ANALOGUES OF THE GENERAL THETA TRANSFORMATION
FORMULA

ATUL DIXIT

ABSTRACT. A new class of integrals involving the confluent hypergeometric function
1F1(a;¢;2z) and the Riemann Z-function is considered. It generalizes a class con-
taining some integrals of S. Ramanujan, G.H. Hardy and W.L. Ferrar and gives as
by-products, transformation formulas of the form F(z,«) = F(iz, ), where a8 = 1.
As particular examples, we derive an extended version of the general theta trans-
formation formula and generalizations of certain formulas of Ferrar and Hardy. A
one-variable generalization of a well-known identity of Ramanujan is also given. We
conclude with a generalization of a conjecture due to Ramanujan, Hardy and J.E. Lit-
tlewood involving infinite series of Mobius functions.

1. INTRODUCTION

For a3 = w, Re o2, 82 > 0, the well-known transformation formula for the theta
function p(q) = 32°° __¢", where |g| < 1, is given by [3, p. 43, Entry 27(i)]

g () = Vo (),

It can also be written alternatively, for a8 = 1, in the form

1 > 2,2 ]. > 2,2
- —Tan — - —mBn . 1.1
Va5 = e ) = V(55 - e ) (1)
In [29, p. 36], one finds the following integral evaluation
/OO =) cosatdt = = [ e3 —2¢% i gl (1.2)
o t?+1 2 — ’ '
where Z(¢) is the Riemann =-function defined by
2(t) == &(5 + it), (1.3)
the £(s) being the Riemann ¢-function
1o
€(s) i= Ssls — DT BT (s), (14)
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and ((s) being the Riemann zeta function (see Section 2). Replacing ¢ by ¢/2 on the
left-hand side of (1.2), then setting z = log o and simplifying, gives for af = 1,

2 [ E(t/2 1 1 22

;/o %/t?)cos (;ﬁloga) dt = \/B(%_;eﬂﬁn ) (1.5)
Now the invariance of the integral on the left side of (1.5) under the map o« — /3 proves
(1.1). Such integrals involving the Riemann =-function, which are invariant under
certain maps, can be used to prove a variety of transformation formulas. A beauti-
ful example illustrating this phenomenon is found on page 220 in Ramanujan’s lost
notebook [27], with the first proofs being given in [6]. This formula which Ramanujan
describes as ‘curious’ is given below.

Theorem 1.1. Define

Ax) :==(x) + % — log x,

I (x - 1 1
Pl) = F(($)) B _7_7;_:0 (m—{—x B m+1) (16)

is the logarithmic derivative of the Gamma function. Let the Riemann’s functions =(t)
and £(s) be defined as in (1.3) and (1.4) respectively. If a and B are positive numbers
such that o =1, then

\/a< log27ra Z/\koz): < 1og27rﬁ Z/\k5>
1 *l_ /1 -1+t
——= [ ) (557

where v denotes Fuler’s constant.

Ramanujan [26] was the first one to employ the idea of using integrals involving the
Riemann =-function to prove transformation formulas. After Ramanujan, N.S. Koshli-
akov made a fruitful use of this technique in several of his papers. Recently, this
technique was further explored and extended by the author in [9, 10, 11, 12] to obtain
more general transformation formulas of the form F(z, ) = F(z, 8) or their character
analogues F'(z,a,x) = F(—z,8,X) = F(—z2,a,X) = F(z, 5, x), where af = 1, in addi-
tion to the transformation formulas of the above type, i.e., of the form F(«) = F(f5).

This paper focuses on formulas of the type F(z,«a) = F(iz, ), where af = 1. This
work was motivated by the search for an integral representation, similar to (1.2), for
both sides of the following generalization of (1.1), valid for a5 =1 and z € C,

where

coS (51? log a)
142

dt,

Va < 5 eé 2 e ™" cos \/_omz)> = \/E (% —e -% ;e_”62”2 cos(iﬁﬁnz)) ,

(1.7)

which is of the form F(z,«) = F(iz,$). In [2, p. 252-253, Entry 7], this identity
can be found in a slightly different form. Another version of (1.7), given in terms of
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Ramanujan’s theta function f(a,b) = 350 _ a"(+D/2pn(=1/2 " |gp| < 1, and valid for
af =, is [3, p. 36, Entry 20]

e T \/_f( ~a’tiza oo _m> \/_f( 428 —26>'

For more details, see [5].

Formulas of the type F(z,«) = F(iz, 5) are generated through a one-variable gen-
cralization of integrals of the form [ f (£) 2 (%) cos (3tlog o) dt, whose special cases
were studied by Ramanujan, Koshliakov, G.H. Hardy and W.L. Ferrar. See [9] for some
examples. This one-variable generalization is of a different kind than those studied in
[11, 12] in that, the variable z does not occur in the argument of the Riemann =-function
but rather in a function which generalizes the cos (%t log a) term. This function, which
we denote by V(z, z, s), involves the confluent hypergeometric function 1 Fi(a;¢; 2) [1,
p. 188], and is defined by

Vi(z,z,8) :=plx,z,5)+ plr,z,1—3), (1.8)

where

2
Fi(a;c; z) = i (a)nz" (1.9)
1471 (W, &y (c)nn' .
n=0
with (a), being the rising factorial defined by
r

(@n=ala+1)-(a+n—1)= <1?(Z)"),

for a € C. It is easy to see that
]_ t it it 1
\% (a,O —;Z ) =a 2 +a2 =2cos <§tlogo¢)

The general form of the integrals giving rise to transformation formulas of the type
F(z,a) = F(iz, B) is given by

F(z,a) = /Ooof (%) = (%) v (a,z, L J; it) dt. (1.10)

where f(t) is of the form f(t) = ¢(it)¢(—it) and ¢ is analytic in ¢ as a function of
a real variable. To see this, recall Kummer’s first transformation for the confluent
hypergeometric function [1, p. 191, Equation (4.1.11)]

1Fi(a;e;2) = €1 Fi(c —a;c; —2). (1.11)
Using (1.11) in the second equality below and the fact that a5 = 1, we see that

1+ 1+ 1—1
v (s ) = (Bin 5 ) 4 (B 5

1 1+it L2 1—it 1 2 1 1-it .2 144t 1 2
=p2" 2 es | F (—Z'—'—ZZ)ﬂLﬁ?_ 2 681F1( l .5__2'_
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it 1+t 22 it z2 11—t 1
=2 **F — 2 F e
a2e 8 1( 1 4)—1—04 e 8 1( 1 9

1 22
) 4
( 1 —zt) < 1+Zt>
=pla,z,
=V (a,z, 1;”). (1.12)

Then (1.10) and (1.12) imply that F(z,«) = F(iz, ).

We explicitly evaluate the integrals in (1.10) for several choices of the function f(¢).
These give rise to new analogues of the general theta transformation formula (1.7). We
begin by stating the general theta transformation formula itself obtained through such
an integral. Its extended version is as follows.

Theorem 1.2. Let z € C. If a and B are positive numbers such that a8 =1, then

\/_<_8—68 Ze ”cos \/_cmZ)):\/B(—;— Ze "cosh fﬁnz))
1 [ Z=(t/2) 1+t
:;/O 1+t2V<a,z,T> dt.

(1.13)

At the end of his short note [15], Hardy obtained an identity, whose corrected form
(see for example, [9]), is

* =(t/2) cosnt 1 _ 1 1 . /oo .
dt =-e " (2 — -1 log2 | +5€" e ™ d

/0 1+ 12 cosh Snt 1€ nt 27—’_ 2 ogT +10g 2 J+5¢ ; U(z+1)e x,
(1.14)

where n is real and Y (x) is defined in (1.6).
Later, Koshliakov [21, Equations (14), (20)] expressed the above identity in a com-
pact and symmetric form, which we rephrase in the following form, valid for a8 = 1:

\/_/ Y(x+1)—logx)e ’"”’dx—\/_/ Wz +1) —logz) e ™" du
*=(t/2 stl
:2/ (1/2) cos (tloga) (1.15)
0

1+t cosh %mﬁ

This is seen at once by letting n = %loga in (1.14) and by using the formula [14,

p. 572, formula 4.333] [ e ™" logzdr = —4 (v + log (4a?7)). Koshliakov also
proved this identity in several of his other papers, namely, [17, Equation 30.5], [18,
Equation 34.10]%, [20, Equations 18, 19]. He also gave two different generalizations of
Hardy’s formula; one in [17, Equation 30.4] and [18, Equation 34.1], and another in
[19, Equation 27]. (See [7, p. 198-199] for the genesis of the monograph [19] written
under Koshliakov’s patronymic name ‘N. S. Sergeev’.)

Here, we obtain the following new generalization of (1.15), again of the form F(z,«) =

IThe formula here contains a typo, as the factor %log 27 should be %log .
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Theorem 1.3. Let z € C and let y(z) be defined as in (1.6). If o and § are two

positive numbers such that o =1, then

\/&% /OOO (W(z +1) —logx) e ™ cos (Vmaxz) dv

22

— /Be /000 ((z+1) —logx) e ™7 cosh (VrBzz) dx

_ /Oo =t/ V(@25 (1.16)
o L1+t cosh %wt

In [13], Ferrar obtained some transformation formulas of the form F(«) = F(f), of
which one is rephrased in the form given below.

Let Ko(z) denote the modified Bessel function of order 0. If a and B are positive
numbers such that aff = 1, then

- ]. 16 21 > 7rcz2n2 2 2 ]_
\/a( v + log 167 + Oga—QZ(e 2 K0<7Tan>__>>
«Q 2 no

n=1

B —~ + log 167 + 21log 3 - no2n? 73%*n? 1
—W?< g —230 (¢ (7 )W))

n=1

s [ 1+t 1 —it t\ cos (3tloga)
=4 r r == ) —2—2dt. 1.1
7”/0 <4)(4)<2> L+ (117)

This also admits the following new generalization, which is the third example of the
form F(z,«a) = F(iz, B).

Theorem 1.4. Let z € C and let Ko(z) be defined above. If oo and [ are positive
numbers such that aff =1, then

22 o0 o<2t2 t nd
\/aeS/O e~ it cos (%) <nE:1 Ko(nt) — %) dt
N R tz > T
=4/pe’s /0 e~ 4 cosh <2ﬁﬁ> (;Zl Ko(nt) — §> dt
1 o 141 1—at\ =(t/2 141
L () N EC2) G (o, LY 4
SN 1 1 )1+ 2

For real n, Ramanujan [26] showed that

(1.18)

2 4an

o pe e 1 o -1+t —1—1t
e_”—47re_3"/ 3362— dr = / r + r !

[1]

t
—) cosnt dt.

(1.19)
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As noted in [9], letting n = %loga in the above identity and noting that the resulting
integral on the left side is invariant under o« — 3, where aff = 1, gives

2

_ nz?

T
o0 o0 - a2
xre o 1 3 xre B
/ — _dr=p"F—AnpB:  dx
0 0

627rz -1 e27ra: -1

4oy
1 & -1+t —1 —at t 1
= r r =1 = —tl dt. 1.20
4Wﬁ/o ( 4 ) ( 4 ) (2)COS<2 Og@) (1:20)

For more details on the first equality in (1.20), see [9]. Interestingly, this identity does
not admit a generalization of the form F(z,a) = F(iz,[3), as can be seen from the
following new generalization of (1.19).

N
Njw

«

Theorem 1.5. Let z € C and let p(x, z,s) be defined in (1.9). Then,
22 / re cos (y/Taxz) ”
0

1 22
e~ 8 —4razes 5
e — 1

1 o -1+t —1—it t 3+t

:W/OOF( ; )r( 7 )E(é)p(a,z,%> dt. (1.21)
Obviously, the presence of g instead of % in p (a,z, 32”) destroys the invariance
property under the simultaneous application of the maps o — 3 and z — iz. Regard-
ing the special case when z = 0 of the integral on the right-hand side of (1.21) (i.e.,
the integral on the right-hand side of (1.20)), Hardy says in [15], “The integral has
properties similar to those of the integral by means of which I proved recently that
((s) has an infinity of zeros on the line ¢ = £ and may be used for the same purpose.”
It may be interesting to see what information can be extracted from the general integral.

«

ol

In [16, p. 156, Section 2.5], Hardy and Littlewood discuss the following amazing
identity, actually a conjecture, involving infinite series of Mc6bius functions having its
genesis in the work of Ramanujan [4, p. 470].

Let p(n) denote the Mdobius function. Let a and B be two positive numbers such
that a8 = 1. Assume that the series (T(52) /¢ (p)) a* converges, where p runs
through the non-trivial zeros of ((s) and a denotes a positive real number, and that the
non-trivial zeros of ((s) are simple. Then

o0 2 1p
VY e S e
n=1 P

B —p(n) =21 ) 2
_\/B;Te n 4\5\/3%: )" Br. (1.22)

The original formulation, slightly different in [16], can be easily seen to be equivalent
to (1.22). See also [24, p. 143] and [29, p. 219, Section 9.8] for discussions of this
identity. The above conjecture admits the following generalization, also of the form
F(z,a) = F(iz, B).
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Theorem 1.6. Let p(n) denote the Mébius function. Let z € C and let o and 5 be two

1—p
positive numbers such that a8 = 1. Assume that the series Zp %ﬂﬂ 1%p; %; _ZQ> TZaP
converges, where p runs through the non-trivial zeros of ((s) and a denotes a positive
real number, and that the non-trivial zeros of ((s) are simple. Then

Vaes ZM ¢ %C°S<caz) 4\/_\/—2 (1;[);%;_%2) mia

L SRt ) e V2 (52 o (1=p 1 2%\
= /Be ;T n cosh( - ) 4\/_\/_2 <2 ( 5 ,2,4>7T Be.

This paper is organized as follows. In Section 2, we discuss preliminary results which
are subsequently used in the later sections. In Section 3, we obtain a line integral
representation for the integral in (1.10). Then in Sections 4, 5, 6 and 7, we prove
Theorems 1.2, 1.3, 1.4 and 1.5 respectively. In Section 8, we give proof of Theorem
1.6. Finally, we conclude the paper with some remarks on further developments that
may be possible.

2. PRELIMINARY RESULTS

The Riemann zeta function ((s) is defined for Re s > 1 by the absolutely convergent
Dirichlet series
= S 2.1
6= 0 (21)
It can be analytically continued first to 0 < Re s < 1 by an elementary argument and
then to the whole complex plane, except for a simple pole at s = 1, by means of the
following functional equation [29, p. 22, eqn. (2.6.4)]

s —S ]_ -
7730 (g) C(s)=n 2T ( > S) c(1—s), (2.2)
which can also be written in the form

&(s) = €(1 - s), (2.3)

where £(s) is the Riemann ¢-function defined in (1.4). We also need some basic prop-
erties of the Gamma function I'(s). The reflection formula for the Gamma function
[28, p. 46] is given by

™

C(s)I'(1—s) =

(2.4)

sinms’
for s ¢ Z. Further, Legendre’s duplication formula [28, p. 46] gives

(s)0 <s + 1) = \/ir(zs), (2.5)

2 225
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Stirling’s formula for I'(s), s = o 4 it, in a vertical strip o < o < 3 is given by
l O'—l —lﬂ"tl 1
D(s)| = (2m)2[t|"" 22" {1+ O w)) (2.6)
as |t| — oco. We will also require the inverse Mellin transform representation of the
function e~ cos bx [25, p. 47, Equation 5.30], valid for ¢ = Re s > 0, and given by
> 1 [H°1 s rs\ 1—s 1
2 cos by = — sa o0 () et m (g e s, 2.7
e™™" cosbr = o— 54 5)¢ 11( 5 24@)1’ s (2.7)
which can be easily proved by employing the series representation of {F; and then
interchanging the order of summation and integration. Finally, we require the asymp-

totic expansion, for large values of |)|, of the Whittaker function M) ,(z) defined by
[14, p. 1024, formula 9.220, no. 2]

M), (2) = a2 Fy (L—A+32u+1;2). (2.8)
Its asymptotic expansion [14, p. 1026, formula 9.228] is given by

c—100

1 1
My, (z) ~ ﬁF(Zu + DA a2 cos (2\/)\ ol %) : (2.9)

as |\| = oo. Letting 4 = —1 and replacing z by 2?/4 in (2.9) and using (2.8), we
obtain, upon simplification,

Fi (3= 55) ~ e eos (VAz)) (2.10)
as |A| — oc.

3. A LINE INTEGRAL REPRESENTATION

Here we give a line integral representation for the integral in (1.10) that will allow
us to use the residue theorem and Mellin transforms for its evaluation.

Theorem 3.1. Let
f(t) = o(it)p(—1t),
where ¢ is analytic in t as a function of a real variable. Let V(z, z,s) and p(x, z, s) be

defined as in (1.8) and (1.9). Assume that the integral on the left side below converges.
Then,

/OOO fOEDV (a, z, % + it) dt = %/:O ¢ (8 - %) ¢ (% - s) &(s)pla, z,5) ds.
(3.1)

Proof. Let I(z,a) denote the left-hand side of (3.1). Then using the facts that
f(t),=(t) and V (a, z, % + it) are all even functions of ¢, we have

I(2,0) = % </0°° FOEBY (a,z, % + z’t) dt /O_OO F—H)E(—1)V (a,z, % - it) dt)

= %/Z fO=Z)V (oz,z, % + ’it) dt
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L1 i 1 1 X ;
=5 -~ ¢ (s - 5) o (5 — s) £(s) (pla, z,8) + pla, 2,1 — 5)) ds

_ 212 (L(z ) + B(za), (3.2)

L(z,a) = ﬁm é <s - %) é (% . s) £(s)pla, 2, s) ds

2 —100

Dz a) = ﬁm s <s _ %) s (% _ s) £(s)pla, 2,1 — ) ds,

3 —100

where

and in the penultimate step in (3.2), we have performed a change of variable s = %—i—it.
Now rewriting I5(z, «) by employing (2.3), and then replacing s by 1 — s, we easily see

that
%-H'oo
L= [T (% - <1—s>) ¢(1—s—§) 61— $)pla 2,1 — 5)ds.
:/;+m¢ s— o (L) esnla 2, ) ds
. > 5 pla, z,
Hence, substituting (3.3) in (3.2), we obtain (3.1). O

For our purposes, we will use the following alternative form of (3.1), which is easily
obtained by replacing ¢ by t/2 on the left-hand side of (3.1):

o\ _ [t 1+ it 9 [atico 1 1
/o f (5) = <§> \Y (a,z,T> dt = ;/%ZOO ols— 3 o) 58 E(s)pla, z, 8) ds.
(3.4)
4. PROOF OF THEOREM 1.2: EXTENDED VERSION OF THE GENERAL THETA

TRANSFORMATION FORMULA

Using (1.3), (1.4), (1.8), (1.9), (2.6) and (2.10), we easily see that the integral on
the extreme right-hand side of (1.13) converges. Let ¢(t) = ﬁ so that f(t) =

o(it)p(—it) = m. Substituting this in (3.4) and using (1.4) and (1.9), we have

*°=(t/2 1+t
4/ (/)V a, 2, ik dt
o 1+t 2
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To evaluate the last integral, we shift the line of integration from Re s = 1/2 to Re
s=1+4,d >0, so that we can use (2.1). Consider a positively oriented rectangular
contour with sides [5 + iT, 5 — iT],[3 — T, 1+ 6 —iT],[1 + 6 —iT,1 + 6 + T] and
[1+ 0§41, % + 1T, where T is any positive real number. While shifting, we encounter
the pole of the integrand at s = 1. Hence, using the residue theorem, we have

/F (3)cenr (5255 ) Wrara

1
1+4+6—iT 14 8+4iT S+T s 1—s 1 22
= +/ +/ F(—)CS F( ;—;—) Ta) *ds
/T o s T\ ORI (g ) (V)

2

— 2milim(s — )T (g) ()1 Fy (1 =3 s 1 Z?) (VFa) (4.2)

Using (2.6), one easily sees that the integrals on the horizontal segments [% -1+
6 —4T) and [1 + & + 4T, 5 + iT] tend to zero as T' — oo. Also,

S 1—5122 1

(s — 0 (3) clon (555 ) (v = . (13

Therefore, letting T — oo in (4.2), using (4.3) and (2.1) in the integral over [1 + 0 —
100, 1 4+ § + i00], we have

[r e (Y5555 wrere

100

1+6+i00 0 2
S 1—-s 1 2z 21
- () F( ’a’z) (Vman)™ds = =~

> () (521 Z) (Vranyeds— 20 (4

14+d5—i0c0 2

n=1

where in the last step, we have interchanged the order of summation and integration,
which is valid because of absolute convergence.
Letting a = 1,2 = \/man,b = z in (2.7), we see that

I I 1—s 1 22
/ I (‘) | —— (Vman) = ds = dmie ™"/ cos (Vmanz).
1+d—ioc0 2 2
(4.5)

Now (4.1), (4.4) and (4.5) imply that

1 [™E(t)2) 1+t e % ran
%/0 1+t2V(a,z,T) dt:\/a< —e¥ Ze cosfomz)).
(4.6)
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Finally, replacing z by iz and a by (3 in (4.6), noting that the integral on the left-hand
side remains invariant in this process, and then combining the result with (4.6), we
arrive at (1.13).

5. GENERALIZATION OF HARDY’S FORMULA

Let ¢(s) = 4\/1%1" (34 %) (L + %), so that

F(8) = b(it)p(—it) — 3217T2r (}1 + g) r (%1 + g) r G - g) r (‘Tl _ %) |

Applying (2.4) twice, we easily see that f (L) = 1/((1+¢?) cosh $7t). Using these facts
along with (1.3), (1.4), (1.8), (1.9), (2.6) and (2.10), we find that the integral on the
extreme right-hand side of (1.16) converges. Substituting this in (3.4) and using (1.4)
and (1.9), we have

/°° E(3t)V (a, 2, 1;“) "
0

1+1¢ cosh %mt

_ 1 T —53(5_1) 9 (S s—1 1—s -5
_167r2i/; g 5 ¢ <§>F( 5 )F( 5 >F(7>C(s)p(a,z,s)ds

—100

1 22

_ _Ozie._? [%HOOP <§> ((s) o (1 — S;%;ZZ2> (Vo) ds, (5.1)

43 L oo 2/ sinws 2

where in the last step, we used (2.5) as well as (2.4).

To evaluate the last integral, we shift the line of integration from Re s = 1/2 to Re
s=1+4d,d >0, so that we can use (2.1). Consider a positively oriented rectangular
contour with sides [5 + iT, 5 — iT],[3 — T, 1+ 6 —iT],[1 + 6 —iT,1 + 6 + ¢T] and
[1+6+ Z'T,% + iT], where T is any positive real number. While shifting the line of
integration, we encounter the pole of order two of the integrand (due to ((s) and sin7s)
at s = 1. Hence, using the residue theorem, we have

e ) N )
/;—-T F<§> sinwlel( 9 ’5’1) (Vma) ™ ds

(2

. . 1 .
1+6—iT 1+6+iT 5+iT 1 — 1 22
= / +/ +/ F<f> C(S) 1F1 < 87_’2_) ( 7TOZ)_SdS
%fiT 1+4+6—4T 148+iT 2/ sinTs 2 2 4

—2milL, (5.2)

where

L d e S C(s) 1—8_1'22 s
L= EEH E ((S ].) r (5) <in 7T81F1 9 ) 57 Z ( WO‘/)
= Ll —|— LQ, (53)
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where

w10 () i) (1555 }
bt - () S o (155)

s—1 sin s

Using (5.12) from [9], (1.4) and (2.4), we observe that

L = limdi ((5 — T <§> ¢(s) (ﬁa)_s>

- _?2 ?i‘id% ((s =1)°T(s = DT (=s)&(s)a™")
= (—7 + log (4ma?))/(27a). (5.4)
Now,
d 1—3'1'22 o d ((1—3)/2)n(22/4>n
£1F1< 2 ’5’2)_%; (1/2)n n!
A AT (e
_;(1/2%71!%][[0( 2 H)
LN A (1os) R
T 24 (1/2)nn!< 2 )n;]%ﬂ"
so that
d 1—s 1 22 1. (24" (3=
lﬁ?%lFl( 2 ’5’2) _§£1iri;(1/2)nn'( 2 >n_1
Lo (22/4)
—_52(1/2%71
_ _%221?2(1, 1;3/2,2: 22 /4). (5.5)

Hence, Ly = 2 - 9 F5(1,1;3/2,2; 2%/4) so that, by (5.3) and (5.4),

1 2
L=— (—7 + log (4ma”) + %QFQ(L 1;3/2,2; 22/4)) . (5.6)

21«

As before, using (2.6), one easily sees that the integrals on the horizontal segments
[ —4T,14 6 —iT] and [1 4+ & + 4T, 3 + T tend to zero as T' — co. Thus it remains
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to evaluate

1+0—1i00

o0 1+d0+i0c0 1“(%) <1_8 1 )
= - 1F1 ;55— | (Wman)™*ds
> 5

14+6—ico SHITS

1464300 S C(S) 1—5 1 22
= (2 F S -
J(Z,CY) / ‘ <2> Sinﬂ'Sl 1( 9 72a 4)( 7TOZ) ds
22

=Y J(z,a,n), (5.7)

where we have interchanged the order of summation and integration, which is valid
because of absolute convergence. Another application of the residue theorem yields,
for 0 <c=Res<1,

c+i00 F(§) 1—g5 1 22
_ 2 F oL 2 —s
J(z,a,m) /C_ioo . 1( DL 4>( wan) " ds
L (s=1T (%) l—-s 1 22 i
+ 2mi lim s Wil 5y (Vman)~
(5.8)
It is well-known that [24, p. 91, Equation (3.3.10)]
1 [er> g 1
— ds = . 5.9
270 Jo_ioo SinTs ° (1 +x) (5.9)
Also, from [24, p.83, Equation (3.1.13)], we have
1 c+100
— F w ds = 5.10
o | PG s = [ ( (5.10)

where F'(s) and G(s) are Mellin transforms of f(z) and g(x ) respectively. Hence, from
(4.5), (5.9) and (5.10), we have

c+ioo F s 1 . 1 2 9 oo 7332
/ : (5) g < i Z—) (Vman)~*ds = 4ie” /4/ T g (5.11)
. 0

iso SINTS 2 274 T+ /Tha

Also,

. (s=1)I (%) 1—s5 1 22 i 1
lim— 2> 2/ F P = — = —— 12
i sinrs ! 274 (Vman) (5.12)

Thus, (5.8), (5.11) and (5.12) imply that

2 2
oo —X —zZ 4
J _ i / e cosxzd G / ' = 13
(2, ) = die ( o T++/Tna 7 Tona (5.13)

2 .
#/4 as an integral, we have

2 o
EEA = e cos xz dx (5.14)
— /0 | |

Rewriting e~
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Now (5.13) along with (5.14), (5.7) and (1.6) give

r i 1 1
J(z, ) = 4ie? /42/ cos(zz {x+ﬁna_ﬁna}dx

1 1
—4ie® /42/ —me?7 cos(vramz) {n } dx

r+n

o0

1 1
_ 2/4 —ma?z? .
= —4ie® /0 e cos(v/Taxz) 7?:0 {n 1 aris n} dx

= —4@'622/4/ (p(x + 1) +7) e ™ cos(vmazz) da
0

2
— _4je*’/4 e "
2x

where in the second step we made the change of variable x — /max and in the third
step, we interchanged the order of summation and integration, which is valid because
of absolute convergence. Thus from (5.1), (5.2), (5.6) and (5.15), we have

/°° 2E(3t)V (a z, 1) "
0

1+¢ cosh 27rt

2

Je % e ” /4 2,2
— _a2: i {—416 ( / Yz +1)e ™ cos(vTazz) dx)
i

—= (—7 +log (1ma?) + ZaFy(1,1:3/2.2 z2/4>) }
2 [ 2,2
= Vaes / Y(x+1)e” ™™ cos(vmaxz) d
0

2
+ 4\/_ <’y + log (47a”) + ?FQ(L 1;3/2,2; 22/4)> : (5.16)
Finally, replacing z by iz and a by § in (5.16), noting that the integral on the left-hand
side remains invariant in this process, and then combining the result with (5.16), we
arrive at

[ETls,
0

1+¢ cosh %T{'t

= Vaes / Uz +1)e ™ cos(v/maxz) dx

2
+ 4\/_ <’y—i— log (4ma?) + %ZFQ(L 1;3/2,2;%/4))
— \/Ee’% /oo Wz + 1)e"™* cosh(vaBaz) da
0
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+ <’y—|—log (47 5%) — ?2F2(1,1,3/2 2; — 2/4)) : (5.17)

4\/_
We can rewrite (5.17) in a more compact form by means of the integral evaluation

[e’e) 2 2
/ e cos(y/maxz)log x dr = —64—4 (7 + log (4ma”) + %2F2(1, 1;3/2,2; 22/4)) ,
0 a
(5.18)
which can be proved by expanding cos(y/Taxz) into infinite series, interchanging the

order of summation and integration and then employing the following formula [14,
p.573, formula 4.352, no. 3], valid for Re pu > 0,

S 2n — 1)!! 1 1
/ x”fie’“xlogxdx:\/?—( - 3 [2 (1+—+“'+ )‘7_10g4“]
0 QnMn+§ 3 2n—1

along with the fact that

(=224 1 1 2
Z e (+§+---2n_1):—%eZ2/42F2(1>1;3/2,2;22/4),

n=

which in turn can be proved by reversing the steps in (5.5) and using (1.11). Combining
(5.18) with (5.17), we obtain (1.16).

6. GENERALIZATION OF FERRAR’S FORMULA

Using (1.3), (1.4), (1.8), (1.9), (2.6) and (2.10), we easily see that the integral on
the extreme right-hand side of (1.18) converges. Let ¢(s) = ﬁf (1 + %) so that

fE) =0(%) ¢ (F) = 25T (B2 T (152). Substituting this in (3 4) and using (1.4)

2 2 2 2t 4
and (1.9), we have

Fp (L p (Lot 2E2) 4t
r r L+t
1 4ico
_ o 2 —:n2 f 1—s
—2Z/é_. g I (2>F< 2 )C(S)p(a,z,s)ds

zzia%ef/;ioor?(Q)F(l;S) C(s)lFl(lgs ! ZQ)(\/_a) ds,  (6.1)

100

To evaluate the last integral, we wish to shift the line of integration from Re s = 1/2
toRes=1+0,0<d < 2, so that we can use (2.1). Consider a positively oriented
rectangular contour with sides 3 +i7T, 3 — T/, [3 —iT,1+0 — 4T, [1+0 —iT, 146 +4T
and [1 + 0 + 4T, 5 4 ¢T|, where T is any positive real number. While shifting the line
of integration, we encounter the pole of order two at s = 1 (due to I' (52) and ((s)).
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Using the residue theorem, we have

L s 1—s 1—s 1 22 .
/éiT r <§> g ( 2 ) CshFy (T’ 5; Z) (Vra)~*ds

1
146 —iT 146+iT 5T 2
1-— 1—s1
= / —I—/ +/2 r? (§> r < S) C(s)1 4 ( S; =; Z—) (Vra)~*ds
1o 1ot Jivewr 2 2 2 2 4
~omil, (6.2)
where
. d 9o (S 1—s 1—s 1 22 .
L= lim oo ((S‘” r (§>F( 2 )“S)lﬂ( > ’5’2)( ma) )
- Ll -+ LQ, (63)
with

L d 99 (S 1—s e l1—s 1 22
na=tin {5 (- (5)r (557 o )om (5555 )
T 22 (8 l—s s d l1-s 1 2
Ly := ll_r)l% {(s )T (2) r ( 5 ) ((s)(v/Ta) dlel ( 5
Now L; can be easily computed, or from [9, Equation (4.12)], we readily have

=ty (60 ()1 (1) o () )
Jr

= ~— (log 167 + 2loga — ) .
a

(6.4)

Also, from (5.5) and the fact that T'(1/2) = /m, we find that

2,2

Ly = =2 Fo(1,1:3/2,2;2°/4) lim {(S _ 1 (g) r <1 - s) c(s)(ﬁa)‘s}

2
- 22ﬁ2FQ(1, 1;3/2,2; 22/4). (6.5)
«

Finally, from (6.3), (6.4) and (6.5), we have

2
L= VT (—7 +log 167 + 2log o + %gFg(l, 1;3/2,2; 22/4)) : (6.6)
a



ANALOGUES OF THE GENERAL THETA TRANSFORMATION FORMULA 17

Using (2.6), one easily sees that the integrals on the horizontal segments [% -1, 1+
6 —iT| and [1 + & + 4T, 5 +iT| tend to zero as T — oo. Thus it remains to evaluate

J(z,q) = /1+5in0 r? <2> r (1 S S) C(s) Fy (1 3 . %; Z;) (V) ds

14+5—i0c0
00 1464400
s 1—s S 1—3 1 z
- B(Z F(—) F sd
5y <2 )P () (T ) R
Z zZ,a,m) (6.7)

Here B(s,z — s) is the Euler beta function given by

B(s,z—s) = /000 (1xj__x)z dx = %, 0 < Res < Rez. (6.8)

Another application of the residue theorem yields, for 0 < ¢ = Re s < 1,

ctico s 1—s s 1—s 1 22 .
J(z,a,n)zﬁ(/c_ioo B(§’ 5 )F<§>1F1( 5 ’§7Z>( man) *ds

g e (e () m (1545) o)

etieo s 1—s5 s 1—s 1 22 . Ay
:ﬁ</c_. B(§’T)P(§>1F1( > @z)( man) ds_a)-

100

(6.9)
From (6.8), we have for 0 < ¢ = Re s < 1,
1 [ (s 1—s 2
— Bz, — )2 %ds = ———. 6.10
2mi c—100 (2’ 2 ) ! i vV 1+ 2 ( )

Now using (4.5), (6.10) and (5.10), we see that

c+ioco 1— 1—5 1 oo —x?
[ (3 (G)n (g ) R s = st [T g,
i 27 2 2 2 0 VIt a2

(6.11)
Hence, from (6.7), (6.9) and (6.11), we deduce that
J(z,0) = 8721y ¥ _eroosyz et (6.12)
’ ~\Jo Vi?+ma n2 2no
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Substituting (5.14) in (6.12) and then employing the change of variable x = at/(2+/7),
we have

_Q.-3/2: 2%/4 —z? .
J(z, o) = 8™/ %ie E / e " cosxz ( R ﬁna) dx
tz 1 1
= 87%/% 2/42/ e a - dt
e o8 2/ 12+ 4n2p2  2mn

O 422 atz > 1 1
= 87r3/2iez2/4/ e AT Cos (—) ( - ) dt. 6.13
0 2\ /T ; V2 +4n2n2 21 ( )

Now from [30, Equation 6], we have, for Re z > 0,

1

2§:K0(nz):7r{ +22(\/m 2nw)}+”y+log(g>—log27r. (6.14)

From (6.13) and (6.14), we have

J(z,a) = 8w/ %ie /Oe COS(2\/_ —v + log 47 10gt+QZK0nt ~ % dt

n=1

—: 879%ie”/ (Ji(2, Q) + Jo(z, @) + Js(z, ), (6.15)

where

- l 4 o a2t2 t
Ji(z, ) = W/o e 4 Cos (2(1\/;) dt,

1 & o242 >
J3(z,a) = ;/ e~ it cos (204\7_) (Z Ky(nt) — 2%) dt.
0

However, from [14, p. 488, formula 3.896, no. 4]

—22/4

Ji(z,a) = < 50 (=~ + log 4m) (6.16)

and by using (5.18), we find that

—22/4 2
Jo(z, ) = €4a (7 +2loga — logm + %2F2(1, 1;3/2,2; z2/4)) . (6.17)
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Thus, from (6.1), (6.2), (6.6), (6.15), (6.16) and (6.17), we deduce that
1+t 1—at\ =(t/2 1+t
8 +Z p (L= ECR2)G () Lty
1+¢2 2
3/2 22 2 1 22 9
—4r3Paze (—y +logdm) + — ’y—|—210ga—log7r+52@(1,1;3/2,2;2 /4)
a a
4e# /4 [ 2 atz
R Ko(nt) — — | dt
+ - /0 e 1 cos< > <Z o(nt) )

1 2
— = <—7 + log 167 + 2log a + —2 2F5(1,153/2,2; 22/4)> }
(0%

z2 o a2t2 t
= —16\/%\/568/ e~ i COoS ( ats ) <Z Koy(nt) ) dt,

0

1 [ (1+it 1—it\ 2(t/2) 1+t
- — [T r “T0) an.
27 Js <11> < 1 >1+ﬁv “5 T

= \/aez;/ e_ajf cos ( otz ) (Z Ky(nt) > dt.
0
(6.18)

Finally, replacing z by iz and « by 8 in (6.18), noting that the integral on the left-
hand side remains invariant under this replacement, and then combining the result
with (6.18), we arrive at (1.18).

so that

Remark. The special case (1.17) of (1.18) can be derived as follows. Let z = 0 in
(1.18). Then,

e

/322

(E:Kbm-——>dt ¢F/ <§§K@m-——)dt

_ R F 1+t r 11—t = t cos (%tlog a) gt
NN 4 4 2 1+¢2
(6.19)

From the invariance of the integral under the map a — (3, it suffices to show the
equality of the extreme left and right expressions in (1.17). To that end, observe that
using (6.14) in the extreme left and right sides of (6.19) and using (6.16) and (6.17),
we have

/mr L+it\ o (L=it\ o (1 ms@ﬂ%a)ﬁ
0 4 4 2 1+ ¢2

*® _a22 [y —logdmr logt > 1 1
= —4 47 — dt
\/a/o € ( 27 + 21 + Z V2 4 4r2n2 2nm

n=1

(M9

47~
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® 222 1 1
=4v/a | J1(0,a) + J2(0, —/ e ar ( — )dt
\/_ 1( ) 2( ) 0 ; /tz —|—47r2n2 2n7T
—y+logdr 1 - /°° a2 1 1
=4 —_ 4+ — 21 —1 — w —
va 50 T 1 (7 2loga —logm) ; e — s
2,2
v loga  loglbr <= ® eI dt 1
=4J/a | ——+ + — — : 6.20
Va 4oy 2x 4o ;::1 0 Vi2+4n2n2  2na ( )

Employing a change of variable x = t? in the formula [14, p. 351, formula 3.388, no. 2]

0 1 [/26\"'/?
2\v—1_—pux — = bu )
/0 (2bx 4+ x%)" e M dx NG ( . ) e F(V)Kyfa(bu),

valid for |argb| < 7, Re v > 0, Re p > 0 and then letting v = 3, pu = ﬁ and b = 2m2n?,
we observe that

a?t2

e B Ltk <7TO‘ " > ' (6.21)
0 12 +4m2n2 2 2

Substituting (6.21) in (6.20) and simplifying, we arrive at

—~ +log 167 + 21 [ ra2n? 2p2? 1
ﬁ< Y + log 167 + ogoz_zz(e : Ko(mn)__>>
o 2 no

n=1

© 1+ 1—i 1tl
:47r—3/ (L p (L) 2 (1) coslatlosa) (6.22)
) 1 1 2) T1re

Now replace o by 3 in (6.22) and note the invariance of the integral on the right-hand
side under this transformation. This gives (1.17).
Since the above steps are reversible, (6.19) is equivalent to (1.17).

7. GENERALIZATION OF A FORMULA OF RAMANUJAN

o —1 14 -1 -1t t 14
K(z,a)::/_ooF( Il>r( 42)5(5),)(@,373%) dt,

where p is defined in (1.9). Using (1.3), (1.4), (1.9), (2.6) and (2.10), we see that

K(z,a) converges. Converting K (z, a) into a complex integral by the change of variable
14t

Let

s = =5 and employing (1.9) and (1.4), we observe that
K(z,a) = —,/2 r (S > ) T (—%) £(s)p(a, 2,5+ 1) ds
v J1l o
2

22

[\

_ —_40‘_56_8 fﬂmr (8 er 1) r(1-3)m <_§ %% ZZ) r(3) cevma)

3 —100

)
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1 z2 %4»200 1 1 2
:4i04_26_3/ , 7T1 F(S; ) 151 <—§7§;ZZ> ((s)(Vma) ™ ds,
1 ise SINZTS

(7.1)

where we used (2.4) in the last step. Let T > 0 be a real number. Using the residue
theorem, we have

/§+iT T r s—l—l F slz \/_)s
— = T
L siniws U2 4

/1+5—iT N /1+5+'LT 2+ZT s+ 1 . s 1 Z2 C( )( )_S p
= ——, = — | {(s) (V7 s
1 . 146 +5+1T sin 7rs 2 P22

2
— 2mi L,

where

. s s+ 1 s 1 22 s
Limtints = 100 T (52 ) (<557 ) (vR0)
T 11 2
=3 T) 73

As before, using (2.6), one easily sees that the integrals on the horizontal segments

(2 —4T,14 6 —iT] and [1 4 6 + 4T, 3 + ¢T] tend to zero as T' — co. Thus it remains
to evaluate

1+d+ioco 1 1
J(z, ) ::/ . 7T1 F(S+ )1F1 <— 5
I+6—ico SN ZTS 2 2’

S
2’

B i/l-‘r(s-‘rioo T F S+1 s

B — J1t6-ico Sinéws 2

n

) sty s
+ )fanw

z
4
c+100 T 5—|—1 1 s
— r s 12 o
;/c—ioo Sin%ws ( 2 )1 1< 59 4) (Vman)

n

=: Z J(z,a,n) (7.4)

for 0 < 0 < 1. Note that shifting the line of integration from Re s =149 to Re s = ¢
does not introduce any poles.

Now (4.5) is valid for 0 < § < 1. Replacing s by s+ 1 in (4.5) and letting x = y/man,
for 0 < ¢ = Re s < 1, we have

erfico 1 —s5 1 22 2,2
/C_ioo r (S; ) 1F (78, 5 ZZ) x7% ds = 4mize " t* 4 cos 2. (7.5)

Also, from (5.9), we easily see that for 0 < d = Re s < 2,

1 d+ioco T ., 2
— —— “ds = >
2T Jg_iso SIN5TS 1+x

(7.6)



22 ATUL DIXIT

Hence from (5.10), (7.5) and (7.6), we see that for 0 < ¢ = Re s < 1,

2

22 0 -

J(z,a,mn) = 87m'e4/ ¢ comrE 5 dx. (7.7)
o 14 (y/man/z)

Thus from (7.2), (7.3), (7.4) and (7.7),
. o 27%/% 11 22
K(z,a) = dia” 2e” 5 8rie E / ¢ tomre 5 dr — ARy o} (——,—;Z—>
14+ \/_om/x) a 2°2° 4

s 1 22 22 t2e~ ™ cos (Tt z) 1 11 22
— _8ria%e s [ 4daeT d——F -
T2 2€ 8 (Oz@ nZ:;/O 212 141 29" 4

8raa2 - 4 f/ooﬁ *mwcos(\/_ t) i—l dt ! F L1
= — Tatz - — — == .
T2 2e ae i e n:1t2+n2 Pk 2'5° 1
(7.8)
For t # 0 [8, p. 191]
=~ 1 ™ 1 11
= - —— += 7.9
;ﬂ—i-n? t(e%t 1 2nt 2) (7.9)

627rt -1

- 22 2 oo t —ra2t? t 2 )
K(z,a) = _8ria e ¥ (47rae4/ ‘ cos (v/matz) dt — 2ae4/ e ™ cos (Vmatz) dt
0 0

2 [ 1 11 22

+ 2Toe T /0 te ™ cos (Vmatz) dt — ElFl (—5, 3 %) >
(7.10)

But from [14, p. 488, formula 3.896, no. 4],

/ e ™ cos (ﬁatz) dt = c L

0 2a

Also, from [14, p. 502, formula 3.952, no. 2], we have for a > 0,

N 1 a 00 (—1)kk' (a)2k+1
e PN SRR N G VT 7.12
/0 xe cos(ax) dr = 2p7  ApP &= (2k+ 1! \p (712

RS

(7.11)

However, this formula holds for any a € C. Hence, letting a = +/raz and p = \/Ta in
(7.12), simplifying the right-hand side, and then using (1.11), we have

N

T

> 242 € T 11 22
te” T tz) dt = Fil-s5—]. 7.13
/0 e COS(\/7_TCY Z) 27’(’0&21 1( 979’ 4) ( )
Substituting (7.11) and (7.13) in (7.10), we have

1 z 22 b t 7Tl'042t t
K(z,a) = —8rrare s <47rae4/ ‘ o8 (\1/_04 ?) dt — 1) (7.14)
0

627rt

M
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Finally, substituting (7.14) in (7.1), we obtain (1.21).

8. GENERALIZATION OF THE RAMANUJAN-HARDY-LITTLEWOOD CONJECTURE

The approach here is similar to the one used by Hardy and Littlewood in [16] and
so we will be brief. Shifting the line of integration from Re s = 1 4 ¢, where § > 0, to
—1 < ¢ = Re s < 0 in the integral on the left-hand side of (4.5) and replacing n by
1/n, we have

C+lOO 1 _ 1 =S z2 7'ro¢2
r <£> 1By i 2 @ ds = 4miet | € =2 cos vmaz -1
oo 2 T2 24 n n
(8.1)

Note that one version of the prime number theorem reads Y-, %”) = (0. Using these
two facts in the calculation that follows, we have

22 > 7!'0(2
VaeT Z _u(n) e n? CoS (_ﬁaz)
n

_ @;flnf;ﬂ%) (e = (f az> ) 1)
s () () (@)‘8 s

:f/:Jf—_))F(l; i ) (Vra) ™ ds, (8.2)

where we interchanged the order of summation and integration, which is valid because
of absolute convergence, and we replaced Y oo u(n)n=0=*) by 1/((1 — s) since Re
1 — s> 1. Using (2.2) in (8.2), we have

2 ,u(n) _ma? <\/_az)_ Voo et T (552) <1—s 1 z2>(a)_s
et ——Fe % cos = F — ds.

\/_ ; n 47-(%2 c—100 C( ) o 2 2 4 \/_

(8.3)
We want to shift the line of integration from —1 < ¢ =Re s < 0to Res =\ A € (1,2),
so that we can use the series representation Y >, u(n)n=* for 1/¢(s). Consider a
positively oriented rectangular contour formed by [¢ — T, A —iT], [\ — T, A+ T, [\ +
iT,c+1T) and [c + ¢T,c — iT], where T is any positive real number. In the shifting
process, we encounter the non-trivial zeros of ((s). Hence upon the application of the
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residue theorem and assuming that the non-trivial zeros are simple, we get

[oateaes
S VIO

—omi Y lim(s — p) = (153,%;%> (%y (8.4)

—T<p<T

Let T" — oo through values such that |T"— | > exp (— A1/ log~) for every ordinate
of a zero of ((s), where A; is a positive constant. From [29, p. 218, Equation (9.7.3)],

log |¢(o +it)| > Z log [t — |+ O(logt).

[t—vI<1

Hence for ¢ < 0 = Re s < A,

log|((o+iT)| > = Y Aiy/logy+O(logT) > —A,T,

|T—v|<1

where Ay < w/4 if A; is small enough, and 7" > Tj. This along with (2.6) and (2.10)
implies that the integrals along the horizontal segments [c—iT, A—iT'| and [A\+iT, c+iT]
tend to zero as T' — oo through the above values. It remains to evaluate

() L (1-s 1
sea= [ F( 2 2

T
S LI
_ Zﬂ J(z, a,n) (8.5)

Employing the change of variable w = 1 — s in the integral in J(z,a,n), for —1 < X =
Re w < 0, we have

B \/7_1' N +ico w U)‘ 1 2 \/E —w
J(z,oz,n) = % i I (5) 1F1 5, 5, — dw

ﬁeé Aoy l—w 1 22\ [(y7\ "
= Ton / L T(g)hA (—2 P ‘z) (%) dw
47T3/226 ( & cosh <ﬁ52> — 1) (8.6)

n

where in the penultimate step, we used (1.11) and in the last step, we used (8.1) with
z replaced by iz and « replaced by 5. Thus letting T — oo in (8.4) and combining
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with (8.3), (8.5) and (8.6), we obtain

22 > 7TO¢
VaeT E ,u(n 2 Cos <\/_az)
n
n=1

P (1 (1)) LR (529) ()

Using the prime number theorem again, we have

2o p(n) e Vraz o pun) _w? VT Bz
Vaes ;Te n cos(T)—\/_e 8;T€ n? cosh | ——

2\/_\/_2 Tp (1;‘) ; Z)WP/Zﬂ”. (8.7)

We have not shown the convergence of the series in the above equation in the ordinary
sense, but rather only when the terms are bracketed in such a way that two terms for

which

v = | < exp(=Ary/logy) + exp (—A1y'/log )
are included in the same bracket. Replacing o — § and z — iz in (8.7), simplifying,
and using (8.7) again, we easily see that

1—p

Z F 12 Pl2apr Z Tp) 1-p 127 7230 =
2\/—\/— C 1 1 2 727 4 2\/—\/— C 9 7274 .
8

Thus (8.7) and (8.8) give (1.23) upon simplification.

9. CONCLUDING REMARKS

The integrands of all the integrals that we have considered here are not only con-
tinuous functions in both variables ¢ and z but also analytic in C as a function of z
for each fixed value of ¢. Since all of these integrals converge uniformly at both limits
in any compact subset of C, from [28, p. 31, Theorem 2.3], we find that each of these
integrals is holomorphic in C as a function of z and that their derivatives of all orders
may be found by differentiating under the sign of integration. This way, we can obtain
many more transformation formulas or identities.
In this paper, we have focused on the generalization of the integral fooo f (%) =(t) cos (%t log a) dt,
where we generalized cos (%tlog a) by making use of the function p(«, z, s) consisting

of the confluent hypergeometric function. In [26], Ramanujan introduced the integral

00 14 R . .
/ r(? +at r(? it t+1z = t—iz cos ut .
0 4 4 2 2 (z+1)2 4t

where Re z is not an integer and p is real, and expressed it in terms of another integral
in each of the regions Re s > 1, —1 < Re s < 1 and —3 < Re s < —1. See also [10,

(1]
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Theorem 1.2]. In [11], we examined the following general integral, with n € C,

/0 / (77, %) = (t—;m> = (t 2“7) cos <§tloga) dt. (9.1)

It seems natural then to generalize the above integral by introducing in it a similar
generalization of cos (%tlog a) that we have utilized in this paper. Thus, replacing

cos (1tlog @) in (9.1) by either p (o, z, £%) or its variants like p (c, z, 25%) (as in The-

orem 1.5) should lead to a generalization of the integrals in (9.1). The substitution
p (a, z, 1;“) will generate formulas of the type F'(n, z,«) = F(n,iz, 3), where af = 1.
Also, it looks plausible that either the substitution p (a, z, 32”) or p (a, z, 1;“) should
generalize Theorem 1.2 in [10] found by Ramanujan. However, in both cases, the asso-
ciated inverse Mellin transforms are difficult to evaluate. Our search in this direction
did not lead to any particular nice example. Further efforts, however, may be fruitful
and may result in beautiful and more general identities, for example, a generalization
of the extended version of the Ramanujan-Guinand formula [11, Theorem 1.4].
Another possible direction of generalizing the transformation formulas resulting from
the integrals of the form fooo f (%) = (%) cos (%t log a) dt may be to replace the function
p(a, z,s) used in this paper with an analogous one which involves the hypergeometric
function o Fy instead of a 1 F}. This is because of the following Kummer-type transfor-

mation that exists for a oF% [23, Equation 4]:

2F2<aac+1;bac;x):em2F2(b_a_17f+1;b7f;_x)7

where
c(1+a—0b)
p=derazo)
a—c
In fact, a Kummer-type transformation also exists for the generalized hypergeometric
function ,F,(x) [22, Equation 4.2].
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