. (1.17)

The Lipschitz summation formula has several nice applications and generalizations, for example, see

[5, 28, 37]. Theorem 1.8 is usually proved using Poisson summation formula, for example, see [40, p. 77–

79]. For other proofs, one can look at the paper of Vági [44].
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It does not seem to be easy to get Theorem 1.5 as a special case of Ramanujan’s formula (1.2) or our

generalization (1.3), because one has to transform the Lambert series and the principal value integral on

the right-hand side of (1.2) into the series in (1.11) involving the special functions Shi(z) and Chi(z).

In this paper, we prove Theorem 1.1 and Theorem 1.5 using the Lipschitz summation formula (1.17).

The proof of Theorem 1.5 through this approach involves a nice generalization of the following identity

[14, Theorem 2.2]

∞∑
n=1

∫ ∞
0

t cos(t)

t2 + n2u2
dt =

1

2

{
log
( u

2π

)
− 1

2

(
ψ

(
iu

2π

)
+ ψ

(
− iu

2π

))}
, (1.18)

where Re(u) > 0, and ψ(z) := Γ′(z)/Γ(z) is the digamma function. In [14, Theorem 2.4], the above

identity was employed to obtain a two-parameter generalization of (1.1). Various applications of (1.18)

can be found in [15, 16].

Observe that the summand of the left-hand side of (1.18) is the Raabe cosine transform defined for

Re(w) > 0 and y > 0 by [18, p. 144]

R(y, w) :=

∫ ∞
0

t cos(yt)

t2 + w2
dt.

Before stating the generalization of (1.18), that is sought for, we first introduce a new generalization

of Raabe’s cosine transform, valid for Re(w) > 0,Re(z) > 0 and y > 0, by

Rz(y, w) :=
1

2
Γ(2z + 1)

∫ ∞
0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
cos(yt) dt. (1.19)

It is easy to see that R0(y, w) = R(y, w). Also for w > 0, Rz(y, w) satisfies a nice identity, namely,

w2zRz(y, w) = y2zRz(w, y), (1.20)

which is easily seen by making the change of variable t = xw/y in (1.19).

Our first result on Rz(y, w) gives a closed-form evaluation of an infinite series containing Rz(y, w).

Theorem 1.9. Let ζ(z, a) be the Hurwitz zeta function. For Re(w) > 0 and Re(z) > 0, we have

2

Γ(2z + 1)

∞∑
n=1

Rz(2πn,w) =

∞∑
n=1

∫ ∞
0

(
1

(v − iw)2z+1
+

1

(v + iw)2z+1

)
cos(2πnv) dv

=
1

2

{
ζ(1 + 2z, iw) + ζ(1 + 2z,−iw)− cos(πz)

zw2z

}
. (1.21)

Note that this result is not straightforward to obtain as one cannot interchange the order of the

summation and integration as doing so leads to a divergent integral. The primary tool to prove this

result is Guinand’s generalization of Poisson’s summation formula [22, Theorem 1]; see Theorem 2.2.

The generalized Raabe cosine transform Rz(y, w) itself can be evaluated in terms of exponential integral

functions and incomplete gamma functions which are not so popular. However, the beauty of Theorem

1.9 is that the infinite sum of Rz(y, w) can be evaluated in terms of the well-known functions such as

Hurwitz zeta function ζ(z, a) and cos(z).

An immediate consequence of Theorem 1.9 is

Corollary 1.10. Equation (1.18) holds true.
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Our next result gives an evaluation of a double integral which is imperative to prove Theorem 1.9.

Theorem 1.11. Let Re(w) > 0 and Re(z) > 0. Then∫ ∞
0

∫ ∞
0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
cos(2πvt) dtdv = − 1

2w2z+1
sin(πz). (1.22)

Equivalently, in the notation of (1.19),∫ ∞
0

Rz(2πv,w) dv = − 1

4w2z+1
Γ(2z + 1) sin(πz).

It is effortless to see that for z ∈ N ∪ {0}, the above integral evaluates to zero. The particular case

z = 0 is already obtained in [14, Lemma 3.4].

We now provide an new equivalent representation for Rm(1, w), where m ∈ N∪{0}. This representation

appears in the transformation of
∑∞

n=1 σ2m(n)e−ny given in Theorem 1.5.

Theorem 1.12. Let Shi(z), Chi(z) and Rz(y, w) be defined in (1.10) and (1.19) respectively. Let m ∈
N ∪ {0} and Re(w) > 0. Then

Rm(1, w) =
(−1)m(2m)!

2

∫ ∞
0

(
1

(t− iw)2m+1
+

1

(t+ iw)2m+1

)
cos(t) dt

= sinh(w)Shi(w)− cosh(w)Chi(w) +
m∑
j=1

(2j − 1)!w−2j . (1.23)

The special case m = 0 of this result was derived in [16, Lemma 9.1].

As mentioned earlier, we provide a new proof of the Theorem 1.5 in this paper. It is done by employing

the Lipschitz summation formula and Theorems 1.9 and 1.12. Deriving it this way is simpler than

obtaining it as a special case of (1.9). The latter was done in [16, Section 9].

This paper is organised as follows. In Section 2, the proofs of Theorems 1.9, 1.11 and 1.12 are given.

Sections 3 and 4 are devoted to proving Theorems 1.1 and 1.5 respectively.

2. The generalized Raabe cosine transform Rz(y, w)

This section is devoted to obtaining the results associated with Rz(y, w) and which are crucial to

proving Theorem 1.5. The first result below gives the asymptotic expansion of Rz(y, w) as y →∞.

Lemma 2.1. Let Rz(y, w) be defined in (1.19). Let Re(w) > 0 and Re(z) > 0. Then as y →∞,

Rz(y, w) ∼ −cos(πz)

w2z

∞∑
n=1

Γ(2z + 2n)

(yw)2n
.

Proof. We use the analogue of Watson’s lemma for Laplace transform in the setting of Fourier transforms

[35], [13, Equations (1.3), (1.4)]. It states that if the form of h(t) near t = 0 is given as a series of algebraic

powers, that is,

h(t) ∼
∞∑
n=0

bnt
n+λ−1 (2.1)
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as t→ 0+, then under certain restrictions on h (see [35], [13, Section 2] for the same),∫ ∞
0

eisth(t) dt ∼
∞∑
n=0

bne
i(n+λ)π/2Γ(n+ λ)s−n−λ (2.2)

as s→∞.

Let

h(t) :=
1

(t− iw)2z+1
+

1

(t+ iw)2z+1
.

Then, near t = 0, it is easy to see that

h(t) = (−iw)−(2z+1)
∞∑
n=0

(2z + 1)n
n!

(
t

iw

)n
+ (iw)−(2z+1)

∞∑
n=0

(2z + 1)n
n!

(
− t

iw

)n
= 2w−(2z+1)

∞∑
n=0

(2z + 1)n
n!wn

sin
(πn

2
− πz

)
tn.

Therefore, it is clear that our function h(t) satisfies (2.1) with λ = 1 and

b(n) =
2w−(2z+1)(2z + 1)n

n!wn
sin
(πn

2
− πz

)
. (2.3)

From (2.2) and (2.3), as y →∞,∫ ∞
0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
eiyt dt ∼

∞∑
n=0

bne
i(n+1)π

2 Γ(n+ 1)y−n−1, (2.4)

where b(n) is given in (2.3). Similarly, as y →∞,∫ ∞
0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
e−iyt dt ∼

∞∑
n=0

bne
i(n+1)π

2 Γ(n+ 1)(−y)−n−1. (2.5)

From (2.4) and (2.5), we see that as y →∞,∫ ∞
0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
cos(yt) dt

∼ w−(2z+1)
∞∑
n=0

(2z + 1)n
wnyn+1

ei(n+1)π
2 sin

(πn
2
− πz

)
(1 + (−1)−n−1)

= 2w−(2z+1)
∞∑
n=1

(2z + 1)(2n−1)

w2n−1y2n
enπi sin

(
π(2n− 1)

2
− πz

)

= −2w−2z cos(πz)

Γ(2z + 1)

∞∑
n=1

Γ(2z + 2n)

(yw)2n
. (2.6)

Lemma 2.1 follows upon multiplying both sides of (2.6) by 1
2Γ(2z + 1) and then using the definition of

Rz(y, w) from (1.19). �

Remark 1. The special case z = 0 of Lemma 2.1 was obtained in [14, Lemma 3.3].

Our next task is to evaluate the double integral in (1.22).
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Proof of Theorem 1.11. Note that double integral in (1.22) is not absolutely convergent which means

we cannot interchange the order of integration. Securing convergence of the integral over v near v = 0 is

straightforward. Along with this, Lemma 2.1 implies that the double integral in (1.22) is convergent.

We first evaluate a more general integral by introducing the exponential factor e−
v2

N inside the integrand

and then take limit N →∞. Let N be a positive integer and consider the integral

I(w, z,N) : =

∫ ∞
0

∫ ∞
0

e−
v2

N

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
cos(2πvt) dtdv (Re(w) > 0, Re(z) > 0).

(2.7)

By invoking Fubini’s theorem we can interchange the order of the summation and integration in the above

equation to see that

I(w, z,N) =

∫ ∞
0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)∫ ∞
0

e−
v2

N cos(2πvt) dvdt

=

√
πN

2

∫ ∞
0

e−Nπ
2t2
(

1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
dt, (2.8)

where we used the fact that e−v
2/N is self-reciprocal (up to some factor) with respect to the cosine kernel

(See [21, p. 488, Formula 3.896.4]). Next invoke the identity [4, p. 88, Section 2.5.5]

(1−
√
ξ)−2s + (1 +

√
ξ)−2s = 2 2F1

(
s, s+

1

2
;
1

2
; ξ

)
,

with ξ = −w2/t2 and s = z + 1/2 in (2.8) to deduce that

I(w, z,N) =
√
πN

∫ ∞
0

e−Nπ
2t2t−2z−1

2F1

(
z +

1

2
, z + 1;

1

2
;−w

2

t2

)
dt

=

√
πN

2

∫ ∞
0

e−Nπ
2/xxz−1

2F1

(
z +

1

2
, z + 1;

1

2
;−w2x

)
dx, (2.9)

where we made the change of variable t = 1/
√
x. From [39, p 319, Formula 2.21.2.6], for Re(p) >

0,Re(a− α) > 0, Re(b− α) > 0 and | arg(ω)| < π, we have∫ ∞
0

xα−1e−p/x2F1(a, b; c;−ωx)dx = ω−α
Γ(c)Γ(α)Γ(a− α)Γ(b− α)

Γ(a)Γ(b)Γ(c− α)
2F2(a− α, b− α; 1− α, c− α;ωp)

+ pαΓ(−α)2F2(a, b; c, α+ 1;ωp).

Let p = Nπ2, a = z + 1/2, b = z + 1, c = 1/2, α = z and ω = w2 in the above integral evaluation,

use the reflection formula for the gamma function Γ(1/2 + s)Γ(1/2− s) = π/ cos(πs) and substitute the

resultant in (2.9) so that for | arg(w)| < π/2,

I(w, z,N) =

√
πN

2

{
cos(πz)

zw2z 2F2

(
1

2
, 1; 1− z, 1

2
− z;Nπ2w2

)
+ (Nπ2)zΓ(−z)1F1

(
z +

1

2
;
1

2
;Nπ2w2

)}
.

(2.10)

We now wish to take limit N → ∞ on both sides of the above equation. To that end, we need to find

the behavior of the functions on the right-hand side as N → ∞. The following asymptotic is given by

Kim [27]: as x→∞ in −3π
2 < arg(x) < π

2 , for α 6= Z ∪ {0},

2F1(1, α; ρ1, ρ2;x) ∼ Γ(ρ1)Γ(ρ2)

Γ(α)
(K22(x) + L22(−x)) ,
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where, with ν = 1 + α− ρ1 − ρ2,

K22(x) = xνex2F0

(
ρ1 − α, ρ2 − α;−;

1

x

)
,

and

L22(x) = x−1 Γ(α− 1)

Γ(ρ1 − 1)Γ(ρ2 − 1)
3F1

(
1, 2− ρ1, 2− ρ2; 2− α;

1

x

)
+ x−α

Γ(α)Γ(1− α)

Γ(ρ1 − α)Γ(ρ1 − α)
2F0

(
1 + α− ρ1, 1 + α− ρ2;−;

1

x

)
.

We let α = 1/2, ρ1 = 1 − z, ρ2 = 1/2 − z and x = Nπ2w2 in the above expression to get, for

−3π
4 < arg(w) < π

4 ,

2F2

(
1

2
, 1; 1− z, 1

2
− z;Nπ2w2

)
∼ Γ(1/2− z)Γ(1− z)√

π

{
(Nπ2w2)2zeNπ

2w2

2F0

(
1

2
− z,−z;−;

1

Nπ2w2

)
+

2

Nπ3/2w2Γ(−1/2− z)Γ(−z)3F1

(
1, 1 + z,

3

2
+ z;

3

2
;− 1

Nπ2w2

)
+
π(−Nπ2w2)−1/2

Γ(1/2− z)Γ(−z)2F0

(
1

2
+ z, 1 + z;−;− 1

Nπ2w2

)}
(2.11)

as N →∞. Also, from [43, p. 189, Exercise 7.7],

1F1(a; c;x) ∼ exxa−cΓ(c)

Γ(a)

∞∑
n=0

(c− a)n(1− a)n
n!

x−n +
e−πiax−a

Γ(c− a)

∞∑
n=0

(a)n(1 + a− c)n
n!

(−x)−n, x→∞,

where −3π
2 < arg(x) < π

2 . Upon letting a = z + 1/2, c = 1/2 and x = Nπ2w2 in the above formula and

using the series definition of 2F0, for −3π
4 < arg(w) < π

4 , we see that

1F1

(
z +

1

2
;
1

2
;Nπ2w2

)
∼ eNπ2w2

√
π(Nπ2w2)z

Γ(z + 1/2)
2F0

(
−z, 1

2
− z;−;

1

Nπ2w2

)
+ e−πi(z+1/2)

√
π(Nπ2w2)−(z+1/2)

Γ(−z) 2F0

(
z +

1

2
, 1 + z;−;− 1

Nπ2w2

)
(2.12)

asN →∞. Substitute (2.11) and (2.12) in (2.10) and observe that the terms involving 2F0

(
−z, 1

2 − z;−; 1
Nπ2w2

)
cancel each other out. Also note that pFq(a1, · · · , ap; b1, · · · , bq; 1/N) = 1 +O(1/N), as N →∞. Hence,

for −π
2 < arg(w) < π

4 , as N →∞,

I(w, z,N) =

√
π

2

{
22zΓ(1− 2z) cos(πz)

zw2z

[
1√
N

2−2z−1

π2w2Γ(−1− 2z)

(
1 +O

(
1

N

))
+

i2−2z−1

√
πwΓ(−2z)

(
1 +O

(
1

N

))]
− i 1√

π
e−πizw−2z−1

(
1 +O

(
1

N

))}
.

We next let N → ∞ on the both sides of the above equation. By using the dominated convergence

theorem, we can take the limit N →∞ inside the integral sign in (2.7). Thus,∫ ∞
0

∫ ∞
0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
cos(2πvt) dtdv = − i

2w2z+1

{
e−πiz − cos(πz)

}
= − i

2w2z+1

{
e−πiz − eiπz + e−iπz

2

}
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=
i

2w2z+1

{
eiπz − e−iπz

2

}
, (2.13)

which proves our theorem for −π
2 < arg(w) < π

4 . We next prove the result in the remaining region
π
4 ≤ arg(w) < π

2 .

By invoking the asymptotic [36, p. 411, Formula 16.11.7] twice, for π
4 ≤ arg(w) < π

2 , as N →∞,

2F2

(
1

2
, 1; 1− z, 1

2
− z;Nπ2w2

)
∼

Γ(1− z)Γ
(

1
2 − z

)
Γ(1/2)

{
eπi/2√
Nπw

∞∑
k=0

(−1)kΓ
(

1
2 + k

)
Γ
(

1
2 − k

)
k!Γ

(
1
2 − z − k

)
Γ (−z − k)

(
Nπ2w2e−πi

)−k
+

eπi

Nπ2w2

∞∑
k=0

(−1)kΓ
(
−1

2 − k
)

k!Γ (−z − k) Γ
(
−1

2 − z − k
) (Nπ2w2e−πi

)−k
+
(
Nπ2w2

)2z
eNπ

2w2
∞∑
k=0

Ck(Nπ
2w2)−k

}
, (2.14)

and

1F1

(
z +

1

2
;
1

2
;Nπ2w2

)
∼ Γ(1/2)

Γ
(
z + 1

2

) {(Nπ2w2e−πi)−(z+1/2)
∞∑
k=0

(−1)kΓ
(

1
2 + z + k

)
k!Γ(k − z)

(Nπ2w2e−πi)−k

+(Nπ2w2)zeNπ
2w2

∞∑
k=0

Ck(Nπ
2w2)−k

}
, (2.15)

where

Ck = −1

k

k−1∑
m=0

Cmek,m,

with C0 = 1 and

ek,m = 2(m− z)(k+1−m)

(
z − 1

2

)
− 2z

(
1

2
− z +m

)
(k+1−m)

.

Upon simplifying (2.9), (2.14) and (2.15), and observing that the terms containing eNπ
2w2

cancel each

other out, for π
4 ≤ arg(w) < π

2 ,

I(w, z,N) =
eπi/2

2w2z+1

(
eπiz − cos(πz)

)
+O

(
1√
N

)
as N → ∞. Employing the dominated convergence theorem to take limit N → ∞ inside the double

integral, we deduce that∫ ∞
0

∫ ∞
0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
cos(2πvt) dtdv = − 1

2w2z+1
sin(πz).

This along with (2.13) completes the proof of the theorem for −π
2 < arg(w) < π

2 . �

As discussed in the introduction, Guinand’s generalization of Poisson’s summation formula [22, Theo-

rem 1] is critical to prove Theorem 1.9. We record Guinand’s result in the following theorem.

Theorem 2.2. If f(x) is an integral, f(x) tends to zero as x→∞, and xf ′(x) belongs to Lp(0,∞), for

some p, 1 < p ≤ 2, then

lim
M→∞

(
M∑
m=1

f(m)−
∫ M

0
f(v) dv

)
= lim

M→∞

(
M∑
m=1

g(m)−
∫ M

0
g(v) dv

)
,
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where

g(x) = 2

∫ →∞
0

f(t) cos(2πxt) dt.

Proof of Theorem 1.9. Let

f(v) :=
1

(v − iw)2z+1
+

1

(v + iw)2z+1
, (Re(w) > 0,Re(z) > 0) ,

g(x) := 2

∫ ∞
0

(
1

(v − iw)2z+1
+

1

(v + iw)2z+1

)
cos(2πxv) dv. (2.16)

Now employ Theorem 2.2 with f(x) and g(x) as above. Invoking Theorem 1.11, we see that

∞∑
n=1

g(n) = lim
M→∞

{
M∑
n=1

(
1

(n− iw)2z+1
+

1

(n+ iw)2z+1

)

−
∫ M

0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
dt

}
− 1

w2z+1
sin(πz). (2.17)

Note that series and integral on the right-hand side of the above equation exist individually in the limit

M →∞. Therefore,
∞∑
n=1

g(n) =
∞∑
n=1

(
1

(n− iw)2z+1
+

1

(n+ iw)2z+1

)
−
∫ ∞

0

(
1

(t− iw)2z+1
+

1

(t+ iw)2z+1

)
dt− 1

w2z+1
sin(πz).

(2.18)

It is easy to see that for Re(z) > 0,

∞∑
n=1

1

(n∓ iw)2z+1
= ζ(1 + 2z, 1∓ iw). (2.19)

Also, ∫ ∞
0

dt

(t∓ iw)2z+1
=

(∓i)−2zw−2z

2z
. (2.20)

Substitute (2.19) and (2.20) in (2.18) to deduce that

∞∑
n=1

g(n) = ζ(1 + 2z, iw) + ζ(1 + 2z,−iw)− cos(πz)

zw2z
− 1

w2z+1
sin(πz)

= ζ(1 + 2z, iw) + ζ(1 + 2z,−iw)− cos(πz)

zw2z
, (2.21)

which follows using the fact

ζ(s, a+ 1) = ζ(s, a)− a−s. (2.22)

Therefore, (2.16) and (2.21) yield Theorem 1.9. �

Proof of Corollary 1.10. We wish to take limit z → 0 in (1.21). To that end, we use expansions of the

functions involved around z = 0. As s→ 1, we have [21, p. 1038, Formula 9.533.2]

ζ(s, a) =
1

s− 1
− ψ(a) +O(|s− 1|).

The above equation implies that, as z → 0,

ζ(1 + 2z,±iw) =
1

2z
− ψ(±iw) +O(|z|). (2.23)
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It is easy to see that

cos(πz)

zw2z
=

1

z
− 2 log(w) +O(|z|), (2.24)

as z → 0. Using (2.23) and (2.24), we deduce that

lim
z→0

(
ζ(1 + 2z, iw) + ζ(1 + 2z,−iw)− cos(πz)

zw2z

)
= −ψ(iw)− ψ(−iw) + 2 log(w). (2.25)

Let z → 0 on both sides of (1.21) and use (2.25) so that

2
∞∑
n=1

∫ ∞
0

v cos(2πnv)

v2 + w2
dv =

1

2
{2 log(w)− (ψ(iw) + ψ(−iw))} . (2.26)

Make the change of variable 2πnv = t on the right-hand side of (2.26) to arrive at

2

∞∑
n=1

∫ ∞
0

t cos(t)

t2 + (2πw)2n2
dt = log(w)− 1

2
(ψ(iw) + ψ(−iw)) .

Finally let w = u/(2π) in the above equation to conclude the proof of the corollary. �

Theorem 1.12 is proved next.

Proof of Theorem 1.12. From [16, Lemma 9.1], for Re(w) > 0, we have∫ ∞
0

t cos t dt

t2 + w2
= sinh(w)Shi(w)− cosh(w)Chi(w). (2.27)

Now (1.23) follows by expanding t
(t2+w2)

in partial fractions, that is, by writing t
t2+w2 = 1

2

(
1

t−iw + 1
t+iw

)
,

and then by performing integration by parts 2m times the left-hand side of (2.27). �

3. Proof of our generalization of a formula of Ramanujan

We first find an inverse Mellin transform which will be used to prove Theorem 1.1.

Lemma 3.1. For 1 < d := Re(z) < 3 and x /∈ Z,

cot(πx) =
1

2πi

∫
(d)
ζ(1− z) tan

(πz
2

)
x−zdz, (3.1)

where, here, and in the sequel,
∫

(c) dz represents the line integral
∫ c−i∞
c−i∞ dz with c = Re(z).

Proof. We want to use the series representation of ζ(1−z) to evaluate the integral on the right-hand side

of (3.1). To that end, we shift the line of integration to −1 < c < 0, use residue theorem while noting

that the integrals along the horizontal segments tend to zero as the height of the contour tends to ∞, to

deduce that

1

2πi

∫
(d)
ζ(1− z) tan

(πz
2

)
x−zdz =

1

πx
+

1

2πi

∫
(c)
ζ(1− z) tan

(πz
2

)
x−zdz

=
1

πx
+

∞∑
n=1

1

n

1

2πi

∫
(c)

tan
(πz

2

)(x
n

)−z
dz. (3.2)

We employ [34, p. 182, Formula 2.4.4],

1

2πi

∫
(c1)

tan
(πz

2

)
y−zdz =

2

π

y

y2 − 1
, (−1 < c1 < 1, y 6= ±1),
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with y replaced by x/n in (3.2) so that for x /∈ Z,

1

2πi

∫
(d)
ζ(1− z) tan

(πz
2

)
x−zdz =

1

πx
+

1

π

∞∑
n=1

2x

x2 − n2
.

Equation (3.1) now follows upon using the well-known fact

π cot(πx) =
1

x
+
∞∑
n=1

2x

x2 − n2
. (3.3)

�

Next, we note the following result of Hardy [26, pp. 56-57]. This result helps us justify the interchange

of the order of the summation and integration having principal values, and will be employed in the proof

of Theorem 1.1.

Proposition 3.2. Let

S(x) =

∞∑
k=0

uk(x)

be a series whose terms are functions of x and is convergent with the possible exception of a closed

enumerable set of points for values of x in a finite interval (a,A). Let α denote one such point in this

set. If

(1) the series S(x) is integrable term by term over any part of (a,A) which does not include α,

(2) the function

F (x) =

∞∑
k=0

PV

∫ x

a
uk(t)dt

is a continuous function of x except at α, and

(3)

lim
ε→0
{F (α− ε)− F (α+ ε)} = 0. (3.4)

Then, one can interchange the order of summation and integration, namely,

PV

∫ A

a

∞∑
k=0

uk(t)dt =
∞∑
k=0

PV

∫ A

a
uk(t).

Remark 2. We note that [26, pp. 58–59, Section 7] (also see [25, p. 27]) if

uk(x) =
vk(x)

x− α
, (3.5)

where vk(x) is a function of x and has a continuous derivative for all x ∈ [a,A], then

PV

∫ α+ε

α−ε
uk(x)dx = 2εv′k(α+ µ), for some µ ∈ [−ε, ε].

Also if |v′k(x)| < Vk for all values x ∈ [a,A], Vk being independent of x and
∑∞

k=0 Vk is convergent, then

the condition (3.4) holds true for uk(x) given in (3.5).

In the next lemma, we justify the interchange of the order of the summation and principal value

integral.
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Lemma 3.3. Let k ∈ N, 0 < a ≤ 1 and Re(y) > 0. For Re(s) > 2, we have

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xs−1e−4π2kx/y cot(πx)dx = PV

∫ ∞
0

( ∞∑
k=1

sin (2πak) e−4π2kx/y

)
xs−1 cot(πx)dx.

(3.6)

Proof. Note that the presence of cot(πx) implies infinitely many singularities of the integrand on the left

side of (3.6). To handle this integral efficiently, we use (3.3) so that

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xs−1e−4π2kx/y cot(πx)dx =
1

π

∞∑
k=1

sin (2πak)

∫ ∞
0

xs−2e−4π2kx/ydx

+
2

π

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

1

x2 − n2
dx.

(3.7)

We can interchange the order of summation and integration in the first expression on the right-hand side

of (3.7) by easily employing [43, p. 30, Theorem 2.1]. The delicate part is to show the same for the second

expression on the right, which is done next. We first show that

PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

1

x2 − n2
dx =

∞∑
n=1

PV

∫ ∞
0

xse−4π2kx/y

x2 − n2
dx. (3.8)

The ingenious argument given in [10, pp. 909-911] can be adapted here as well to prove the above claim.

We give the complete details though to make the paper self-contained.

Let w(t) ∈ C∞0 be a smooth function such that 0 ≤ w(t) ≤ 1, ∀ t ∈ R, w(t) has compact support in(
−1

3 ,
1
3

)
, and w(t) = 1, t ∈

(
−1

4 ,
1
4

)
. Note that the right-hand side of (3.8) can be rewritten as

∞∑
n=1

PV

∫ ∞
0

xse−4π2kx/y

x2 − n2
dx =

∞∑
n=1

∫ ∞
0

xse−4π2kx/y (1− w(x− n))

x2 − n2
dx+

∞∑
n=1

PV

∫ ∞
0

xse−4π2kx/yw(x− n)

x2 − n2
dx.

(3.9)

Again, an easy application of [43, p. 30, Theorem 2.1] allows us to interchange the order of summation

and integration in the first expression of (3.9). If m is a positive integer such that m− 1
2 ≤ x ≤ m+ 1

2 ,

then

∞∑
n=1

w(x− n)

x2 − n2
=
w(x−m)

x2 −m2
. (3.10)

Hence, using (3.10) in the second step below, we have

PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

w(x− n)

x2 − n2
dx =

∞∑
m=1

PV

∫ m+1/2

m−1/2
xse−4π2kx/y

∞∑
n=1

w(x− n)

x2 − n2
dx

=

∞∑
m=1

PV

∫ m+1/2

m−1/2
xse−4π2kx/yw(x−m)

x2 −m2
dx

=

∞∑
m=1

PV

∫ ∞
0

xse−4π2kx/yw(x−m)

x2 −m2
dx.
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The above fact along with (3.9) gives

∞∑
n=1

PV

∫ ∞
0

xse−4π2kx/y

x2 − n2
dx = PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

(1− w(x− n))

x2 − n2
dx+ PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

w(x− n)

x2 − n2
dx

= PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

1

x2 − n2
dx.

This proves the claim in (3.8). Therefore, we can write

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

1

x2 − n2
dx =

∞∑
k=1

sin (2πak)
∞∑
n=1

PV

∫ ∞
0

xse−4π2kx/y

x2 − n2
dx.

Fubini’s theorem allows us to interchange the order of the double sum on the right-hand side of the above

expression so as to obtain

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

1

x2 − n2
dx =

∞∑
n=1

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xse−4π2kx/y

x2 − n2
dx. (3.11)

Now

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xse−4π2kx/y

x2 − n2
dx =

∞∑
k=1

sin (2πak)

{(∫ δ

0
+

∫ ∞
n+1

)
xse−4π2kx/y

x2 − n2
dx

+
1

2

∫ n+1

δ

xs−1e−4π2kx/y

x+ n
dx+

1

2
PV

∫ n+1

δ

xs−1e−4π2kx/y

x− n
dx

}
,

(3.12)

where 0 < δ < 1. Note that there is no need to take principal value for the first three integrals on the

right-hand side of (3.12). Therefore, it is easy to take the summation inside these integrals using the

standard techniques, for example, [43, p. 30, theorem 2.1]. To interchange the order of summation and

the last integral in (3.12), we now show that the hypotheses of Proposition 3.2 are satisfied. Let us define

uk(x) :=
vk(x)

x− n
and vk(x) := xs−1e−4π2kx/y sin (2πak) . (3.13)

It is easy to see that the conditions (1) and (2) of Proposition 3.2 are satisfied with uk(x) being defined

in (3.13). To fulfill (3.4), we show that the equivalent condition discussed in Remark 2 is satisfied. To

that end, observe that x ∈ [δ, n+ 1] and use e−x > 3!/x3, x > 0, so that

|v′k(x)| <
∣∣∣∣xs−2e−4π2kx/y

(
s− 1− 4π2kx

y

)∣∣∣∣ < xRe(s)−5

(4π2/y)3

3!

k3

(
|s− 1|+ 4π2kx

y

)
<

M

(4π2/y)3

3!

k3

(
|s− 1|+ 4π2k(n+ 1)

y

)
=: Vk,

where we used the fact that the function xRe(s)−5 is continuous on the compact interval [δ, n+1], and hence

bounded by some constant M > 0 (which may depend on δ and n). Since the series
∑∞

k=1 Vk converges,

all conditions of Proposition 3.2 are satisfied. Hence we can interchange the order of summation and
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integration even in the case of the last integral of (3.12). This fact along with the discussion following

(3.12) implies that

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xse−4π2kx/y

x2 − n2
dx = PV

∫ ∞
0

( ∞∑
k=1

sin (2πak) e−4π2kx/y

)
xs

x2 − n2
dx. (3.14)

Using the fact sin(θ) = (eiθ − e−iθ)/(2i), we find

∞∑
k=1

sin (2πak) e−4π2xk/y =
1

2i

∞∑
k=1

e
−
(

4π2x
y
−2πia

)
k − 1

2i

∞∑
k=1

e
−
(

4π2x
y

+2πia
)
k

=
1

2i

(
1

e
4π2x
y
−2πia − 1

− 1

e
4π2x
y

+2πia − 1

)
. (3.15)

Substitute the above value in (3.14) to arrive at

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xse−4π2kx/y

x2 − n2
dx =

1

2i
PV

∫ ∞
0

(
1

e
4π2x
y
−2πia − 1

− 1

e
4π2x
y

+2πia − 1

)
xs

x2 − n2
dx.

(3.16)

Equations (3.11) and (3.16) yield

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

1

x2 − n2
dx

=
1

2i

∞∑
n=1

PV

∫ ∞
0

(
1

e
4π2x
y
−2πia − 1

− 1

e
4π2x
y

+2πia − 1

)
xs

x2 − n2
dx.

Again employing the trick that we used after (3.8) to interchange the order of the summation and

integration, one can take the sum over n inside the integral on the right-hand side of the above equation

to deduce that
∞∑
k=1

sin (2πak) PV

∫ ∞
0

xse−4π2kx/y
∞∑
n=1

1

x2 − n2
dx

=
1

2i
PV

∫ ∞
0

(
1

e
4π2x
y
−2πia − 1

− 1

e
4π2x
y

+2πia − 1

) ∞∑
n=1

1

x2 − n2
xsdx. (3.17)

Substituting (3.17) in (3.7), we obtain

∞∑
k=1

sin (2πak) PV

∫ ∞
0

xs−1e−4π2kx/y cot(πx)dx

=
1

π

∫ ∞
0

xs−2
∞∑
k=1

sin (2πak) e−4π2kx/ydx+
1

iπ
PV

∫ ∞
0

(
1

e
4π2x
y
−2πia − 1

− 1

e
4π2x
y

+2πia − 1

) ∞∑
n=1

1

x2 − n2
xsdx

=
1

π

∫ ∞
0

( ∞∑
k=1

sin (2πak) e−4π2kx/y

)
xs−2dx+

2

π

∫ ∞
0

( ∞∑
k=1

sin (2πak) e−4π2kx/y

) ∞∑
n=1

1

x2 − n2
xsdx,

where in the ultimate step we again used (3.15). Finally employing (3.3) in the above equation, we arrive

at (3.6). �

We have now collected all ingredients to give a proof of our generalization of Ramanujan’s formula.
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Proof of Theorem 1.1. Letting τ = iyj/(2π), Re(y) > 0, in Theorem 1.8, then taking summation over

j ≥ 1, and then employing the series definition of the Hurwitz zeta function for Re(s) > 1, we obtain2

∞∑
n=1

(n− a)s−1

e(n−a)y − 1
=

Γ(s)

(−2πi)s

∑
k∈Z

e2πiak
∞∑
j=1

1(
k + ijy

2π

)s
=

Γ(s)

ys

∑
k∈Z

e2πiakζ

(
s, 1− 2πik

y

)

=
Γ(s)ζ(s)

ys
+

Γ(s)

ys

∞∑
k=1

{
e2πiakζ

(
s, 1− 2πik

y

)
+ e−2πiakζ

(
s, 1 +

2πik

y

)}
. (3.18)

Invoking the well-known formula [36, p. 609, Formula 25.11.25]

Γ(z)ζ(z, a) =

∫ ∞
0

e−ax

1− e−x
xz−1dx, (Re(z) > 1, Re(a) > 0) (3.19)

in (3.18), we obtain

∞∑
n=1

(n− a)s−1

e(n−a)y − 1
=

Γ(s)ζ(s)

ys
+

1

ys

∞∑
k=1

∫ ∞
0

(
e
i
(

2πak+ 2πkt
y

)
+ e
−i

(
2πak+ 2πkt

y

))
ts−1

et − 1
dt

=
Γ(s)ζ(s)

ys
+

2

ys

∞∑
k=1

∫ ∞
0

cos

(
2πak +

2πkt

y

)
ts−1

et − 1
dt

=
Γ(s)ζ(s)

ys
+

2

ys

∞∑
k=1

cos(2πak)

∫ ∞
0

cos

(
2πkt

y

)
ts−1

et − 1
dt

− 2

ys

∞∑
k=1

sin(2πak)

∫ ∞
0

sin

(
2πkt

y

)
ts−1

et − 1
dt. (3.20)

Our next goal is to evaluate the integrals in (3.20). From [34, p. 42, Formula 1.5.2], for 0 < Re(z) < 1,

we have ∫ ∞
0

cos(x)xz−1dx = Γ(z) cos
(πz

2

)
.

Making the change of variable x = 2πkt
y and replacing z by s − 1 + z in the above result, we get, for

1− Re(s) < Re(z) < 2− Re(s),∫ ∞
0

cos

(
2πkt

y

)
ts−1tz−1dt =

(
2πk

y

)1−s−z
Γ(s− 1 + z) sin

(π
2

(s+ z)
)
. (3.21)

Equation (3.19) with a = 1, (3.21), and an application of Parseval’s formula [38, p. 83, Equation (3.1.14)]

gives, for 1− Re(s) < c = Re(z) < min (0, 2− Re(s)),∫ ∞
0

cos

(
2πkt

y

)
ts−1

et − 1
dt =

(
2πk

y

)1−s 1

2πi

∫
(c)

Γ(s− 1 + z) sin
(π

2
(s+ z)

)
Γ(1− z)ζ(1− z)

(
2πk

y

)−z
dz

=

(
2πk

y

)1−s {
cos
(πs

2

)
I1(y, s) + sin

(πs
2

)
I2(y, s)

}
, (3.22)

2The case a = 0 of (3.18) reduces to a result of Kuylenstierna [30, Equation (7)].
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where

I1(y, s) :=
1

2πi

∫
(c)

Γ(s− 1 + z) sin
(πz

2

)
Γ(1− z)ζ(1− z)

(
2πk

y

)−z
dz, (3.23)

I2(y, s) :=
1

2πi

∫
(c)

Γ(s− 1 + z) cos
(πz

2

)
Γ(1− z)ζ(1− z)

(
2πk

y

)−z
dz. (3.24)

Similarly, using the formula [34, p. 42, Formula 1.5.1]∫ ∞
0

sin(x)xz−1dx = Γ(z) sin
(πz

2

)
, (−1 < Re(z) < 1),

it can be seen that for −Re(s) < c = Re(z) < min (0, 2− Re(s)),∫ ∞
0

sin

(
2πkt

y

)
ts−1

et − 1
dt =

(
2πk

y

)1−s {
sin
(πs

2

)
I1(y, s)− cos

(πs
2

)
I2(y, s)

}
. (3.25)

We first evaluate I1(y, s). Apply the functional equation of the Riemann zeta function [36, p. 603, Formula

25.4.2]

ζ(s) = 2sπs−1Γ(1− s)ζ(1− s) sin
(πs

2

)
, (3.26)

in (3.23) to see that

I1(y, s) =
π

2πi

∫
(c)

Γ(s− 1 + z)ζ(z)

(
4π2k

y

)−z
dz.

We want to use the series definition of ζ(z) to further simplify the above integral. Therefore we shift the

line of integration to d = Re(z) > 1 and use residue theorem thereby obtaining

I1(y, s) =
π

2πi

∫
(d)

Γ(s− 1 + z)ζ(z)

(
4π2k

y

)−z
dz − yΓ(s)

4πk

= π
∞∑
n=1

1

2πi

∫
(d)

Γ(s− 1 + z)

(
4π2nk

y

)−z
dz − yΓ(s)

4πk

= π

(
4π2k

y

)s−1 ∞∑
n=1

ns−1e
− 4π2nk

y − yΓ(s)

4πk
, (3.27)

where in the last step, we used

e−x =
1

2πi

∫
(λ)

Γ(z)x−zdz (λ > 0). (3.28)

We now focus on evaluating the other integral I2(y, s). Again an application of (3.26) in (3.24) yields

I2(y, s) =
π

2πi

∫
(c)

Γ(s− 1 + z)ζ(z) cot
(πz

2

)(4π2k

y

)−z
dz. (3.29)

If we shift the line of integration from Re(z) = c, where 1−Re(s) < c < min(0, 2−Re(s)), to 1−Re(s) <

Re(z) = c′ < 2, we do not encounter any poles of the integrand in the integral of (3.29). (Note that the

pole of ζ(z) at z = 1 is annihilated by the zero of cot(πz/2) at z = 1.) Therefore, by the residue theorem

and (3.30), we have

I2(y, s) =
π

2πi

∫
(c′)

Γ(s− 1 + z)ζ(z) cot
(πz

2

)(4π2k

y

)−z
dz. (3.30)
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Replace z by s− 1 + z and x by 4π2xk/y in (3.28), then use the resulting equation, (3.1) and Parseval’s

formula to obtain, for 1− Re(s) < c′′ < 0,

π

2πi

∫
(c′′)

Γ(s− 1 + z)ζ(z) cot
(πz

2

)(4π2k

y

)−z
dz = π PV

∫ ∞
0

(
4π2xk

y

)s−1

e
− 4π2xk

y cot(πx)dx. (3.31)

The existence of the principal value integral appearing on the right-hand side of (3.31) is shown by Hardy

[25, p. 31]. Hence, from (3.30) and (3.31),

I2(y, s) = π PV

∫ ∞
0

(
4π2xk

y

)s−1

e
− 4π2xk

y cot(πx)dx. (3.32)

Substituting (3.27) and (3.32) in (3.22) as well as in (3.25), we get∫ ∞
0

cos

(
2πkt

y

)
ts−1

et − 1
dt =

(
2πk

y

)1−s
{

cos
(πs

2

)(
π

(
4π2k

y

)s−1 ∞∑
n=1

ns−1e
− 4π2nk

y − yΓ(s)

4πk

)

+ sin
(πs

2

)
π PV

∫ ∞
0

(
4π2xk

y

)s−1

e
− 4π2xk

y cot(πx)dx

}
, (3.33)

and ∫ ∞
0

sin

(
2πkt

y

)
ts−1

et − 1
dt =

(
2πk

y

)1−s
{

sin
(πs

2

)(
π

(
4π2k

y

)s−1 ∞∑
n=1

ns−1e
− 4π2nk

y − yΓ(s)

4πk

)

− cos
(πs

2

)
π PV

∫ ∞
0

(
4π2xk

y

)s−1

e
− 4π2xk

y cot(πx)dx

}
. (3.34)

Substituting (3.33) and (3.34) in (3.20) and simplifying, we are led to

∞∑
n=1

(n− a)s−1

e(n−a)y − 1
=

Γ(s)ζ(s)

ys
+

(
2π

y

)s
cos
(πs

2

) ∞∑
n=1

ns−1
∞∑
k=1

cos (2πak) e
− 4π2nk

y − Γ(s)

(2π)s
cos
(πs

2

) ∞∑
k=1

cos (2πak)

ks

−
(

2π

y

)s
sin
(πs

2

) ∞∑
n=1

ns−1
∞∑
k=1

sin (2πak) e
− 4π2nk

y +
Γ(s)

(2π)s
sin
(πs

2

) ∞∑
k=1

sin (2πak)

ks

+

(
2π

y

)s
sin
(πs

2

) ∞∑
k=1

cos(2πak)PV

∫ ∞
0

xs−1e
− 4π2xk

y cot(πx)dx

+

(
2π

y

)s
cos
(πs

2

) ∞∑
k=1

sin(2πak)PV

∫ ∞
0

xs−1e
− 4π2xk

y cot(πx)dx. (3.35)

Invoking Lemma 3.3 we can interchange the summation and integration for the last expression on the

right-hand side of (3.35). Also note that one can justify the same for the series involving cos(2πak).

Hence, after simplification, (3.35) becomes

∞∑
n=1

(n− a)s−1

e(n−a)y − 1
=

Γ(s)ζ(s)

ys
+

(
2π

y

)s ∞∑
n=1

ns−1
∞∑
k=1

cos
(πs

2
+ 2πak

)
e−4π2nk/y − Γ(s)

(2π)s

∞∑
k=1

cos
(
πs
2 + 2πak

)
ks

+

(
2π

y

)s
PV

∫ ∞
0

( ∞∑
k=1

sin
(πs

2
+ 2πak

)
e−4π2kx/y

)
xs−1 cot(πx)dx.
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Making the change of variable x → xy/(2π) in the integral and rearranging the terms in the above

expression, we get

Γ(s)ζ(s)

ys
+

(
2π

y

)s ∞∑
n=1

ns−1
∞∑
k=1

cos
(πs

2
+ 2πak

)
e−4π2nk/y

=
Γ(s)

(2π)s

∞∑
k=1

cos
(
πs
2 + 2πak

)
ks

+

∞∑
n=1

(n− a)s−1

e(n−a)y − 1
− PV

∫ ∞
0

( ∞∑
k=1

sin
(πs

2
+ 2πak

)
e−2πkx

)
xs−1 cot

(
1

2
yx

)
dx.

(3.36)

Now, using the fact cos(θ) = (eiθ + e−iθ)/2, we find

∞∑
k=1

cos
(πs

2
+ 2πak

)
e−4π2nk/y =

1

2
eπis/2

∞∑
k=1

e
−
(

4π2n
y
−2πia

)
k

+
1

2
e−πis/2

∞∑
k=1

e
−
(

4π2n
y

+2πia
)
k

=
1

2

(
eπis/2

e
4π2n
y
−2πia − 1

+
e−πis/2

e
4π2n
y

+2πia − 1

)
. (3.37)

Similarly,

∞∑
k=1

sin
(πs

2
+ 2πak

)
e−2πkx =

1

2i

(
eπis/2

e2πx−2πia − 1
− e−πis/2

e2πx+2πia − 1

)
. (3.38)

Substituting (3.37) and (3.38) in (3.36), we get

Γ(s)ζ(s)

ys
+

(
2π

y

)s 1

2

∞∑
n=1

ns−1

(
eπis/2

e
4π2n
y
−2πia − 1

+
e−πis/2

e
4π2n
y

+2πia − 1

)

=
Γ(s)

(2π)s

∞∑
k=1

cos
(
πs
2 + 2πak

)
ks

+
∞∑
n=1

(n− a)s−1

e(n−a)y − 1

− 1

2i
PV

∫ ∞
0

xs−1

(
eπis/2

e2πx−2πia − 1
− e−πis/2

e2πx+2πia − 1

)
cot

(
1

2
yx

)
dx.

Finally, we arrive at (1.3) after multiplying by (2π/y)−s on the both sides of the above equation and then

letting 4π2/y = α with αβ = 4π2. �

Proof of Corollary 1.2. Let a = 1/2 and s = 2m,m ∈ N in Theorem 1.1 and observe that the principal

value integral vanishes. The result then follows upon using Euler’s formula [43, p. 5, Equation (1.14)]

ζ(2m) = (−1)m+1 (2π)2mB2m

2(2m)!
. (3.39)

�

Proof of Corollary 1.3. For an even integer m, we have [12, p. 23] (also see [2, p. 25, Exercise 15(c)])

∞∑
n=1

(2n− 1)2m+1

eπ(2n−1) + 1
= (22m+1 − 1)

B2m+2

4m+ 4
.

The first result follows upon letting α = β = 2π and m to be a positive odd integer in Corollary 1.4

and then using the above evaluation after replacing m by m − 1. The second one follows by using the

elementary identity
1

x2 − 1
=

1

2

(
1

x− 1
− 1

x+ 1

)
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and Glaisher’s evaluation [20]
∞∑
n=1

n2m−1

e2nπ − 1
=
B2m

4m
.

�

Proof of Corollary 1.4. Letting s = 2m and a = 1/4 in Theorem 1.1 and simplifying, we get

αm

{
Γ(2m)ζ(2m)

(2π)2m
+ (−1)m+1

∞∑
n=1

n2m−1

e2nα + 1

}

= βm

{
(−1)mΓ(2m)

(2π)2m

∞∑
k=1

cos(πk/2)

k2m
+

∞∑
n=1

(n− 1/4)2m−1

e(n−1/4)β − 1
− (−1)m

2

∫ ∞
0

x2m−1 cot(βx/2)

cosh(x)
dx

}
. (3.40)

Now take s = 2m and a = 3/4 in Theorem 1.1 to obtain

αm

{
Γ(2m)ζ(2m)

(2π)2m
+ (−1)m+1

∞∑
n=1

n2m−1

e2nα + 1

}

= βm

{
(−1)mΓ(2m)

(2π)2m

∞∑
k=1

(−1)k cos(πk/2)

k2m
+

∞∑
n=1

(n− 3/4)2m−1

e(n−3/4)β − 1
+

(−1)m

2

∫ ∞
0

x2m−1 cot(βx/2)

cosh(x)
dx

}
.

(3.41)

Now add (3.40) and (3.41) so that

αm

{
2

Γ(2m)ζ(2m)

(2π)2m
+ 2(−1)m+1

∞∑
n=1

n2m−1

e2nα + 1

}

= βm

{
(−1)mΓ(2m)

(2π)2m

∞∑
k=1

(1 + (−1)k) cos(πk/2)

k2m
+
∞∑
n=1

(n− 1/4)2m−1

e(n−1/4)β − 1
+
∞∑
n=1

(n− 3/4)2m−1

e(n−3/4)β − 1

}
.

Using the fact
∑∞

n=1(−1)k/k2m = 2−2m(2− 22m)ζ(2m) in the above equation, we arrive at (1.5).

Next, subtracting (3.41) from (3.40) yields

(−1)mΓ(2m)

(2π)2m

∞∑
k=1

(1− (−1)k) cos(πk/2)

k2m
+
∞∑
n=1

(n− 1/4)2m−1

e(n−1/4)β − 1
−
∞∑
n=1

(n− 3/4)2m−1

e(n−3/4)β − 1

= (−1)m
∫ ∞

0

x2m−1 cot(βx/2)

cosh(x)
dx.

Note that the first sum on the left-hand side of the above equation vanishes. Therefore, rewriting the

left-hand side in terms of the Dirichlet character χ defined in (1.7), we are led to (1.6). �

4. A simple proof of the transformation for
∑∞

n=1 σ2m(n)e−ny

In [16], this theorem was obtained for the first time as a corollary of a more general result, namely,

(1.9). Hence the absolute convergence of the series on the right-hand side of (1.11) resulted automatically.

In what follows, we not only give a direct proof of this result, but also prove from scratch the convergence

of the series.
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To that end, we first prove the identity for y > 0 and later extend it to Re(y) > 0 by analytic

continuation. We begin by showing the absolute convergence of the series on the right-hand side of

(1.11). Note that for w > 0, (1.20) and Theorem 1.12 imply

sinh(w)Shi(w)− cosh(w)Chi(w) +
m∑
j=1

(2j − 1)!w−2j = Rm(1, w) =
1

w2m
Rm(w, 1). (4.1)

Now employ Lemma 2.1 for Rm(w, 1), and then let w = 4π2n/y, where y > 0 (as assumed at the beginning

of the proof), so that as n→∞, we have

sinh

(
4π2n

y

)
Shi

(
4π2n

y

)
− cosh

(
4π2n

y

)
Chi

(
4π2n

y

)
+

m∑
j=1

(2j − 1)!

(
4π2n

y

)−2j

= Om,y

(
1

n2m+2

)
.

(4.2)

The absolute convergence of
∑∞

n=1 σ2m(n)/n2m+2 then implies that of the series on the right-hand side

of (1.11) with the help of the above estimate.

We now prove (1.11). Let a = 0 and s = 2m+ 1 in (3.18) so that

∞∑
n=1

σ2m(n)e−ny =
(2m)!

y2m+1

{
ζ(2m+ 1) +

∞∑
k=1

(
ζ

(
1 + 2m, 1 +

2πik

y

)
+ ζ

(
1 + 2m, 1− 2πik

y

))}
.

Using (2.22), we can see that for m ∈ N,

ζ

(
1 + 2m, 1 +

2πik

y

)
+ ζ

(
1 + 2m, 1− 2πik

y

)
= ζ

(
1 + 2m,

2πik

y

)
+ ζ

(
1 + 2m,−2πik

y

)
.

Now employ Theorem 1.9 with z = m and w = 2πk/y in the above equation to see that

∞∑
n=1

σ2m(n)e−ny =
(2m)!

y2m+1

{
ζ(2m+ 1) +

cos(πm)

m

(
2π

y

)−2m ∞∑
k=1

1

k2m

+ 2
∞∑
k=1

∞∑
n=1

∫ ∞
0

(
1

(v − 2πik/y)2m+1
+

1

(v + 2πik/y)2m+1

)
cos(2πnv) dv

}

=
(2m)!

y2m+1

{
ζ(2m+ 1) +

(−1)m

m

(
2π

y

)−2m

ζ(2m) + 2(2π)2m
∞∑
k=1

∞∑
n=1

n2m

×
∫ ∞

0

(
1

(t− 4π2ink/y)2m+1
+

1

(t+ 4π2ink/y)2m+1

)
cos(t) dt

}
,

where in the last step we made change of variable v = t/(2πn). Letting nk = `, we see that

∞∑
n=1

σ2m(n)e−ny =
(2m)!

y2m+1

{
ζ(2m+ 1) +

(−1)m

m

(
2π

y

)−2m

ζ(2m) + 2(2π)2m
∞∑
`=1

∑
n|`

n2m

×
∫ ∞

0

(
1

(t− 4π2i`/y)2m+1
+

1

(t+ 4π2i`/y)2m+1

)
cos(t) dt

}
. (4.3)

Next, invoke Theorem 1.12 with w = 4π2`/y in (4.3) to arrive at

∞∑
n=1

σ2m(n)e−ny =
(2m)!

y2m+1

{
ζ(2m+ 1) +

(−1)m

m

(
2π

y

)−2m

ζ(2m) +
4(−1)m(2π)2m

(2m)!

∞∑
`=1

σ2m(`)
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×

{
sinh

(
4π2`

y

)
Shi

(
4π2`

y

)
− cosh

(
4π2`

y

)
Chi

(
4π2`

y

)
+

m∑
j=1

(2j − 1)!

(
4π2`

y

)−2j
}
.

(4.4)

Using (3.39) in (4.4) and rearranging the terms leads to (1.11) for y > 0. The result can be extended

by analytic continuation to Re(y) > 0. This is seen as follows. Clearly, the left-hand side of (1.11) is

analytic in this region. We now show that the series on the right is also analytic. In order to prove this

using Weierstrass’ theorem on analytic functions, we need only show that (4.2) holds for Re(y) > 0 as

well. To that end, employing (1−
√
ξ)−(2m+1)− (1+

√
ξ)−(2m+1) = 2(2m+1)

√
ξ 2F1

(
m+ 1,m+ 3

2 ; 3
2 ; ξ
)
,

we find that∫ ∞
0

(
1

(t− iw)2m+1
+

1

(t+ iw)2m+1

)
cos(t)dt =

2(2m+ 1)

(−1)mw2m+2

∫ ∞
0

t cos(t)2F1

(
m+ 1,m+

3

2
;
3

2
;− t2

w2

)
dt.

(4.5)

The integral on the right can be evaluated in terms of the Meijer G-function G 3,1
2,4

(
1, 3

2

1,m+1,m+ 3
2
, 3
2

∣∣∣∣ w2

4

)
employing [19, p. 81, Formula 8.17.6]. That

G 3,1
2,4

(
1, 3

2

1,m+1,m+ 3
2
, 3
2

∣∣∣∣ w2

4

)
= − w2

√
π22m+1

r+1∑
j=1

Γ(2m+ 2j)

w2j
+O(w−2r−4), as w →∞, Re(w) > 0 (4.6)

can then be obtained using the asymptotic of this Meijer G-function given in [31, p. 179, Theorem 2].

With w = 4π2n/y,Re(y) > 0, the first equality of (4.1) and (4.5) finally prove (4.2). This completes the

proof of (1.11) for Re(y) > 0.

�

5. Asymptotics of the plane partitions generating function

Proof of Corollary 1.6. The following estimate can be directly shown to hold as y → 0 in Re(y) > 0 as

is done later. However, we first prove it separately for real y → 0+ owing to its simplicity.

Indeed, for real y → 0+, Lemma 2.1 along with (4.1) imply that

sinh

(
4π2n

y

)
Shi

(
4π2n

y

)
− cosh

(
4π2n

y

)
Chi

(
4π2n

y

)
+

m∑
j=1

(2j − 1)!

(
4π2n

y

)−2j

=
(−1)m+1

(4π2n)2m
y2m

r+1∑
j=1

Γ(2m+ 2j)

(4π2n)2j
y2j +O

(
y2r+2m+4

)
. (5.1)

For complex y in Re(y) > 0 such that y → 0, (5.1) is seen to hold from the first equality of (4.1), (4.5)

and (4.6).

Substituting (5.1) in Theorem 1.5, we deduce that

∞∑
n=1

σ2m(n)e−ny =
(2m)!

y2m+1
ζ(2m+ 1)− B2m

2my
− 2

π

(
2π

y

)2m+1 y2m

(2π)4m

∞∑
n=1

σ2m(n)

n2m

r+1∑
j=1

Γ(2m+ 2j)

(4π2n)2j
y2j

+O
(
y2r+3

)
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=
(2m)!

y2m+1
ζ(2m+ 1)− B2m

2my
− 2

yπ(2π)2m−1

r+1∑
j=1

Γ(2m+ 2j)

(4π2)2j
y2j

∞∑
n=1

σ2m(n)

n2m+2j
+O

(
y2r+3

)
.

Using the well-known identity
∑∞

n=1 σa(n)n−s = ζ(s)ζ(s − a), where Re(s) > 1,Re(s − a) > 1, in the

above expression, we arrive at (1.13). �

We are now ready to derive Wright’s result from [46] as a special case of Corollary 1.6.

Proof of Corollary 1.15. Letting m = 1 and y = log(1/x), |x| < 1 in Corollary 1.7 and using (1.14), as

x→ 1−, we have

x
d

dx
logF (x) = − 2ζ(3)

(log x)3
+

1

12 log x
+

1

π2

r+1∑
j=1

Γ(2j + 2)ζ(2j + 2)ζ(2j)

(2π)4j
(log x)2j−1 +O

(
−(log x)2r+3

)
.

(5.2)

Now divide both sides by x and then integrate with respect to x to get

logF (x) = c+
ζ(3)

(log x)2
+

1

12
log log x+

1

π2

r+1∑
j=1

Γ(2j + 2)ζ(2j + 2)ζ(2j)

2j(2π)4j
(log x)2j +O

(
(log x)2r+4

)
,

(5.3)

where c is an integrating constant. Exponentiating both sides of the above equation, we arrive at (1.15).

�

6. Concluding remarks

For general a with 0 ≤ a < 1, the generalized Lambert series

∞∑
n=1

(n− a)s−1

enz − 1
(s ∈ C,Re(z) > 0)

does not seem to have been studied before. It makes its appearance for the first time in Theorem 1.1 of

our paper. It may be interesting to undertake a further study of this series.

In [11, Theorem 1], Bradley obtains a generalization of Ramanujan’s formula (1.1) for periodic functions

g with period m ∈ N. When g is even, his transformation involves the series of the type
∞∑
n=1

g(n)n−2m−1

enβ − 1

whereas for g odd, it involves

∞∑
n=1

g(n)n−2m

enβ − 1
. Observe that the series in our (1.6) involves

∞∑
n=1

χ(n)n2m−1

enβ − 1
,

where χ(n) defined in (1.7) is an odd Dirichlet character and m ∈ N,m > 1, and hence does not fall

under the purview of Bradley’s transformation. Thus it may be worthwhile to see if a more general

transformation encompassing our series exists. We note that another series which is not covered by

Bradley’s transformation is

∞∑
n=1

n−2m

enβ − 1
, for which a transformation was recently obtained in [16, Theorem

2.12].

In [16], Theorem 1.5 was obtained as a special case of (1.9) by tour de force whereas in the present

paper, this has been accomplished directly. One can then ask if a direct proof of Theorem 2.12 of [16],

which is a transformation for
∞∑
n=1

n−2m

enβ − 1
, can be derived without resorting to (1.9).
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[18] A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions (Bateman Manuscript

Project), Vol. II, McGraw-Hill, New York, 1953.
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