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Dedicated to Professor Bruce C. Berndt on the occasion of his 70th birthday

ABSTRACT. We derive two new analogues of a transformation formula of Ramanujan
involving the Gamma function and Riemann zeta function ((s) present in the Lost
Notebook. Both involve infinite series consisting of Hurwitz zeta functions and yield
modular-type relations. As a special case of the first formula, we obtain an identity
involving polygamma functions given by A.P. Guinand and as a limiting case of the
second formula, we derive the transformation formula of Ramanujan.

1. INTRODUCTION

In the volume [11] containing Ramanujan’s Lost Notebook are present some manuscripts
of Ramanujan in the handwriting of G.N. Watson. The first of these manuscripts con-
tains the following beautiful claim (see [11, p. 220]).

Theorem 1.1. Define

8(z) = (a) + 5 —log, (1.1)

where

I (x = 1 1
Yl) = F((x)):_v_mz:o(m+x_m+1) (1.2)

is the logarithmic derivative of the Gamma function. Let the Riemann &-function be
defined by

£(s) == (5 — )a2°T(1 + )¢(s),

and let

E(t) == &(5 +it) (1.3)

be the Riemann =-function. If o and B are positive numbers such that a8 = 1, then

\/a{ log27ra Z(ﬁk@}z B{ log27rﬁ Z¢k5}
1 < /1 -1+t
- :(af)r( ol

where v denotes Fuler’s constant.
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coS (§tlog a)
1+¢2

dt, (1.4)

Keywords and phrases. Riemann =Z-function, Riemann zeta function, Hurwitz zeta function, Gamma
function.
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A.P. Guinand [4, 5] rediscovered the first equality in (1.4) in a slightly different form.
Recently, B.C. Berndt and A. Dixit [1] proved both parts of (1.4). A key element in
their proof was the identity [9, p. 260, eqn. (22)] or [10, p. 77, eqn. (22)], true for n

real,
/mr —Lit (1t L mewﬁ
0 4 4 2 1+1¢2
> 1 1 1 1
:77'3/2/ ( - - —) ( — - ) dx. (1.5)
0 e —1 xen et —1 ze ™

Ramanujan’s paper [9] contains other identities similar to (1.5). Motivated by the use
of (1.5) in deriving (1.4), we work with two other identities in [9, eqns. (19), (20)] to
derive two new analogues of (1.4). This shows that Ramanujan’s result (1.4) is not
isolated and that there may be many more results of this type. Some such results, apart
from some of the ones discussed here, are obtained in [2] and [3]. But the techniques
employed in this paper are different than the ones used in those papers in that here we
use only the theory of special functions and do not use contour integration.

At this stage, it must be pointed out that identity (19) in [9], which will be used in
proving our first analogue, as it stands, is incorrect. The second term on its right-hand

[1]

side, namely, —i(47r)<5;23>F(3)C (s) coshn(l — s) should not be present. Furthermore,

there is another identity in [9], namely identity (21), which is incorrect, since the second
(s=3)

term on the right-hand side, namely, —z(4m)~ 2 I'(1+s)¢(1+s) coshn(1+s), should
not be present. Identities (19) (corrected), (20) and (21) (corrected) are respectively
as follows:

Theorem 1.2. For Re s > 1 and n real,

/OOF s— 141t r s—1—1t —(t+is t—1is cos nt it

0 4 4 “\ 2 2 ) (s+1)2+¢2
1 =3 [ s

= _(4n)" =z d 1.6
gm A (e — 1)(ewe ™ —1) " (16)

where =Z(t) is as defined in (1.3).

(11

Theorem 1.3. For —1 < Re s < 1 and n real,

/OOF s—1-+it r s—1—it = t+is = t—1is cosnt gt

0 4 4 2 2 (s+1)2+1¢2
1 s— o 1 1 1 1

:4Mrﬂﬁ/ ol [ — N dz. (1.7)
8 0 e —1  xem e " —1 ze™

The identity (1.5) is the special case s = 0 of (1.7).
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Theorem 1.4. For —3 < Re s < —1 and n real,
/OOF s—1+1t r s—1—1dt = t+1s = t—1s cosnt it
0 4 4 2 2 (s+1)2+1¢2
1 =3 [ 1 1 1 1 1 1
— Z(47)" s — - — — | dx.
8( T /0 ’ (em" -1 ze * 2) (e“" -1 zem i 2> v

(1.8)

Now we state the two key theorems in this paper which give two new analogues of
(1.4).

Theorem 1.5. Let ((z,a) denote the Hurwitz zeta function defined for Re z > 1 by

= 1
((z,a) = : (1.9)
2 G ay
If a and B are positive numbers such that oS = 1, then for Re z > 2 and 1 < ¢ < Re

a3 ctioo s
= m/c ['(s)¢(s)I'(z — s)((z — s)a"*ds

—100

(
>z—4

_ 8(4m) 2 /OOF Zo24it\ L (2=2—it) J (t4iz =) o (i = 1) cos (3tlog ) dt
T(2) o 4 4 - 2 - 2 22 + 12 ’
(1.10)
where Z is defined as in (1.3).
Theorem 1.6. Let 0 < Re z < 2. Define p(z,x) as
1 . ,jljl_z

2 1—2’
where ((z,z) denotes the Hurwitz zeta function. Then if a and B are any positive
numbers such that aff =1,

z () ot () -
Q(ngzm 207 (z—l) (Z“”kﬁ 2ﬁz_ﬁ(z—1)>
8(4m) T

:—/ r z—2+at r z—=2—at\ _ (t+i(z—1)\ o (t—i(z—1) cos(%tloga)dt
I'(z)  Jo 4 4 - 9 = 5 2o ;

(1.12)

where Z(t) is defined in (1.3).

This paper is organized as follows. In Section 2, some basic properties of Mellin
transforms are reviewed. Then in Section 3, we derive an analogue of (1.4), namely
Theorem 1.5, using two different methods, both of which make use of (1.6). In Section
4, we derive a second analogue of (1.4), namely Theorem 1.6, which makes use of (1.7),
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and gives (1.4) as a limiting case. Finally in Sections 5 and 6, identities (1.6) and (1.8)
are respectively proved.

2. BASIC PROPERTIES OF MELLIN TRANSFORMS
Let F(z) denote the Mellin transform of f(z), i.e

F(z) = /000 277 f () da. (2.1)

Then the inverse Mellin transform is given by

f(x)::-ifl/m T R, (2.2)

278 Joino

where ¢ lies in the fundamental strip (or the strip of analyticity) for which F(z) is
defined. We also note the Mellin convolution theorem [8, p. 83] which states that if
F(z) and G(z) are Mellin transforms of f(z) and g(z) respectively, then

1 c+i00o

/000 o7 (2)g(x) de = — F(s)G(z — s) ds, (2.3)

2m c—100
¢ again being in the associated fundamental strip.
Now let F'(z) be related to f(x) by (2.1) and (2.2), where f(x) is locally integrable
n (0,00), is O(z7%) as  — 07 and O(x7%), where b > 1, as x — oo and a < ¢ < b.
Then for max{1l,a} < ¢ < b, we have

c+100

Zf (kz) 27?2/ F(s)¢(s)x™*ds, (2.4)

where ((s) denotes the Rlemann zeta function (see [8, p. 117]).

3. THE FIRST MODULAR RELATION INVOLVING HURWITZ ZETA FUNCTIONS

In this section, we prove the first of the two “modular relations”, i.e., Theorem 1.5,

mentioned in the introduction. Generally a “modular relation” is a relation between
two expressions governed by the transformation z +— —1/z, where 2z is a complex
variable. Any such relation can be cast into the form «f = constant which is the
formulation Ramanujan employed and which we also adopt in this paper.

Theorem 3.1. Let ((z,a) denote the Hurwitz zeta function defined for Re z > 1 by
(1.9). If a and B are positive numbers such that a5 = 1, then for Re z > 2 and 1 < ¢ <
Re z — 1,

agiiC(zl+ ) ﬂ‘}jg(z1+ )
Qﬁflj(z) /ccj:o I'(s)¢(s)D(z — s)C(z — s)a~* ds
8(4m)z

(1]
(1]

S = A”F(z—i+ﬁ)r(z—i—ﬁ> <t+x§_n>

2
(3.1)

(t —i(z — 1)) cos (3tlog )

22 4 t2

dt,
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where = is defined as in (1.3).
First proof: Replace s by z — 1 in (1.6) and then multiply the resulting two sides

by 8(4%)%46_”‘2, so that for Re z > 2 and n real, we have

-4 _ ©_(z—2+41it z—=2—dit\ _ [(t+i(z—1)\ - [t—i(z2—1)\ cosnt
8(4m) 2z e ro———|r{——|z(——| 2 dt
e () e () ()R () B

/oo xz—l ( )
=e " — — dz. 3.2
o (e =1)(em " —1)
The integral on the right-hand side of (3.2) can be viewed as the Mellin transform of
1
the product of — and ———.
ere” — 1 ere™ —1

But for Re z > 1, the integral representation of ((z) [12, p. 18, eqn. (2.4.1)] gives

00 tzfl

T(2)C(z) = /0 R— (3.3)

Employing a change of variable t = xze™ in (3.3), we deduce that

e " I(2)¢(z) = /000 i dz. (3.4)

ere" — 1

Similarly letting t = xze " in (3.3), we find that

o] z—1
e T (2)C(2) = / A (3.5)
o e —1
Thus from (2.3), (3.4) and (3.5), it can be seen that for 1 < ¢ < Re z — 1,

> I.z—l 1 c+i00
d = — 777/51—‘ n(zfs)l—\ o N d
| e L, Tt
(3.6)
which can be written as

e 7 L _ 6 C+iooe_2”5 $)((s)'(z—s)((z—s)ds
[ = g [ TG s ds. (1)

c—100

Letting n = 3 loga in (3.2) and (3.7) and combining them together, we arrive at

8(47T)2240é;/°0F =24t L (zm2-it)  (tHiz - D)) o (i - 1) cos(%tloga)dt
0 4 4 2 2 Z2+t2

1 c+1i00
= — L(s)¢(s)I'(z — s)((z — s)a" * ds. (3.8)
2mi c—100
Upon simplification, this gives the last equality in (3.1). Now since 1 < ¢ < Re z — 1,
on the vertical line Re s = ¢, we have Re (2 —s) > 1. Therefore we can use the

representation

((z=s) =) kj_s. (3.9)
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Using (3.9) on the right-hand side of (3.8), by absolute convergence, it can be seen
that
1 c+1i00 c+ioco

— L(s)C(s)T'(z = 8)((z — s)a*ds = Z k™ 227” C(s)C(s)T'(z — 9) <g>7s ds

27T7/ c—100 c—100 k
= 1 [t (T (s)[(z — s) a\ s
=T k™% — —_— <—> ds. 3.10
kg [ ( o) () as (3.10)
Now we know that for 0 < Re s < Re z, Euler’s beta integral B(s,z — s) is given by
gl [(s)'(z — s)
Bls. 7 — s) — dy = " \275) 3.11
9= | G- 2R (3.11)
1
In other words, B(s, z — s) is the Mellin transform of iTo For Re z > 2, f(z) :=
x z
1
aror is locally integrable on (0, 00). Also, as x — 0T, f(x) = O(1) and as x — oo,
T 4
1 1
flz)~—=0 R—()>. In particular, for 1 < ¢ < Re z — 1, using (2.4) and (3.11),
xZ €T ez
we find that
1 c+1i00 oo
— B — “Fds = 1 . 12
i | (8,2 —8)C(s)x™" ds mzjl( + xm) (3.12)

The integral in the second expression in (3.10) can also be directly evaluated using
formula 5.78 in [7, p. 202].

From (3.10), (3.11) and (3.12), we arrive at

1 ctioco 00 o)

5= TN — 8¢z —s)a " ds=T(=) > k=Y (1+ )
k=1 m

c—100 -1

z)ii(lﬁ—l—am) =T (2 ZC(zl—l— ) (3.13)

k=1 m=1
Invoking (3.13) in (3.8), simplifying and rearranging, it is observed that

a%Z (zl—|— )

k=1

Q|

(2—4)

8(45()2) /O‘X’F (z - i—i—it) . (z - i— it) - (t +z'(22 —~ 1)) - <t - z‘(2z (13)24;:%2(2%2(;5@) "

This shows that the extreme left and right-hand sides in Theorem 3.1 are equal. Now
replacing a by f in (3.14), and making use of the fact that a8 = 1 and that cos @ is an
even function of A, we obtain the equality of second and fourth expressions in Theorem
3.1 as well. This completes the proof of Theorem 3.1. U
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Remark: An alternative way to proceed from (3.8) is to use the series definition of
((s), interchange the order of summation and integration, and then use the following
formula from [7, p. 202, formula 5.78] valid for 0 < ¢ = Re s < Re z — 1:

1 c+1i00
Py [(s)I'(z—s5)((z —s)a*z *ds =T'(2)((z,1 + ax), (3.15)
T Je—ioo
with x = 1. But since the evaluation of (3.8) given previously is short and self-

contained, we chose to do it that way.

1
Second proof: Letting n = % log a in (3.2) and multiplying both sides by ——, we

I'(z)

/Oor —24at\ (22—t _(t+ilz - 1)\ J (t—i(z 1) Cos(%tloga)dt
4 4 2 2 2%+ 2

o0 zl
d
Fz)/o (erve —1)(er/vVa —1) v
a”

o] tz 1
dt. 3.16
Z) /0 )(et/> — 1) ( )

see that

(=4

8(47r) 2

M\N

a~z [® 71 a"s [ et &
dt = —kt/e gt
['(2) /0 (et —1)(et/> — 1) ['(2) /0 1—et Z ¢

k=1
ag > 1= (1h/at
——dt 3.17
EPD / L (3.17)

where the order of summation and integration can be interchanged because of absolute
convergence. But from [12, p. 37, eqn. (2.17.1)], we know that for Re z > 1,

1 00 xz—le—ax

Using (3.18) in (3.17), we deduce that

?(j) /0°° (et — 1§Z;i/a —1) dt =a”3 iﬁ (Z L+ g) : (3.19)

k=1

Thus from (3.16) and (3.19), we derive (3.14). Then following the same argument as
in the first proof, we obtain the equality of second and fourth expressions in (3.1) as
well. This finishes the second proof.

O

Corollary 3.2. For Re z > 2, we have

D ¢ 1+k) =((z—1) = ((2)
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:%/jr(z—iﬂ't)F(z—i—@'t>E<t+¢<§—1>>5<t—¢<§—1)) zQC—iil—ftT

(3.20)

Proof. Set a =1 in (3.1) and note that from [12, p. 35|, for 1 < ¢ < Re z — 1, we have
c+i00

[ TG-S s =TE) - D¢ (321)

g

3.1. Guinand’s formula as a special case of (3.1). Let ¥¥)(z) denote the j*
derivative of the digamma function ¢ (x) defined in (1.2), also known as the polygamma
function of order j. In [5], Guinand gave the following formula

i YD+ k) =297! i ) (1 + g) : (3.22)
k=1 k=1

where j > 2. We derive this formula as a special case of (3.1). Let z € N,z > 2. From
(1.2), by successive differentiation, it is seen that

o0

2D (2) = (<1)(z — 1) > i ot (3.23)
Thus,
i kf; VEV(1 4 ka) = (=1)%(z = 1)laZ ig (m +1k:a)z
= (=1)*(z — D)la? mi:l ,i (m +1ka)z
= (=1 (z =17 mi;l g (k + 71n/0<)2

= (-1)*(z—1)!az i ¢ (z, 1+ %) , (3.24)

where the change in the order of summation in the second equality is justified by
absolute convergence.

Then from (3.24) and (3.1), we obtain the following alternative version of (3.1) when
z is a natural number greater than 2:

o0 o0

(t+i(22—1))

4

= §(—1)7(4m)T

></ F<z—2+zt>r<z—2—zt)
; 4 4

[1]
[1]

t —i(z—1)\ cos (5tloga) ”
2 22 4 12 ’
(3.25)
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since ['(z) = (2 — 1)!. To obtain (3.22), we simply replace z — 1 by j, a by x and by
1/z in the first equality of (3.25).

4. THE SECOND MODULAR RELATION INVOLVING HURWITZ ZETA FUNCTIONS

Theorem 4.1. Let 0 < Re z < 2. Define ¢(z,x) as

1 $lfz

p(z,2) = ((z,2) — 277 +

4.1
5 . (4.1)

where ((z,x) denotes the Hurwitz zeta function. Then if a and [ are any positive
numbers such that aff =1,

ot (S etet = S - S0 ) < (St $2 - S
R ()R () o)

where Z(t) is defined in (1.3).

Proof. The asymptotic expansion of ((z,x) [6, p. 25| for large |z| and |arg z| < 7 is
given by

m—1

sz
(2k)!

( (e - 1)+ F T+ D(z + 2k — a2t | O(x72m =71,

= (4.3)

Hence for 0 < Re z < 2, the series Z(p (z,ka) as well as Zcp (z,kpB) are analytic

=1
functions. We first prove the result for 1 < Rez< 2and later extend it to 0 < Re

z < 2 using analytic continuation.
Replacing s by z — 1 in (1.7), we find that for 0 < Re z < 2,

/OOF z—2+it r z—2—1t = t+i(z—1) = t—i(z—1)\ cosnt it
] 4 4 2 2 242
1 e [ 1 1 1 1
= —(4m)” =t - — — du. 4.4
8( T /0 v (eme" -1 xe”) (efﬂe” —1 xe‘") ’ (4.4)

Multiplying both sides of (4.4) by 8(47r)% and then letting n = 3 log a, we see that

8(4m) 2 /OOOF (z—i+it) r (z—i—z’t) (t+i(z— 1)) = (t—z’(z— 1)) cos (3tloga) "

[1]

2 2 22 4 ¢2

_ /Ooo e (ex\/al_ -~ xj/@) (ex/% — - x/iﬂ) dz. (4.5)
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Making a change of variable z = ¢/y/« in the integral on the right-hand side of (4.5),
we have

[1]

2 - 2 22 42

(t+z’(z— 1)) — (t—i(z - 1)) cos (3tloga)

-1 [ z— 2+t z—2—1it
(4m) =z r{——|r
an = [T (=) ()
& 1 1 1 1
:72/2 tZ*l _ - e dt
“ /0 (et—l t) (et/a—l t/a)

B 0 (et/e —1)(et —1) tlet —1) tlet/*—1) 2

:]1(z,a)+12(z,a), (46)
where
oo 1 o e—t/a
1(2,0&) « ; <€t/a—1)<€t—1> t<€t_1) + o ) ( )
and
) _1 o e_t/a
2(2,0) = ; t(etlr — 1) + 2 ot (4.8)
First,

(oe] 1 6% 1 ]_ eit/a
I _—z/2 1 _ — dt
1(2706) « /0 ((et/o‘—l)(et—l) t(et—l) +2(€t_1) Q(Gt—l) + ot )

- / R e dt
2 Jo et —1 t

:]3(Z,Q)+I4(Z,O[), (49)
where
oo ¢l 1 1 1
I = 2/2/ — 4+ =) dt 4.1
)= <<et/a—1> t/a+2) ’ (4.10)
and
a—3? [ 1 et/
I =— =1 — dt. 4.11
) === [Te (- ) (4.11)

Now for evaluating I3(z, o), we make use of the following formula [6, p. 23] valid for
Re 2z > —1 and Rea >0

a® a'? 1 [ L 1 11
= — — TATpET — —+ — | dx. 4.12
¢(za) 2 1—z+F(z)/0 © " (em—l x+2) ’ (4.12)
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Since t > 0, expanding in terms of its geometric series and then interchanging

(e —1)
the summation and integration because of absolute convergence, we find that

00 tz—l —t 1 1 1
I3(z,a) = oz_z/Q/ ‘ ( — + —) dt
0

l—et\etlo—1 t/a ' 2

_ . —z/ - > z—1 _—kt 1 _L 1

— 2;/0 t*te (et/a—l t/a+2) dt

= o//QZF(z) (C(z, ko) — (ko)™ + (ka)l_z)
k=1

2 11—z
= T (2) Z o(z, ka), (4.13)

k=1

where in the penultimate step, we have made a change of variable ¢ = ax and then
used (4.12). Next we evaluate I4(z,«). Since Re z > 1, using (3.3) and the integral
representation for I'(z — 1), we find that

—2/2 [e'¢) tz_l oo
Ii(z,a) = @ 5 (/ o dt — / 727t dt)
o € — 0

a/fz/2
= (D(2)¢(2) — o™ 'T(z — 1))
_ —gF(Z)C(Z) PRI (4.14)
Hence from (4.9), (4.13) and (4.14), it is seen that
L(z,a) = a*/T(2) Z o(z, ka) — a—;F(z)C(z) + a2 I'(z—1) (4.15)

i

1

It remains to evaluate I5(z, ). Now from [12, p. 23, eqn. (2.7.1)] for 0 < Re z < 1,

we have
I(2)C(2) :/OOO tH( ! - %) dt. (4.16)

et —

Thus employing a change of variable v = t/a in (4.8) and then using (4.16) and the
integral representation for I'(z — 1), we see that

> 1 1 e
-1 —1
z - - d
/0 " (u(e“ —-1) w? * 2u ) N

z & 1 1 1 [
=—q2! (/ u?? ( — —) du + —/ ey ? du)

[NJENS

L(z,a) = -«
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Finally from (4.6), (4.15) and (4.17), we see that after simplification

8(4;()2(;24) /OOOF <z - i+z’t> - (z - i— it) . (t+z‘(2,z - 1)) - (t - z'(; - 1)> cosz(ik;fa) "
_ af (i O O G S G U) . (4.18)

p 200 a(z—1)

Now replacing v by ( in (4.18) and then combining the result with (4.18), we arrive at
(4.2), since with o8 = 1, the left-hand side of (4.18) is invariant under the map o« — £.
This implies (4.2) for 1 < Re z < 2. Now using Stirling’s formula on a vertical strip,
which states that for s = o +it, « < o < f and [t| > 1, we have

T(s)| = (27)2 )" 2 27 (1 L0 (Itl)) (4.19)

as t — oo and using estimates on the zeta function, it is straightforward to show that
the extreme right-hand side of (4.2) is absolutely and uniformly convergent for 0 <
Re z < 2 and hence analytic in that strip. Also the first two expressions in (4.2) are
analytic for 0 < Re z < 2, except for a possible pole at z = 1. But it is easily seen that
z = 1 is a removable singularity because the residue of ((z) at z = 1 is equal to 1 and
because ((0) = —3. Hence by analytic continuation, (4.2) holds for 0 < Re z < 2. O

As a limiting case of (4.2), we obtain Ramanujan’s transformation formula, i.e.,
identity (1.4).

Corollary 4.2. If

o(x) :==Y(x) + % — log x, (4.20)

and o and B are positive numbers such that o =1, then
log(2ma) log(2m3
ﬁ{” Z¢ka}= {”2—;) Z¢<k6>}

k=1
1 /°°
/2 |,

coS (%t log a)
1+t

dt. (4.21)

1 —1 4+t |?
=(=t|r
(30)r (77)

Proof. Let z — 1in (4.2). Then using Lebesgue’s dominated convergence theorem, we
observe that

. =z z—1 z—1
i (st~ S0 - L) (St 42 - =0

I A ?
o2 o [T \2 4

cos (itlog 04)
1+t

dt. (4.22)
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Now since Y -, (2, ka) and >~ ¢(z, kB) converge absolutely and uniformly in a
neighborhood of z = 1, which can be seen from (4.3), we observe that

- )
B (@%“) ' (i nglw(z ka)) — lim (C@ o )) B hm( Gt

— =1\ 20%(z—1)  a(z—1)
(4.23)
But it is known [12, p. 16] that
) 1
i (00~ =) =+ (124)
Hence
1
lim (&) _ S (4.25)
=1\ 202 2a%(z —1) 2a

Next using L’Hopital’s rule, we see that

lim ( ! + A 1)> lim ! - lim L+2077¢(z — 1)
207 (

z—1 z—1) a(z—-1) 251207 21 ~—1

. 1 . z—1 z—1
= lim —— - lim <2a C(z— 1) +20(z — Da* L log a)

_ % (2¢'(0) +2¢(0) log o)

log(2mav)

-, (4.26)
since ((0) = —3% and ¢'(0) = —31log(27) [12, pp. 19-20, eqns. (2.4.3), (2.4.5)]. Now
noting that [6, p. 23]

1
i (0(e1) - 2 ) = ~vta), (427)

and using L’Hopital’s rule again, we observe that
lim p(z, ka)
z—1
1 k 1—z
— lim (g(z, ka) = 5 (ka) = + (ko) )

z—1 1—=2

e —z ka)l—z_l
_Eg% K((z ka) ) 11—z }

1 —(k )1 Zlogka
W“”—ﬂ5+£3
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= —(ka) — % + log(ka)

— (ka), (4.28)

where ¢(z) is as defined in (4.20). Hence from (4.23), (4.25), (4.26) and (4.28), we find
that

li_rgoz% (ngzka 2513_2?2:11):_@( 10g27ra ZCﬁkOé),

(4.29)
Thus from (4.22), (4.29) and (4.29) with « replaced by /3, we obtain
— log(27ma) log(273)
—f{ 2 Zsbka}:—ﬁ{” : Z¢k5}
1 /00 — 175 r —14it\|?* cos (itloga) gt (4.30)
w2 o [T\ 2 4 14 ¢2 ST
Multiplying (4.30) throughout by —1, we arrive at (4.21). O

5. PROOF OF (1.6)

Here we show that the second term on the right-hand side of identity (19) in [9],
1
namely, —1(47T>( QS)P(S)C(S) coshn(1l — s) is not present and thus indeed that (1.6) is
actually the correct version of identity (19) in [9]. Since the exposition in Sections 4
and 5 of [9] is quite terse, we will derive (1.6) giving all the details. We will collect and
prove, wherever necessary, several ingredients required for the proof along the way.
First, identity(15) in [9] states that for Re s > —1 and aff = 47r2 we have

C1=5) e, C=s) #* sin (awy)
(s;0) 4COS(7TS/2)a 8sm(7rs/2) (2 — 1)(e2mv — 1) v
CL=38) -1y C(=8)  as+1)/2 L Al +1)/2/ / ® sin (Bry)
= ————=f" —p" y dzdy.
4cos(7r3/2)6 + 88111(7‘('8/2)6 +h o Jo (e —1)(e?™ —1) v
(5.1)
. . o . ¢ —5s)
This relation can be proved by obtaining integral representations for ————— and
4 cos(ms/2)
% and by using the identity (see [9, p. 253])

* sin(axy) 1 1 11
VA R (N ——— 5.2
/0 e2my —1 Y 2(eam—1 oz 2 (5:2)

Since we are concerned with the case Re s > 1 as far as identity (19) in [9] is concerned,
we prove (5.1) for Re s > 1 only. Other cases can be similarly proved.

Now the functional equation for ((s) in its non-symmetric form [12, p. 13, eqn.
(2.1.1)] states that

((s) = 2°7°7'T(1 — s)¢(1 — s) sin (37s) . (5.3)
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Using this and (3.3), one can easily show that for Re s > 1,

((1—s) 1/0" 5tz (5.4)
deos(ims)  2)y e -1 '
and
C(—s) -1 /°° r*dx
— = — : 5.5
88111(171'8) 4 J, e —1 (5:5)

Hence using (5.2), (5.4) and (5.5) in (5.1), we see that

a(s+1)/ 0o s
G(s;a) = 5 /0 (@ —T)(e 1) dx. (5.6)

So (5.1) will be proved for Re s > 1 if we can show that

(s+1)/2 s J 6(8+1)/2 5 p e
oo e e el M e L

27
But this is easily seen by making the substitution z = Y on the left-hand side of
«

(5.7) and using the fact that a8 = 47*. Thus (5.1) is proved for Re s > 1.
Next, identity (17) in [9] states that when a8 = 47% and Re s > —1, we have

¢A-s) s-—1 (s-1)/2 | gls-1)/2 ¢(=3) s+1 (41)/2 . als+1)/2
Teosm 7 @) rmm e @ AT

+a5+1)/2/ / <Ozxy s+3  (awy)®  s+T +) x*dxdy
0 6+32+2 3 (+72+0 (2 — 1)(ew — 1)
5(S+1)/2/ / (ﬂxy s+3  (Baxy)®  s+T L ) v dxdy
1! (s+3)2+t2 31 (s+T7)2+t2 (e — 1) (e — 1)
2(5 2T (3(s —14it)) T (3(s — 1 —it))

1 t+is\ — (t—1is 1151 o}
= COS | —t10g — | .
T (5+1)% +£2 2 2 4% 5

(5.8)

[1]

Letting o = 8 = 27 in (5.8) and simplifying, we find that

¢(1—ys) s—1 ¢(—s) s+1
meos(ms/2) (s —1)2 4+t sin(ws/2) (s + 1) + t2

N 8/ / 2rxy s+ 3 B (2rxy)® s+ 7 N xdxdy
11 (s43)2 4t 3 (s+T7)241¢2 (e — 1)(e?™v — 1)

(ﬂs—1+wDF(ﬂs—1—ﬁ»E(t+w)E(t—%)‘ (5.9)

7T(8+3)/2 (S+1)2+t2 2 2

Now we know that for Re a > 0,

> —au a
/0 e " cosbudu = prwr (5.10)
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Using (5.10), we wish to replace the fractions of the form (STj)LQJ—i—tQ in (5.9) by
integrals. Since Re s > 1, for j > —1, we have
i :/ e~ 5T cos tu, du. (5.11)
(s+7)+t  Jy

Hence using (5.11) in (5.9), inverting the order of integration because of absolute
convergence and simplifying, we see that

1 D(G(s=1+t))T(§(s—1—it)) _ (t+is\ _ (t—is
(s+3)/2 (s+1)2 +¢2 9 - 9

1- < - ~
7 cos(ms/2) sin(ms/2) Jo

2 2rwy)® [
+ 8/ / ( Ty / e~ cos tu du — ( ﬂ;y) / et costu du + - - - )
0 : 0

dedy
X (6271':1: _ 1)(627ry _ 1)
_/Oo{ C(1—s) (s Du ¢(—s) (st

7 cos(ms/2) sin(ms/2)

27r:1:ye o (2rpye=?v)3 x*dxdy
(s+1)u _ c.
+ 8e™ / / < " + D) 1) costu du

2u
:/ 1 — 5) (s l)u ( ) —(s+1 Uy 8e —(s+1)u / / x® sin 27r$ye ) dl‘dy
0 7rcos(7rs/2) sm(7rs/2) (e?m@ — 1)(e?mv — 1)

(1]

X cos tu du. (5.12)
Now let
<(1_3> o~ (s=u (_ ) (s+1)u —(s+1) / / 2% sin 27rxye 2“)
= (s ge~ ot drd
UCE 7rcos(7r3/2) s1n(7rs/2) e (e2me — 1) (e2my — 1) ey,
(5.13)
and
Fits) = 1 D(G(s=1+it))T(§(s—1—it)) _ (t+is) _ (t—is (5.14)
T (s 43)/2 (s+1)241¢2 U2 )T 2 S
Then from (5.12), (5.13) and (5.14), we have
f(t, s) = / f(u, s) costu du. (5.15)
0

Now we show that f is an even function in wu.
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If we let @ = 2me™?* and 8 = 2me®* in (5.1), upon simplification, we find that

CA=s) (i, C(=s) o~ (s+Du (s+1)u / / % sin 27rxye 2u)
. ’ 8e (s dxd
7TCOS<7TS/2)€ s1n(773/2) +8e 627rz _ 627ry ) ray

_ C(l - S) 6(8 Du (_S) S-‘rl 8 (s+1)u / / x” sin 27Tl'y€ ) dl'dy
7 cos(ms/2) sm(7rs/2) (e?m — 1)(e?™v — 1)
(5.16)

This proves that f is an even function in u. Also using the fact that =(—t) = Z(t), we

readily observe that fis an even function in t.
Then from Fourier’s integral theorem and (5.15), we deduce that for n real,

Fn,s) = % / " Fit, s) cosmt di. (5.17)
0
Now define is
F(n,s) := %f(n, s). (5.18)

Then from (5.13), (5.14) and (5.17), we find that
oD (L(s—14it))T (Ls—1—it : i
F(n,s):/ (it i) L (505 ' ))E(t—HS)E(t—w) cosnt dt
0

(s+1)2+1¢2 2 2
s+5
_r: ((1—s) e~ (s=1n 4 = o~ (s+)n
2 \mcos(ms/2) sin(ms/2)
* t*sin (2wtye ")
(s+1)n
T8 / / e dtdy). (5.19)
Substituting (5.2), (5.4) and (5.5 (5.19), we find that
s+5
Tz [2e (=D oo ys—lgy > et
F —9 (s+1)n/
(n, s) = 2 [ T /0 et _ 1 © 0 et —1
O tidt 1 1 1
4*ﬁm/‘ — - 5.20
e o et —1 \e2mte™™ 1 2nte2n + 2 (5:20)

n

Letting ¢t = 62—36 in (5.20), we find that
T
Fln,s) = 5 en /°° xtl dv 1 /°° a:‘:dx

2 23717rs+1 0 (ecpe _ 1) 257-(-3+1 0 (exe _ 1)

n 1 /°° zédx 1 1 n 1
23—17-‘-8—0—1 0 (ea:e" _ 1) ea:e*" _ 1 rem 2

1 L am)- e | /°° x‘*;l de l/oo ZL“: dx

B o (e —=1) 2 J, (e —1)

N /°° r3dx 1 1 N 1

o (e —1)\e™" —1 ze™ 2

1 =3 [ x5 dx
4 . 21
= ()" / T (5.21)
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Finally, we obtain (1.6) from (5.19) and (5.21).

6. PROOF OF (1.8)

We will be brief with our exposition here. We note that we cannot prove identity
(1.8) using the above method of Ramanujan, since (5.8), which was crucially employed
in that method, is true only when Re s > —1. Instead, we use a reverse route in the
sense that we obtain (1.8) through a corresponding transformation formula valid for
—3 < Re s < —1, which was established in [3] and which is as follows.

Theorem 6.1. Let —3 < Re s < —1. Define A(s,z) by
r’ 1 s—1 (S + 1)1:_8_2

e A . 1
57 5 (6.1)

where ((s,x) denotes the Hurwitz zeta function. Then if o and  are any positive
numbers such that aff =1,

e (f) Asinay— S S+ | s+ DL + 2))

A(s,z) =C(s+1,2) —

as 2 12q5t2
1 [ — C(s) ((s+1)  (s+1)(s+2)
=37 (; A(s,np) — Bs + 5 + 1057 >

5—3

_ 8(4m) 2 /Oor s—l4it\ [ (s—1—it\ o (this\ o (t—is COS(%tloga)dt
S T(s+1) J, 4 4 L2 )T\ 2 (s+1)2+1¢2

(6.2)
where =(t) is defined in (1.3).

We wish to emphasize that this does not lead us to circular reasoning since (6.2) is
proved in [3] using contour integration and Mellin transforms. To establish (1.8), we
do not need the full strength of (6.2), rather just the equality of the first and the third
expressions. We now establish the result first for —2 < Re s < —1.

First of all, it is easy to adapt (4.12) to see that, for Re s > —2,

© /1 1 1 a
F(s+1)A(3,na)—/O e (ex—l_;+§_ﬁ) dx. (6.3)

Then following a similar procedure as in (4.13), we observe that

- < 1 11 ¢t
alHI2D (s 4 1) ZA(S, na) = a(s+1)/2/ ( ( + - - ﬂ) dt.
0

et —1) \et/o—1 t/a 2 12

n=1

Since —2 < Re s < —1, we also see that

> /1 11 ot
rce) = [ (Gt gy )

Y
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o 1 1
(s +2 2)= [ | —=—-)dt. :
e = [Ten (o) (6:5)
Then from the equality of the first and the third expressions in (6.2), and from (6.4)
and (6.5), we see that after simplification

8(4#)323/00F s—14it\ L (s—1—it\ _ (tis)_ (t—is cos(%tloga)dt
0 4 4 2 2 (s+1)2+1¢2

o 111 1 11
— o (s+1)/2 15 _ 4z ) dt
“ /0 (et—l t+2) (et/a—1 t/a+2)
1 11

—/OOS + ! L D) (6.6)
) “\eve 1T ol 2 \eva 1T 2y T 2) 4" '

where in the ultimate step, we made a change of variable t = zy/a. Finally, we obtain
(1.8) for =2 < Re s < —1 by letting @ = ¢* in the last step in (6.6). Now using
(4.19) and estimates on zeta function, we can show that the left-hand side of (1.8) is
absolutely and uniformly convergent for —3 < Re s < —1 and hence analytic in that
strip. Similarly, by analysing the behavior of the integrand on the right-hand side of
(1.8) at 0 and at oo, one easily sees that the right-hand side of (1.8) is analytic for
—3 < Re s < —1. Thus by analytic continuation, (1.8) holds for —3 < Re s < —1.
Remarks. 1. Identity (1.7), for —1 < Re s < 1, is derived in a very similar manner
as the derivation of (1.6) in Section 5, except that since Re s < 1, the first expression
C(1—ys) 1—s
meos(ms/2) (1 — s)2 + 2

on the left-hand side of (5.9) is written as — and then we use

the evaluation,
1—s5
(1 —5)2+1¢2
This along with an analysis similar to that in Section 5 gives (1.7). Now it turns out that

if we use (6.7) instead of (5.11) with j = —1 when Re s > 1, then we do get the second

1 s—
term on the right-hand side of identity (19) in [9], i.e., —1(47r)( 7 ['(s)¢(s) coshn(l—s),

as given by Ramanujan. This explains how Ramanujan was erroneously led to his iden-
tity.

:/ e~V cos tu du. (6.7)
0
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