
CHARACTER ANALOGUES OF RAMANUJAN TYPE INTEGRALS
INVOLVING THE RIEMANN Ξ-FUNCTION

ATUL DIXIT

Abstract. A new class of integrals involving the product of Ξ-functions associated
with primitive Dirichlet characters is considered. These integrals give rise to trans-
formation formulas of the type F (z, α, χ) = F (−z, β, χ) = F (−z, α, χ) = F (z, β, χ),
where αβ = 1. New character analogues of transformation formulas of Guinand and
Koshliakov as well as those of a formula of Ramanujan and its recent generalization
are shown as particular examples. Finally, character analogues of a conjecture of
Ramanujan, Hardy and Littlewood involving infinite series of Möbius functions are
derived.

1. Introduction

Modular transformations are ubiquitous in Ramanujan’s Notebooks [33] and his Lost
Notebook [35]. Ramanujan usually expressed them in a symmetric way and they were
valid under the conditions αβ = π or αβ = π2 etc. In the same spirit, on page 220 in
one of the manuscripts of S. Ramanujan in the handwriting of G.N. Watson published
in [35], one finds the following beautiful claim.

Theorem 1.1. Define

λ(x) := ψ(x) +
1

2x
− log x,

where

ψ(x) :=
Γ′(x)

Γ(x)
= −γ −

∞∑
m=0

(
1

m+ x
− 1

m+ 1

)
is the logarithmic derivative of the Gamma function. Let the Riemann ξ-function be
defined by

ξ(s) := (s− 1)π−
1
2
sΓ(1 + 1

2
s)ζ(s),

and let

Ξ(t) := ξ(1
2

+ it)
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be the Riemann Ξ-function. If α and β are positive numbers such that αβ = 1, then

√
α

(
γ − log(2πα)

2α
+
∞∑
k=1

λ(kα)

)
=
√
β

(
γ − log(2πβ)

2β
+
∞∑
k=1

λ(kβ)

)

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(

1
2
t logα

)
1 + t2

dt, (1.1)

where γ denotes Euler’s constant.

This identity is of a special kind since not only does it contain a modular trans-
formation, but also a beautiful integral involving the Riemann Ξ-function. In fact,
the invariance of the integral in (1.1) under the map α → β establishes the equality
of the first and the second expressions in (1.1). This idea is used in [6] to prove the
above claim of Ramanujan and later in [11, 12, 13] to obtain many transformation
formulas of the type F (α) = F (β) or F (z, α) = F (z, β), where αβ = 1, where an
integral involving the Riemann Ξ-function is always linked to them. This then gives
new identities involving infinite series of Hurwitz zeta function as well as extensions of
some well-known formulas of A.P. Guinand [16] and N.S. Koshliakov [25] (see [13] for
details). For example, we mention the following generalization of Theorem 1.1 found
in [11, 13].

Theorem 1.2. Let −1 < Re z < 1. Define ϕ(z, x) by

ϕ(z, x) = ζ(z + 1, x)− x−z

z
− 1

2
x−z−1,

where ζ(z, x) denotes the Hurwitz zeta function. Then if α and β are any positive
numbers such that αβ = 1,

α
z+1
2

(
∞∑
n=1

ϕ(z, nα)− ζ(z + 1)

2αz+1
− ζ(z)

αz

)
= β

z+1
2

(
∞∑
n=1

ϕ(z, nβ)− ζ(z + 1)

2βz+1
− ζ(z)

βz

)

=
8(4π)

z−3
2

Γ(z + 1)

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos
(

1
2
t logα

)
(z + 1)2 + t2

dt,

(1.2)

where Ξ(t) is the Riemann Ξ-function.

Another example of a transformation formula of the type F (z, α) = F (z, β) is the
extended version of Guinand’s formula [13, Theorem 1.4] given below.

Theorem 1.3. Let Kν(s) denote the modified Bessel function of order ν, let γ denote
Euler’s constant and let σk(n) =

∑
d|n d

k. Let −1 < Re z < 1. Then if α and β are
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positive numbers such that αβ = 1, we have

√
α

(
α
z
2
−1π

−z
2 Γ
(z

2

)
ζ(z) + α−

z
2
−1π

z
2 Γ

(
−z
2

)
ζ(−z)− 4

∞∑
n=1

σ−z(n)nz/2K z
2

(2nπα)

)

=
√
β

(
β
z
2
−1π

−z
2 Γ
(z

2

)
ζ(z) + β−

z
2
−1π

z
2 Γ

(
−z
2

)
ζ(−z)− 4

∞∑
n=1

σ−z(n)nz/2K z
2

(2nπβ)

)

= −32

π

∫ ∞
0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos
(

1
2
t logα

)
(t2 + (z + 1)2)(t2 + (z − 1)2)

dt. (1.3)

Letting z → 0 in (1.3) then gives the following extended version of Koshliakov’s
formula [12].

Theorem 1.4. Let d(n) denote the number of positive divisors of n and let K0(n)
denote the modified Bessel function of order 0. If α and β are positive numbers such
that αβ = 1, then

√
α

(
γ − log(4πα)

α
− 4

∞∑
n=1

d(n)K0(2πnα)

)
=
√
β

(
γ − log(4πβ)

β
− 4

∞∑
n=1

d(n)K0(2πnβ)

)

= −32

π

∫ ∞
0

(
Ξ
(
t
2

))2
cos
(

1
2
t logα

)
dt

(1 + t2)2
.

By an ‘extended version’, we mean that the original identity known before is linked
to an integral involving the Riemann Ξ-function. It must be mentioned here that the
formulas of Guinand and Koshliakov were discovered earlier by Ramanujan (see [8]),
and are present in the Lost Notebook [35, p. 253–254].

After Ramanujan, Koshliakov was another person to do significant research in this
area. Apart from using contour integration, Mellin transforms and several summation
formulas that he developed, he frequently used a method similar to that developed
by Ramanujan in [32], [34, pp. 72–77] to obtain old and new transformation formulas
of the form F (α) = F (β), where αβ = k for some constant k. He also obtained
deep generalizations of many well-known formulas of Ramanujan and of G.H. Hardy
[17, Equation (2)], some of them being analogues in rational and number fields. See
[20, 21, 22, 23, 26]. In [24, 27], he used Fourier’s integral theorem to obtain expressions
for the Riemann Ξ-function, a method also enunciated by Ramanujan [32]. Around
the same time, W.L. Ferrar [14] also worked on transformation formulas of the above
kind.

As can be seen from (1.1), the general form of the integrals giving rise to formulas
of the type F (α) = F (β) where αβ = 1 is∫ ∞

0

f

(
t

2

)
Ξ

(
t

2

)
cosµt dt,

for µ real and f(t) = φ(it)φ(−it), where φ is analytic in t as a function of a real variable.
This integral is mentioned in [37, p. 35]. Similarly, from (1.2) and (1.3), it is clear that
the general form of the integrals giving rise to identities of the type F (z, α) = F (z, β)
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where αβ = 1 is ∫ ∞
0

f

(
z,
t

2

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cosµt dt, (1.4)

for µ real and f(z, t) = φ(z, it)φ(z,−it), where φ is analytic in t as a function of a real
variable as well as analytic in z in some complex domain. An integral of this kind was
first introduced by Ramanujan [32].

In this article, we find character analogues of all of the above-mentioned theorems.
The character analogue of Guinand’s, and hence Koshliakov’s formula given here differs
from the ones established in [7]. Throughout this article, we will be concerned with
the principal branch of the logarithm. Also, we work only with a primitive, non-
principal Dirichlet character χ modulo q. It is easy to see that its conjugate character
χ is also a primitive, non-principal character modulo q and χ is even (odd) if and
only if χ is even (resp. odd). Let L(s, χ) denote the Dirichlet L-function defined by
L(s, χ) =

∑∞
n=1 χ(n)/ns for Re s > 1. This series converges conditionally for 0 <

Re s < 1. Also, it can be analytically continued to an entire function of s. Let
G(χ) := G(1, χ), where G(n, χ) is the Gauss sum defined by

G(n, χ) :=

q∑
m=1

χ(m)e2πimn/q.

We know that [2, p. 168]

|G(χ)|2 = q (1.5)

and it is easy to see that

G(χ) =

{
G(χ), for χ even,

−G(χ), for χ odd.
(1.6)

Define b as follows:

b =

{
0, χ(−1) = 1,

1, χ(−1) = −1.
(1.7)

Then the function ξ(s, χ) is defined by

ξ(s, χ) :=

(
π

q

)−(s+b)/2

Γ

(
s+ b

2

)
L(s, χ), (1.8)

and the analogue of the Riemann Ξ-function for Dirichlet characters is then defined as

Ξ(t, χ) := ξ

(
1

2
+ it, χ

)
. (1.9)

L-functions satisfy the functional equation [2, p. 263]

L(1− s, χ) =
qs−1Γ(s)

(2π)s
(
e−πis/2 + χ(−1)eπis/2

)
G(χ)L(s, χ), (1.10)

which can be rephrased in terms of ξ(s, χ) as [10]

ξ(1− s, χ) = ε(χ)ξ(s, χ), (1.11)
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where ε(χ) = ibq1/2/G(χ). By (1.5), |ε(χ)| = 1. Next, we note Stirling’s formula in a
vertical strip α ≤ σ ≤ β, s = σ + it, namely,

|Γ(s)| = (2π)
1
2 |t|σ−

1
2 e−

1
2
π|t|
(

1 +O

(
1

|t|

))
(1.12)

uniformly as |t| → ∞. Now using (1.10) and the fact [10, p. 82] that |L(s, χ)| = O(q|t|)
for Re s ≥ 1/2, we can easily see that for Re s ≥ −δ, δ > 0, we have

L(s, χ) = O
(
q

3
2

+δ|t|
3
2

+δ
)
. (1.13)

We will subsequently use this result.
Transformation formulas involving Dirichlet characters of the form

∞∑
n=1

χ(n)f(n) =
∞∑
n=1

χ(n)g(n),

where

g(x) =


2G(χ)

q

∫ →∞
0

cos

(
2πxt

q

)
f(t) dt, for χ(−1) = 1,

−2iG(χ)

q

∫ →∞
0

sin

(
2πxt

q

)
f(t) dt, for χ(−1) = −1,

were considered by Guinand [15, Theorems 4–5], though he did not give any particular
examples. Here, we derive a character analogue of the integral in (1.4). Its general
form is ∫ ∞

0

f

(
z,
t

2

)
Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cos

(
1

2
t logα

)
dt, (1.14)

where f is an even function of both the variables z and t. These integrals give rise
to transformation formulas of the type F (z, α, χ) = F (−z, β, χ) = F (−z, α, χ) =
F (z, β, χ). Then via Fourier’s integral theorem, one may be able to obtain integral
representations for Ξ ((t+ iz)/2, χ) Ξ ((t− iz)/2, χ) which are of independent interest.
The character analogue of Theorem 1.3 is as follows.

Theorem 1.5. Let −1 < Re z < 1 and let χ denote a primitive, non-principal charac-
ter modulo q. Let the number b be defined as in (1.7). Let Kν(z), d(n) and γ be defined
as before and let α and β be positive numbers such that αβ = 1. If

F (z, α, χ) := αb+
1
2

∞∑
n=1

χ(n)n−
z
2

+b

(∑
d|n

χ2(d)dz
)
K− z

2

(
2πnα

q

)
,

then

F (z, α, χ) = F (−z, β, χ) = F (−z, α, χ) = F (z, β, χ)

=
1

8π

∫ ∞
0

Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cos

(
1

2
t logα

)
dt. (1.15)
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Define ψ(a, χ) by

ψ(a, χ) = −
∞∑
n=1

χ(n)

n+ a
, (1.16)

where a ∈ C is a non-negative integer. For a real character χ, this agrees with the
character analogue of the psi function obtained by the logarithmic differentiation of the
following Weierstrass product form of the character analogue of the gamma function
for real characters derived by Berndt [4]:

Γ(a, χ) = e−aL(1,χ)

∞∏
n=1

(
1 +

a

n

)−χ(n)

eaχ(n)/n.

The character analogue of the Hurwitz zeta function ζ(z, a) is given by [3, Ex. 3.2]

L(z, a, χ) =
∞∑
n=1

χ(n)

(n+ a)z
, (1.17)

valid for Re z > 0, and provided a ∈ C is a non-negative integer. The above character
analogue of the Hurwitz zeta function can also be obtained as the special case when
x = 0 of the function L(z, x, a, χ) defined in [4] by

L(z, x, a, χ) :=
∞∑
n=0

′

e2πinx/kχ(n)(n+ a)−z,

where the prime indicates that the term corresponding to n = −a is omitted if a
is a negative integer and χ(a) 6= 0. As shown in [4], L(z, x, a, χ) converges for Re
z > 0 if x is not an integer, or if x is an integer and gcd(x, k) > 1. If x is an integer
and gcd(x, k) = 1, the series converges for Re z > 1. For mean value properties of
L(z, a, χ) and asymptotic formulas, see the recent paper [29]. The character analogues
of Theorem 1.2 are given below.

Theorem 1.6. Let χ denote an even, primitive, non-principal character modulo q. Let
−1 < Re z < 1 and let L(z, a, χ) be defined as in (1.17). Define T (z, α, χ) by

T (z, α, χ) :=
αz/2qz/2Γ(z + 1)

2zπz/2G(χ)
, (1.18)

and Ω(z, t) by

Ω(z, t) := ((z + 1)2 + t2)Γ

(
−z − 1 + it

4

)
Γ

(
−z − 1− it

4

)
+ ((z − 1)2 + t2)Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
. (1.19)

Then if α and β are positive numbers such that αβ = 1,

√
α

[
T (z, α, χ)

∞∑
n=1

χ(n)L

(
z + 1, nα, χ

)
+ T (−z, α, χ)

∞∑
n=1

χ(n)L

(
− z + 1, nα, χ

)]

=
√
β

[
T (−z, β, χ)

∞∑
n=1

χ(n)L

(
− z + 1, nβ, χ

)
+ T (z, β, χ)

∞∑
n=1

χ(n)L

(
z + 1, nβ, χ

)]
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=
1

64π3/2q

∫ ∞
0

Ω(z, t)Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cos

(
1

2
t logα

)
dt. (1.20)

Theorem 1.7. Let χ denote an odd, primitive, non-principal character modulo q. Let
−1 < Re z < 1 and let L(z, a, χ) be defined as in (1.17) and let T (z, α, χ) be defined
as in (1.18). Define Λ(z, t) by

Λ(z, t) := Γ

(
z + 1 + it

4

)
Γ

(
z + 1− it

4

)
+ Γ

(
−z + 1 + it

4

)
Γ

(
−z + 1− it

4

)
. (1.21)

Then if α and β are positive numbers such that αβ = 1,

√
α

[
T (z, α, χ)

∞∑
n=1

χ(n)L

(
z + 1, nα, χ

)
+ T (−z, α, χ)

∞∑
n=1

χ(n)L

(
− z + 1, nα, χ

)]

=
√
β

[
T (−z, β, χ)

∞∑
n=1

χ(n)L

(
− z + 1, nβ, χ

)
+ T (z, β, χ)

∞∑
n=1

χ(n)L

(
z + 1, nβ, χ

)]
=

1

4π1/2iq2

∫ ∞
0

Λ(z, t)Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cos

(
1

2
t logα

)
dt. (1.22)

In [18, p. 156, Section 2.5], Hardy and Littlewood discuss the following interesting
identity suggested to them by work of Ramanujan.

Theorem 1.8. Let µ(n) denote the Möbius function. Let α and β be two positive
numbers such that αβ = 1. Assume that the series

∑
ρ

(
Γ
(

1−ρ
2

)
/ζ
′
(ρ)
)
aρ converges,

where ρ denotes a non-trivial zero of the Riemann zeta function and a denotes a positive
real number, and that the non-trivial zeros of ζ(s) are simple. Then

√
α
∞∑
n=1

µ(n)

n
e−πα

2/n2 − 1

4
√
π
√
α

∑
ρ

Γ
(

1−ρ
2

)
ζ ′(ρ)

π
ρ
2αρ

=
√
β

∞∑
n=1

µ(n)

n
e−πβ

2/n2 − 1

4
√
π
√
β

∑
ρ

Γ
(

1−ρ
2

)
ζ ′(ρ)

π
ρ
2βρ. (1.23)

The original formulation of the above identity is slightly different in [18] but can
readily be seen to be equivalent to (1.23). See also [5, p. 470], [31, p. 143] and [37,
p. 219, Section 9.8] for discussions on this identity. Based on certain assumptions, the
character analogues of (1.23) for even and odd primitive Dirichlet characters, which
furnish two examples of transformation formulas of the form F (α, χ) = F (β, χ), are
derived here and are as follows.

Theorem 1.9. Let χ be an odd, primitive character modulo q, and let α and β be

two positive numbers such that αβ = 1. Assume that the series
∑

ρ
πρ/2αρΓ((2−ρ)/2)

qρ/2L′(ρ,χ)
and∑

ρ
πρ/2βρΓ((2−ρ)/2)

qρ/2L′(ρ,χ)
converge, where ρ denotes a non-trivial zero of L(s, χ) and L(s, χ)

respectively, and that the non-trivial zeros of the associated Dirichlet L-functions are
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simple. Then

α
√
α
√
G(χ)

(
∞∑
n=1

χ(n)µ(n)

n2
e
−πα

2

qn2 − q

4πα2

∑
ρ

Γ
(

2−ρ
2

)
L′(ρ, χ)

(
π

q

) ρ
2

αρ

)

= β
√
β
√
G(χ)

(
∞∑
n=1

χ(n)µ(n)

n2
e
−πβ

2

qn2 − q

4πβ2

∑
ρ

Γ
(

2−ρ
2

)
L′(ρ, χ)

(
π

q

) ρ
2

βρ

)
. (1.24)

Theorem 1.10. Let χ be an even, primitive character modulo q, and let α and β be

two positive numbers such that αβ = 1. Assume that the series
∑

ρ
πρ/2αρΓ((2−ρ)/2)

qρ/2L′(ρ,χ)
and∑

ρ
πρ/2βρΓ((2−ρ)/2)

qρ/2L′(ρ,χ)
converge, where ρ denotes a non-trivial zero of L(s, χ) and L(s, χ)

respectively, and that the non-trivial zeros of the associated Dirichlet L-functions are
simple. Then

√
α
√
G(χ)

(
∞∑
n=1

χ(n)µ(n)

n
e
−πα

2

qn2 −
√
q

4
√
πα

∑
ρ

Γ
(

1−ρ
2

)
L′(ρ, χ)

(
π

q

) ρ
2

αρ

)

=
√
β
√
G(χ)

(
∞∑
n=1

χ(n)µ(n)

n
e
−πβ

2

qn2 −
√
q

4
√
πβ

∑
ρ

Γ
(

1−ρ
2

)
L′(ρ, χ)

(
π

q

) ρ
2

βρ

)
. (1.25)

This paper is organized as follows. In Section 2, we give a complex integral repre-
sentation of (1.14) that is used in subsequent sections. In Section 3, we prove Theorem
1.5. Then in Section 4, we compute the inverse Mellin transforms and asymptotic
expansions of certain functions which are subsequently used in Section 5. Section 5 is
devoted to proofs of Theorems 1.6 and 1.7. Character analogues of Ramanujan’s trans-
formation formula (Theorem 1.1) are derived as special cases of these theorems. We
conclude this section with some curious results on certain double series being always
real. In Section 6, we present proofs of Theorems 1.9 and 1.10. Finally we conclude
with some open problems in Section 7.

2. A complex integral representation of (1.14)

In this section, we give a formal way of transforming an integral involving a character
analogue of Riemann’s Ξ-function into an equivalent complex integral which allows us
to use residue calculus and Mellin transform techniques for its evaluation.

Theorem 2.1. Let

f(z, t) =
φ(z, it)φ(z,−it) + φ(−z, it)φ(−z,−it)

2
, (2.1)

where φ is analytic in t as a function of a real variable and analytic in z in some
complex domain. Let y = eµ with µ real. Then, under the assumption that the integral
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on the left side below converges,∫ ∞
0

f(z, t)Ξ

(
t+

iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cosµt dt

=
1

4i
√
y

∫ 1
2

+i∞

1
2
−i∞

(
φ

(
z, s− 1

2

)
φ

(
z,

1

2
− s
)

+ φ

(
−z, s− 1

2

)
φ

(
−z, 1

2
− s
))

× ξ
(
s− z

2
, χ
)
ξ
(
s+

z

2
, χ
)
ys ds. (2.2)

Proof. Let

I(z, µ, χ) :=

∫ ∞
0

f(z, t)Ξ

(
t+

iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cosµt dt.

Then

I(z, µ, χ) =
1

2

(∫ ∞
0

f(z, t)Ξ

(
t+

iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
yit dt

+

∫ ∞
0

f(z, t)Ξ

(
t+

iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
y−it dt

)
=

1

2

(∫ ∞
0

f(z, t)Ξ

(
t+

iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
yit dt

+

∫ 0

−∞
f(z,−t)Ξ

(
−t+

iz

2
, χ

)
Ξ

(
−t− iz

2
, χ

)
yit dt

)
.

(2.3)

However, using (1.11), we readily see that

Ξ

(
−t+

iz

2
, χ

)
= ξ

(
1

2
− it− z

2
, χ

)
= ε(χ)ξ

(
1

2
+ it+

z

2
, χ

)
= ε(χ)Ξ

(
t− iz

2
, χ

)
,

Ξ

(
−t− iz

2
, χ

)
= ξ

(
1

2
− it+

z

2
, χ

)
= (ε(χ))−1 ξ

(
1

2
+ it− z

2
, χ

)
= (ε(χ))−1 Ξ

(
t+

iz

2
, χ

)
,

so that

Ξ

(
−t+

iz

2
, χ

)
Ξ

(
−t− iz

2
, χ

)
= Ξ

(
t+

iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
. (2.4)

Thus from (2.3), (2.4) and the fact that f is an even function of t, we obtain

I(z, µ, χ) =
1

2

∫ ∞
−∞

f(z, t)Ξ

(
t+

iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
yit dt

=
1

4i
√
y

∫ 1
2

+i∞

1
2
−i∞

(
φ

(
z, s− 1

2

)
φ

(
z,

1

2
− s
)

+ φ

(
−z, s− 1

2

)
φ

(
−z, 1

2
− s
))

× ξ
(
s− z

2
, χ
)
ξ
(
s+

z

2
, χ
)
ys ds,

where in the penultimate line, we made the change of variable s = 1
2

+ it. �
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For our purpose here, we replace µ by 2µ in (2.2) and then t by t/2 on the left-hand
side of (2.2). Thus with y = e2µ, we find that∫ ∞

0

f

(
z,
t

2

)
Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cosµt dt

=
1

2i
√
y

∫ 1
2

+i∞

1
2
−i∞

(
φ

(
z, s− 1

2

)
φ

(
z,

1

2
− s
)

+ φ

(
−z, s− 1

2

)
φ

(
−z, 1

2
− s
))

× ξ
(
s− z

2
, χ
)
ξ
(
s+

z

2
, χ
)
ys ds. (2.5)

It is this equation with which we will be working throughout this paper.

3. Character analogues of the extended version of Guinand’s formula

We require the following lemma.

Lemma 3.1. For Re s > 1 and Re (s− η) > 1,

L(s, χ)L(s− η, χ) =
∞∑
n=1

χ(n)

ns

∑
d|n

χ2(d)dη. (3.1)

Proof. Since the Dirichlet series for both the L-functions converge absolutely under
the given hypotheses, using [2, Theorem 11.5], we see that

L(s, χ)L(s− η, χ) =
∞∑
n=1

χ(n)

ns

∞∑
k=1

χ(k)

ks−η

=
∞∑
j=1

1

js

∑
nk=j

χ(n)χ(k)kη

=
∞∑
j=1

χ(j)

js

∑
nk=j

χ2(k)kη,

since χ(k)χ(k) = 1. �

Proof of Theorem 1.5. First assume that χ is even. Let φ(z, s) ≡ 1. Then from (2.1),
we see that f(z, t) ≡ 1. Using (1.9), (1.8), (1.12) and (1.13), we find that the integral

M(z, µ, χ) :=

∫ ∞
0

Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cosµt dt

does converge. Using (2.5), we observe that

M(z, µ, χ) =
1

i
√
y

∫ 1
2

+i∞

1
2
−i∞

ξ
(
s− z

2
, χ
)
ξ
(
s+

z

2
, χ
)
ys ds

=
1

i
√
y

∫ 1
2

+i∞

1
2
−i∞

Γ
(s

2
− z

4

)
Γ
(s

2
+
z

4

)
L
(
s− z

2
, χ
)
L
(
s+

z

2
, χ
)( π

qy

)−s
ds.

(3.2)
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Since Re s = 1/2 and −1 < Re z < 1, we have 0 < Re
(
s− z

2

)
< 1 and 0 < Re(

s+ z
2

)
< 1. Now replace s by s − z

2
and let η = −z in Lemma 3.1. Then, for Re(

s− z
2

)
> 1 and Re

(
s+ z

2

)
> 1,

L
(
s− z

2
, χ
)
L
(
s+

z

2
, χ
)

=
∞∑
n=1

χ(n)

ns−
z
2

∑
d|n

χ2(d)d−z. (3.3)

We wish to shift the line of integration from Re s = 1/2 to Re s = 3/2 in order to be
able to use (3.3) in (3.2). Consider a positively oriented rectangular contour formed
by [1

2
+ iT, 1

2
− iT ], [1

2
− iT, 3

2
− iT ], [3

2
− iT, 3

2
+ iT ] and [3

2
+ iT, 1

2
+ iT ], where T is any

positive real number. The integrand on the extreme right-hand side of (3.2) does not
have any pole inside the contour. Also as T → ∞, the integrals along the horizontal
segments [1

2
− iT, 3

2
− iT ] and [3

2
+ iT, 1

2
+ iT ] tend to zero, which can be seen by using

(1.12). Hence employing residue theorem, letting T → ∞, using (3.3) in (3.2), and
interchanging the order of summation and integration because of absolute convergence,
we observe that

M(z, µ, χ) =
1

i
√
y

∞∑
n=1

χ(n)nz/2
(∑

d|n

χ2(d)d−z
)∫ 3

2
+i∞

3
2
−i∞

Γ
(s

2
− z

4

)
Γ
(s

2
+
z

4

)(nπ
qy

)−s
ds.

(3.4)

But from [30, p. 115, formula 11.1], for c = Re s > ± Re ν,

1

2πi

∫ c+i∞

c−i∞
2s−2w−sΓ

(s
2
− ν

2

)
Γ
(s

2
+
ν

2

)
x−s ds = Kν(wx). (3.5)

Hence using (3.5) with c = 3/2, ν = z/2, w = 2 and x = nπ/qy in (3.4), we find that

M(z, µ, χ) =
8π
√
y

∞∑
n=1

χ(n)nz/2
(∑

d|n

χ2(d)d−z
)
K z

2

(
2πn

qy

)
. (3.6)

Now let µ = 1
2

logα in (3.6) so that y = e2µ implies that y = α. Then using the fact
that αβ = 1, we deduce that

1

8π

∫ ∞
0

Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cos

(
1

2
t logα

)
dt

=
√
β

∞∑
n=1

χ(n)nz/2
(∑

d|n

χ2(d)d−z
)
K z

2

(
2πnβ

q

)
. (3.7)

Next, observing that replacing α by β and/or replacing simultaneously χ by χ and z
by −z in (3.7) leaves the integral on the left-hand side invariant, we obtain (1.15).

Now consider the case when χ is odd. Again the convergence of the integralM(z, µ, χ)
can be seen from (1.12) and (1.13). Following similar steps above as in the case of even
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χ, and using the definition of ξ(s, χ) from (1.8) for χ odd, we find that

M(z, µ, χ) =
q

iπ
√
y

∞∑
n=1

χ(n)nz/2
∑
d|n

χ2(d)d−z
∫ 3

2
+i∞

3
2
−i∞

Γ

(
s

2
− z

4
+

1

2

)
Γ

(
s

2
+
z

4
+

1

2

)(
nπ

qy

)−s
ds.

(3.8)
Now replacing s by s+ 1 in (3.5), we find that for c = Re s > ± Re ν − 1,

1

2πi

∫ c+i∞

c−i∞
2s−1w−s−1Γ

(
s+ 1

2
− ν

2

)
Γ

(
s+ 1

2
+
ν

2

)
x−s ds = xKν(wx). (3.9)

Then using (3.9) with c = 3/2, ν = 0, w = 2 and x = nπ/qy in (3.8), we see that

M(z, µ, χ) =
8π

y3/2

∞∑
n=1

χ(n)n
z
2

+1

(∑
d|n

χ2(d)d−z
)
Kz/2

(
2πn

qy

)
. (3.10)

Now let µ = 1
2

logα in (3.10) so that y = e2µ implies that y = α. Then using the fact
that αβ = 1, we deduce that

1

8π

∫ ∞
0

Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cos

(
1

2
t logα

)
dt

= β3/2

∞∑
n=1

χ(n)n
z
2

+1

(∑
d|n

χ2(d)d−z
)
Kz/2

(
2πnβ

q

)
. (3.11)

Next, observing that replacing α by β and/or replacing simultaneously χ by χ and z
by −z in (3.11) leaves the integral on the left-hand side invariant, we obtain (1.15). �

Remark. Letting z → 0 in Theorem 1.5 gives a new character analogue of the ex-
tended version of Koshliakov’s formula, i.e., Theorem 1.4.

When χ is real, Theorem 1.5 reduces to the following corollary.

Corollary 3.2. Let −1 < Re z < 1 and let χ denote a real, primitive, non-principal
character modulo q. Let the number b be defined as in (1.7). If

F (z, α, χ) = αb+
1
2

∞∑
n=1

χ(n)n−
z
2

+bσz(n)K− z
2

(
2πnα

q

)
,

then

F (z, α, χ) = F (−z, β, χ) = F (−z, α, χ) = F (z, β, χ)

=
1

8π

∫ ∞
0

Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cos

(
1

2
t logα

)
dt.

The above corollary (without the integrals) is equivalent to the special cases, when χ
is real, of the character analogues of Guinand’s formula established in [7] (see Theorems
3.1 and 4.1).
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4. Inverse Mellin transforms and asymptotic expansions of certain
functions

In this section, we evaluate inverse Mellin transforms of some functions and asymp-
totic expansions of certain other functions all of which are subsequently used in the
later sections.

Lemma 4.1. For a primitive, non-principal character χ, let ψ(a, χ) be defined as in
(1.16). Then for 0 < c = Re s < 1 and x ∈ R\Z<0,

1

2πi

∫ c+i∞

c−i∞

L(1− s, χ)

sinπs
x−s ds = − 1

π
ψ(x, χ). (4.1)

Proof. We will prove the result for even characters only. The case when χ is odd
can be proved similarly. We first assume |x| < 1 and later extend it to any real
x ∈ R\Z<0 by analytic continuation. Let 0 < c < 1. Consider a positively oriented
rectangular contour formed by [c− iT, c+ iT ], [c+ iT,−M + iT ], [−M + iT,−M − iT ]
and [−M − iT, c − iT ], where T is any positive real number such that T > ln 2

2π
and

M = n − 1/2 where n is a positive integer. Let s = σ + it. Among the poles of the
function (L(1− s, χ)/ sin (πs))x−s, the only ones that contribute are the poles at the
non-positive integers. Let Ra denote the residue of the function (L(1−s, χ)/ sin πs)x−s

at a. Then,

R0 = lim
s→0

sL(1− s, χ)

sin πs
x−s =

1

π
L(1, χ). (4.2)

and

R−m = lim
s→−m

(s+m)L(1− s, χ)

sin πs
x−s =

(−1)m

π
L(1 +m,χ)xm. (4.3)

From (4.2), (4.3) and the residue theorem, we have[∫ c+iT

c−iT
+

∫ −M+iT

c+iT

+

∫ −M−iT
−M+iT

+

∫ c−iT

−M−iT

]
L(1− s, χ)

sin πs
x−s ds

= 2πi

(
1

π
L(1, χ) +

∑
0<m<M

(−1)m

π
L(1 +m,χ)xm

)
. (4.4)

We first estimate the integrals along the upper and lower horizontal segments. Using
(1.13), one finds that for −M ≤ σ ≤ c,

L(1− σ ± iT, χ) = O
(
qc+1/2T c+1/2

)
. (4.5)

Since T > ln 2
2π

, on the upper horizontal segment, we have∣∣∣∣ 1

sin πs

∣∣∣∣ =

∣∣∣∣ 2eπis

e2πis − 1

∣∣∣∣ < 4e−πT . (4.6)

Similarly, on the lower horizontal segment,∣∣∣∣ 1

sin πs

∣∣∣∣ =

∣∣∣∣ 2e−πis

1− e−2πis

∣∣∣∣ < 4e−πT .
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Since |x| < 1, from (4.5) and (4.6),∣∣∣∣∫ −M+iT

c+iT

L(1− s, χ)

sin πs
x−s ds

∣∣∣∣ ≤ K1(c+M)|x|−c · 4e−πT qc+1/2T c+1/2,

where K1 is some constant. Therefore,∫ −M+i∞

c+i∞

L(1− s, χ)

sin πs
x−s ds = 0. (4.7)

Similarly, ∫ c−i∞

−M−i∞

L(1− s, χ)

sin πs
x−s ds = 0. (4.8)

Then from (4.4), (4.7) and (4.8), we find that[∫ c+i∞

c−i∞
+

∫ −M−i∞
−M+i∞

]
L(1− s, χ)

sin πs
x−s ds = 2πi

(
1

π
L(1, χ) +

∑
0<m<M

(−1)m

π
L(1 +m,χ)xm

)
.

(4.9)

It remains to examine
∫ −M−i∞
−M+i∞ (L(1− s, χ)/ sinπs)x−s ds. Since M = n− 1/2, we have

| sin π(−M + it)| = | cosh πt| ≥ 1 and L(1 +M ± it) = O(1) as 1 +M > 1. Thus,∣∣∣∣∫ −M+i∞

−M−i∞

L(1− s, χ)

sin πs
x−s ds

∣∣∣∣ =

∣∣∣∣i ∫ ∞
−∞

L(1 +M − it, χ)

sin π(−M + it)
xM−it dt

∣∣∣∣
= |x|M

∫ 1

−1

O(1) dt+ |x|M
∫ ∞

1

O
(
e−π|t|

)
dt+ |x|M

∫ −1

−∞
O
(
e−π|t|

)
dt

= O(|x|M),

as |t| → ∞. Since |x| < 1,

lim
M→∞

∫ −M−i∞
−M+i∞

L(1− s, χ)

sin πs
x−s ds = 0. (4.10)

From (4.9) and (4.10), we see that

1

2πi

∫ c+i∞

c−i∞

L(1− s, χ)

sin πs
x−s ds =

(
1

π
L(1, χ) +

∞∑
m=1

(−1)m

π
L(1 +m,χ)xm

)

=
−1

π

(
−L(1, χ)−

∞∑
k=1

χ(k)

k

∞∑
m=1

(
−x
k

)m)

=
−1

π

(
−L(1, χ)−

∞∑
k=1

χ(k)

(
1

x+ k
− 1

k

))

=
−1

π
ψ(x, χ). (4.11)

Since both sides of (4.1) are analytic for any x ∈ R\Z<0, the result follows by analytic
continuation. �
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Lemma 4.2. Let z ∈ C be fixed such that −1 < Re z < 1. For a primitive, non-
principal character χ, let L(z, a, χ) be defined as in (1.17). Then for −1

2
Re z < c =

Re s < 1
2

Re z and x ∈ R\Z<0,

1

2πi

∫ c+i∞

c−i∞
Γ
(
s+

z

2

)
Γ
(

1− s+
z

2

)
L
(

1− s+
z

2
, χ
)
x−s ds = xz/2Γ(z+1)L(z+1, x, χ).

(4.12)

Proof. We prove the result only for even characters. The case for odd characters
can be proved similarly. We first assume |x| < 1 and later extend it to any real
x ∈ R\Z<0 by analytic continuation. Let −1

2
Re z < c = Re s < 1

2
Re z. Consider

a positively oriented rectangular contour formed by [c − iT, c + iT ], [c + iT,−M +
iT ], [−M + iT,−M − iT ] and [−M − iT, c− iT ], where T is some positive real number
and M = n−1/2, where n is a positive integer. Let s = σ+ it. Among the poles of the
function Γ(s + z/2)Γ(1 − s + z/2)L(1 − s + z/2, χ)x−s, the only ones that contribute
are the poles at s = −z/2 − m,m ≥ 0. Let Ra denote the residue of the function
Γ(s+ z/2)Γ(1− s+ z/2)L(1− s+ z/2, χ)x−s at a. Then for m ≥ 0,

R− z
2
−m = lim

s→− z
2
−m

(
s+

z

2
+m

)
Γ
(
s+

z

2

)
Γ
(

1− s+
z

2

)
L
(

1− s+
z

2
, χ
)
x−s

=
(−1)m

m!
Γ (1 + z +m)L (1 + z +m,χ)xz/2+m. (4.13)

From (4.13) and the residue theorem, we have[∫ c+iT

c−iT
+

∫ −M+iT

c+iT

+

∫ −M−iT
−M+iT

+

∫ c−iT

−M−iT

]
Γ
(
s+

z

2

)
Γ
(

1− s+
z

2

)
L
(

1− s+
z

2
, χ
)
x−s ds

= 2πixz/2
∑

0≤m<M

(−1)m

m!
Γ (1 + z +m)L (1 + z +m,χ)xm. (4.14)

We now estimate the integral along the upper horizontal segment. From (4.5), we
easily see that for −M ≤ σ ≤ c, i.e., −M− Re z

2
≤ σ− Re z

2
≤ c− Re z

2
,

L
(

1−
(
σ − Re

z

2

)
− i
(
T − Im

z

2

)
, χ
)

= O

(
qc−Re z

2
+ 1

2

(
T − Im

z

2

)c−Re z
2

+ 1
2

)
. (4.15)

By (1.12), we observe that∣∣∣Γ(s+
z

2

)∣∣∣ ∼ √2πe−
π
2 |T+Im z

2 | ·
∣∣∣T + Im

z

2

∣∣∣σ+Re z
2
− 1

2
, (4.16)

and ∣∣∣Γ(1− s+
z

2

)∣∣∣ ∼ √2πe−
π
2 |T−Im z

2 | ·
∣∣∣T − Im

z

2

∣∣∣−σ+Re z
2

+ 1
2
, (4.17)

Since |x| < 1, from (4.15), (4.16) and (4.17), we deduce that∣∣∣∣∫ −M+iT

c+iT

Γ(s+ z/2)Γ(1− s+ z/2)L(1− s+ z/2, χ)x−s ds

∣∣∣∣
≤ 2πK3(c+M)|x|−ce−

π
2 (|T+Im z

2 |+|T−Im z
2 |)
∣∣∣T + Im

z

2

∣∣∣σ+Re z
2
− 1

2
∣∣∣T − Im

z

2

∣∣∣−σ+Re z
2

+ 1
2
,
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where K3 is a constant. Hence,∫ −M+i∞

c+i∞
Γ(s+ z/2)Γ(1− s+ z/2)L(1− s+ z/2, χ)x−s ds = 0. (4.18)

Similarly for the integral along the lower horizontal segment, using (4.16), (4.17) and
the fact that

L
(

1−
(
σ − Re

z

2

)
+ i
(
T + Im

z

2

)
, χ
)

= O

(
qc−Re z

2
+ 1

2

(
T + Im

z

2

)c−Re z
2

+ 1
2

)
,

we observe that∫ c−i∞

−M−i∞
Γ(s+ z/2)Γ(1− s+ z/2)L(1− s+ z/2, χ)x−s ds = 0. (4.19)

Hence from (4.14), (4.18) and (4.19), it is clear that[∫ c+i∞

c−i∞
+

∫ −M−i∞
−M+i∞

]
Γ(s+ z/2)Γ(1− s+ z/2)L(1− s+ z/2, χ)x−s ds

= 2πixz/2
∑

0≤m<M

(−1)m

m!
Γ (1 + z +m)L (1 + z +m,χ)xm. (4.20)

It remains to evaluate
∫ −M−i∞
−M+i∞ Γ(s+ z/2)Γ(1− s+ z/2)L(1− s+ z/2, χ)x−s ds. In [9],

we find that as |t| → ∞,

Γ (−M + it) = O
(
|t|−M−1/2e−π|t|/2

)
.

Hence as T →∞,

Γ
(
−M + it+

z

2

)
= O

(∣∣∣T + Im
z

2

∣∣∣−M+Re z
2
− 1

2
e−

π
2
|T+Im z

2
|
)
. (4.21)

Again by (1.12), as T →∞,∣∣∣Γ(1 +M − it+
z

2

)∣∣∣ =
√

2πe−
π
2 |T−Im z

2 | ·
∣∣∣T − Im

z

2

∣∣∣M+Re z
2

+ 1
2

(
1 +O

(
1∣∣T − Im z

2

∣∣
))

.

(4.22)
Also, L

(
1 +M − it+ z

2
, χ
)

is bounded as Re
(
1 +M − it+ z

2

)
> 1. Hence,∣∣∣∣∫ −M−i∞

−M+i∞
Γ
(
s+

z

2

)
Γ
(

1− s+
z

2

)
L
(

1− s+
z

2
, χ
)
x−s ds

∣∣∣∣
=

∣∣∣∣i ∫ ∞
−∞

Γ
(
−M + it+

z

2

)
Γ
(

1 +M − it+
z

2

)
L
(

1 +M − it+
z

2
, χ
)
xM−it dt

∣∣∣∣
= |x|M

∫ 1

−1

O(1) dt+ |x|M
∫ ±∞

1

O

(∣∣∣T + Im
z

2

∣∣∣−M+Re z
2
− 1

2
∣∣∣T − Im

z

2

∣∣∣M+Re z
2

+ 1
2
e−

π
2 (|T+Im z

2 |+|T−Im z
2 |)
)
dt

= O
(
|x|M

)
,
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as T →∞. Since |x| < 1,

lim
M→∞

∫ −M−i∞
−M+i∞

Γ
(
s+

z

2

)
Γ
(

1− s+
z

2

)
L
(

1− s+
z

2
, χ
)
x−s ds = 0. (4.23)

From (4.20), (4.23), we finally deduce that

1

2πi

∫ c+i∞

c−i∞
Γ
(
s+

z

2

)
Γ
(

1− s+
z

2

)
L
(

1− s+
z

2
, χ
)
x−s ds

= xz/2
∞∑
m=0

(−1)m

m!
Γ (1 + z +m)L (1 + z +m,χ)xz/2+m

= xz/2Γ(z + 1)
∞∑
m=0

(−1)m

m!

Γ (1 + z +m)

Γ(1 + z)

∞∑
k=1

χ(k)

kz+m+1
xm

= xz/2Γ(z + 1)
∞∑
k=1

χ(k)

kz+1

∞∑
m=0

Γ(1 + z +m)

m!Γ(1 + z)

(
−x
k

)m
= xz/2Γ(z + 1)

∞∑
k=1

χ(k)

kz+1

(
1 +

x

k

)−z−1

= xz/2Γ(z + 1)
∞∑
k=1

χ(k)

(k + x)z+1

= xz/2Γ(z + 1)L(z + 1, x, χ),

where in the fourth step above, we have utilized binomial theorem since |x| < 1. Since
both sides of (4.12) are analytic for any x ∈ R\Z<0, the result follows by analytic
continuation. �
For j ≥ 1, the generalized Bernoulli numbers Bj(χ) are given by [4, p. 426]

B2j(χ) =
2(−1)j−1G(χ)(2j)!

k(2π/k)2j
L(2j, χ),

for χ even, and by

B2j−1(χ) =
2(−1)j−1iG(χ)(2j − 1)!

k(2π/k)2j−1
L(2j − 1, χ),

for χ odd. Also it is known [4, p. 423, Corollary 3.4] that B2j−1(χ) = 0 when χ is even
and B2j(χ) = 0 when χ is odd. Next, we give an asymptotic expansion of ψ(a, χ) as
|a| → ∞.

Lemma 4.3. For −π < arg a < π, as |a| → ∞,

ψ(a, χ) ∼ −L(0, χ)

a
− χ(−1)

∞∑
j=2

Bj(χ)

jaj
.

Proof. The proof is very much identical to Proposition 5.3 in [4, p. 435] and hence is
omitted. �
The asymptotic expansion of L(z, a, χ) as |a| → ∞ is given below.
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Lemma 4.4. For Re z > 0 and −π < arg a < π, as |a| → ∞,

L(z, a, χ) ∼ χ(−1)
∞∑
j=1

Bj(χ)
∏j−2

m=0(z +m)

j!az+j−1
.

Proof. To derive this, one takes (4.3) and (4.4) in [4, p. 424] valid for χ even and odd
respectively, substitutes A = 0, B = N, r = 1 and f(u) = (u + a)−z, lets N → ∞ and
then performs repeated integration by parts on the prevalent integral. �

5. Character analogues of Theorem 1.2

In this section, we prove analogues of Theorem 1.2 for even and odd primitive charac-
ters. Then we give character analogues of Ramanujan’s transformation formula (The-
orem 1.1) as special cases.

Proof of Theorem 1.6. Using Lemma 4.4, one sees that the series involving the func-
tions L(z, a, χ) in the theorem are convergent. Let φ(z, s) = (z + 1 + 2s)Γ

(−z−1
4

+ s
2

)
.

Then from (2.1) and (1.19), we find that f
(
z, t

2

)
= 1

2
Ω(z, t). From (2.5), we have∫ ∞

0

Ω(z, t)Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cosµt dt =

1

i
√
y

(J(z, y, χ) + J(−z, y, χ)) ,

(5.1)

where

J(z, y, χ) :=

∫ 1
2

+i∞

1
2
−i∞

U(z, s, y, χ) ds (5.2)

with

U(z, s, y, χ) := (−z+2s)(−z+2−2s)Γ

(
z

4
+
s

2
− 1

2

)
Γ
(z

4
− s

2

)
ξ
(
s− z

2
, χ
)
ξ
(
s+

z

2
, χ
)
ys.

Using (1.12) and (1.13), one sees that indeed the integral on the left side of (5.1)
converges. We first simplify the integrand in (5.2). Using (1.8) with b = 0, and
then duplication formula [36, p. 46, Equation (3.4)] and reflection formula [36, p. 46,
Equation (3.5)] for Gamma function in the second equality below, we have

U(z, s, y, χ) = 16

(
π

qy

)−s{
Γ

(
z

4
+
s+ 1

2

)
Γ
(z

4
+
s

2

)}{
Γ
(z

4
− s

2
+ 1
)

Γ
(s

2
− z

4

)}
× L

(
s− z

2
, χ
)
L
(
s+

z

2
, χ
)

= 16

(
π

qy

)−s
·
√
π

2s+
z
2
−1

Γ
(
s+

z

2

)
· π

sin
(
π
(
s
2
− z

4

)) · L(s− z

2
, χ
)
L
(
s+

z

2
, χ
)
.

(5.3)

Substituting (1.10) in the form

L
(
s− z

2
, χ
)

=
(2π)s−

z
2L(1− s+ z

2
, χ)

2qs−
z
2
−1G(χ)Γ

(
s− z

2

)
cos
(
π
2

(
s− z

2

))
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in (5.3) and then simplifying, we find that

U(z, s, y, χ) =
32ys2−zπ(1−z)/2

q−
z
2
−1G(χ)

Γ
(

1− s+
z

2

)
Γ
(
s+

z

2

)
L
(

1− s+
z

2
, χ
)
L
(
s+

z

2
, χ
)
.

(5.4)
We wish to shift the line of integration from Re s = 1/2 to Re s = 3/2 in order
to evaluate (5.2), since then −1 < Re z < 1 implies that Re (s + z/2) > 1, which
allows us to use the series representation of L

(
s+ z

2
, χ
)
. Consider a positively oriented

rectangular contour formed by [1
2

+ iT, 1
2
− iT ], [1

2
− iT, 3

2
− iT ], [3

2
− iT, 3

2
+ iT ] and

[3
2

+ iT, 1
2

+ iT ], where T is any positive real number. The integrand in (5.2) does

not have any pole inside the contour since the pole of Γ
(
1− s+ z

2

)
at s = 1 + z/2 is

cancelled by the zero of L
(
1− s+ z

2
, χ
)

there. Also as T → ∞, the integrals along

the horizontal segments [1
2
− iT, 3

2
− iT ] and [3

2
+ iT, 1

2
+ iT ] tend to zero, which can

be seen using (1.12). Employing residue theorem, letting T → ∞ and using (5.4), we
find that

J(z, y, χ) =
32 · 2−zπ(1−z)/2

q−
z
2
−1G(χ)

∫ 3
2

+i∞

3
2
−i∞

Γ
(
s+

z

2

)
Γ
(

1− s+
z

2

)
L
(

1− s+
z

2
, χ
)
L
(
s+

z

2
, χ
)
ys ds

=
32 · 2−zπ(1−z)/2

q−
z
2
−1G(χ)

∞∑
n=1

χ(n)

nz/2

∫ 3
2

+i∞

3
2
−i∞

Γ
(
s+

z

2

)
Γ
(

1− s+
z

2

)
L
(

1− s+
z

2
, χ
)(n

y

)−s
ds.

(5.5)

Now, in order to use Lemma 4.2 to evaluate the integral in (5.5), we again have to shift
the line of integration from Re s > 3/2 to Re s = d, where −1

2
Re z < d < 1

2
Re z.

Again, we do not encounter any pole in this process. Hence,

J(z, y, χ) =
64i2−zy−z/2π(3−z)/2Γ(z + 1)

q−
z
2
−1G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

(k + n/y)z+1
. (5.6)

Since −1 < Re(z) < 1, the other integral, namely J(−z, y, χ), can be evaluated by
simply replacing z by−z and χ by χ in (5.6). Now (5.1), (5.6), (1.18) and the discussion
in the previous line give∫ ∞

0

Ω(z, t)Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cosµt dt

=
64π3/2q
√
y

(
T (z, y−1, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

(k + n/y)z+1
+ T (−z, y−1, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

(k + n/y)−z+1

)
,

(5.7)

where it is easy to see from the fact that −1 < Re z < 1, from the discussion just
preceding the statement of Theorem 1.6 and from Lemma 4.4 that both the double
series on the right-hand side of (5.7) converge.
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Now let µ = 1
2

logα in (5.7) so that y = e2µ implies that y = α. Then using the fact
that αβ = 1 and using (1.17) in the second equality below, we deduce that∫ ∞

0

Ω(z, t)Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cos
(

1
2
t logα

)
dt

= 64π3/2q
√
β

(
T (z, β, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

(k + nβ)z+1
+ T (−z, β, χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

(k + nβ)−z+1

)

= 64π3/2q
√
β

(
T (z, β, χ)

∞∑
n=1

χ(n)L(z + 1, nβ, χ) + T (−z, β, χ)
∞∑
n=1

χ(n)L(−z + 1, nβ, χ)

)
.

The integral on the extreme left-hand side above is invariant under the transformation
α → β or under the simultaneous application of the transformations α → β, χ → χ
and z → −z. Thus we obtain (1.20). �

Next we give an analogue of Ramanujan’s transformation formula (Theorem 1.1) for
even characters.

Corollary 5.1. For an even character χ, define P (α, χ) by

P (α, χ) =
√
α Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα

)
= −
√
α Re

(
G(χ)

∞∑
n=1

χ(n)ψ (nα, χ)

)
,

where ψ (a, χ) is defined in (1.16). Then we have

P (α, χ) = P (β, χ) = P (α, χ) = P (β, χ)

=
1

64π3/2

∫ ∞
0

(1 + t2)Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2
, χ

)
Ξ

(
t

2
, χ

)
cos

(
1

2
t logα

)
dt.

(5.8)

Proof. Using Lemma 4.3, we readily see that the double series in the definition of
P (α, χ) converges. Let z → 0 in (1.20). Then multiplying both sides by q and using
(1.6), we have

√
α

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα
+G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα

)

=
√
β

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nβ
+G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nβ

)

=
1

32π3/2

∫ ∞
0

(1 + t2)Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2
, χ

)
Ξ

(
t

2
, χ

)
cos

(
1

2
t logα

)
dt.

(5.9)

Each of the first two expressions in (5.9) can be written in two different ways as real
parts of a double series. Thus,

√
α Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα

)
=
√
α Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα

)
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=
√
β Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nβ

)
=
√
β Re

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nβ

)

=
1

64π3/2

∫ ∞
0

(1 + t2)Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2
, χ

)
Ξ

(
t

2
, χ

)
cos

(
1

2
t logα

)
dt.

This implies (5.8). �

Moreover, if we start with the integral in Corollary 5.1, evaluate it using (2.5) with
z = 0 and make use of Lemma 4.1 when χ is even, we obtain the same result as in
Corollary 5.1, except that the function P (α, χ) is replaced by the function F (α, χ)
defined by

F (α, χ) :=
√
αG(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα
= −
√
αG(χ)

∞∑
n=1

χ(n)ψ (nα, χ) . (5.10)

It is then trivial to see that F (α, χ) = P (α, χ).
Theorem 1.7 can be analogously proved using Lemma 4.2 for χ odd. We just note

that there we have to take care of the pole of Γ
(
1− s+ 1

2
z
)

in the integrands of two
separate integrals. However, in the calculations that follow later, the two residues turn
out to be additive inverses of each other and hence do not contribute anything.

The following is an analogue of Ramanujan’s transformation formula (Theorem 1.1)
for odd characters.

Corollary 5.2. For an odd character χ, define Q(α, χ) by

Q(α, χ) =
√
α Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα

)
= −
√
α Im

(
G(χ)

∞∑
n=1

χ(n)ψ (nα, χ)

)
,

where ψ (a, χ) is defined in (1.16). Then we have

Q(α, χ) = Q(β, χ) = Q(α, χ) = Q(β, χ)

=
1

4π1/2q

∫ ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ

(
t

2
, χ

)
Ξ

(
t

2
, χ

)
cos

(
1

2
t logα

)
dt. (5.11)

Proof. Using Lemma 4.3, we find that the double series in the definition of Q(α, χ)
converges. Let z → 0 in Theorem 1.7. Multiplying both sides by −q and using (1.5)
and (1.6), we observe that

√
α

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα
+G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα

)

=
√
β

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nβ
+G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nβ

)

=
i

2π1/2q

∫ ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ

(
t

2
, χ

)
Ξ

(
t

2
, χ

)
cos

(
1

2
t logα

)
dt. (5.12)
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Now using (1.6) for odd characters to simplify (5.12), we see that

2i
√
α Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα

)
= 2i
√
α Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nα

)

= 2i
√
β Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nβ

)
= 2i

√
β Im

(
G(χ)

∞∑
n=1

∞∑
k=1

χ(n)χ(k)

k + nβ

)

=
i

2π1/2q

∫ ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ

(
t

2
, χ

)
Ξ

(
t

2
, χ

)
cos

(
1

2
t logα

)
dt.

This implies (5.11). �

If we now start with the integral in Corollary 5.2, evaluate it using (2.5) with z = 0 and
make use of Lemma 4.1 when χ is odd, we obtain the same result as in Corollary 5.2,
except that the function Q(α, χ) is replaced by −iF (α, χ), where F (α, χ) is defined in
(5.10). It is then trivial to see that F (α, χ) = iQ(α, χ).

We separately record the following theorem resulting from the discussion on the
previous line and the one succeeding Corollary 5.1.

Theorem 5.3. The sum F (α, χ) defined in (5.10) is real if χ is even and purely
imaginary if χ is odd.

6. Character analogues of the Ramanujan-Hardy-Littlewood
conjecture

In this section, we prove Theorems 1.9 and 1.10. We require Lemma 3.1 from [1]
which states that if χ is a primitive character of conductor N and k ≥ 2 is an integer
such that χ(−1) = (−1)k, then

(k − 2)!Nk−2G(χ)

2k−1πk−2ik−2
L(k − 1, χ) = L′(2− k, χ). (6.1)

Proof of Theorem 1.9. From [28], we have for Re s > 1,
∞∑
n=1

χ(n)µ(n)

ns
=

1

L(s, χ)
. (6.2)

Also, since for −1 < c = Re s < 0,

(1− e−x) = − 1

2πi

∫ c+i∞

c−i∞
Γ(s)x−s ds, (6.3)

replacing s by s+ 1, we find that for −2 < c < −1,

(1− e−x) = − 1

2πi

∫ c+i∞

c−i∞
Γ(s+ 1)x−s−1 ds. (6.4)

Using (6.2) and (6.4), we observe that
∞∑
n=1

χ(n)µ(n)

n2
e
−πα

2

n2q =
1

L(2, χ)
−
∞∑
n=1

χ(n)µ(n)

n2
(1− e−

πα2

n2q )
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=
1

L(2, χ)
+

q

2π2iα2

∫ c+i∞

c−i∞

∞∑
n=1

χ(n)µ(n)

n−2s
Γ(s+ 1)

(
πα2

q

)−s
ds

=
1

L(2, χ)
+

q

2π2iα2

∫ c+i∞

c−i∞

Γ(s+ 1)

L(−2s, χ)

(
πα2

q

)−s
ds, (6.5)

where in the second step above, we interchanged the order of summation and integration
because of absolute convergence. For χ odd, (1.10) can be put in the form(

π

q

)−(2−s)/2

Γ

(
2− s

2

)
L(1− s, χ) =

iq1/2

G(χ)

(
π

q

)−(s+1)/2

Γ

(
s+ 1

2

)
L(s, χ).

Hence,

Γ(s+ 1)

L(−2s, χ)
=
G(χ)

iq1/2

(
π

q

)2s+
1
2 Γ

(
1
2
− s
)

L(2s+ 1, χ)
. (6.6)

Substituting (6.6) in (6.5), we observe that
∞∑
n=1

χ(n)µ(n)

n2
e
−πα

2

n2q =
1

L(2, χ)
− G(χ)

2π3/2α2

∫ c+i∞

c−i∞

Γ
(

1
2
− s
)

L(2s+ 1, χ)

(
qα2

π

)−s
ds. (6.7)

We wish to shift the line of integration from Re s = c, −2 < c < −1, to Re s = λ,
where 1

2
< λ < 3

2
. Consider a positively oriented rectangular contour formed by

[c − iT, λ − iT ], [λ − iT, λ + iT ], [λ + iT, c + iT ] and [c + iT, c − iT ], where T is any
positive real number. Let ρ = δ + iγ denote a non-trivial zero of L(s, χ). Let T →∞
through values such that |T − γ| > exp (−A1γ/ log γ) for every ordinate γ of a zero of
L(s, χ). It is known [10, p. 102] that for t not coinciding with the ordinate γ of a zero,
and −1 ≤ σ ≤ 2,

L
′
(s, χ)

L(s, χ)
=
∑
|t−γ|≤1

1

s− ρ
+O (log (q(|t|+ 2))) ,

from which we can conclude that

logL(s, χ) =
∑
|t−γ|≤1

log(s− ρ) +O (log (q(|t|+ 2))) . (6.8)

Taking real parts in (6.8) gives

log |L(s, χ)| =
∑
|t−γ|≤1

log |s− ρ|+O (log (q(|t|+ 2)))

≥
∑
|t−γ|≤1

log |t− γ|+O (log (q(|t|+ 2))) .

(6.9)

Hence from (6.9), we have

log |L(σ + iT, χ)| ≥ −
∑
|T−γ|≤1

A1γ/ log γ +O (log (q(|T |+ 2)))

> −A2T, (6.10)
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where A2 < π/4 if A1 is small enough and T > T0 for some fixed T0. From (6.10), we
see that ∣∣∣∣ 1

L(2s+ 1, χ)

∣∣∣∣ < eA3T , (6.11)

where A3 < π/2. Using (1.12) and (6.11), we observe that as T →∞ through the above
values, the integrals along the horizontal segments tend to zero. Now let ρ−1

2
:= δ+ iγ

denote a non-trivial zero of L(2s + 1, χ). Let Rf (a) denote the residue at a of the

function f(s) :=
Γ
(

1
2
− s
)

L(2s+ 1, χ)

(
qα2

π

)−s
. The non-trivial zeros of L(2s+ 1, χ) lie in the

critical strip −1
2
< Re s < 0, whereas the trivial zeros are at −1,−2,−3, · · · . Also,

Γ
(

1
2
− s
)

has poles at 1
2
, 3

2
, 5

2
, · · · . Then the residue theorem yields∫ c+i∞

c−i∞

Γ
(

1
2
− s
)

L(2s+ 1, χ)

(
qα2

π

)−s
ds =

∫ λ+i∞

λ−i∞

Γ
(

1
2
− s
)

L(2s+ 1, χ)

(
qα2

π

)−s
ds

− 2πi

(
Rf (−1) +

∑
ρ

Rf

(
ρ− 1

2

)
+Rf

(
1

2

))
,

(6.12)

where

Rf (−1) = lim
s→−1

(s+ 1)
Γ
(

1
2
− s
)

L(2s+ 1, χ)

(
qα2

π

)−s
=

α2q

4
√
πL′(−1, χ)

,

Rf

(
ρ− 1

2

)
= lim

s→ ρ−1
2

(
s− ρ− 1

2

)
Γ
(

1
2
− s
)

L(2s+ 1, χ)

(
qα2

π

)−s
=

Γ
(

2−ρ
2

)
2L′(ρ, χ)

(
π

qα2

) ρ−1
2

,

Rf (1/2) = −
√
π

α
√
qL(2, χ)

. (6.13)

Of course, here we have assumed that the non-trivial zeros of L(2s+1, χ) are all simple
and that

∑
ρRf

(
ρ−1

2

)
converges, since the afore-mentioned discussion regarding the

integrals along the horizontal segments tending to zero as T →∞ through the chosen
sequence does not imply the convergence of

∑
ρRf

(
ρ−1

2

)
in the ordinary sense. It only

means that the series converges only when we bracket the terms in such a way that
the two terms for which

|γ − γ′| < exp (−A1γ/ log 2γ) + exp (−A1γ
′/ log 2γ′)

are included in the same bracket. Using (6.2) and interchanging the order of summation
and integration because of absolute convergence, we obtain∫ λ+i∞

λ−i∞

Γ
(

1
2
− s
)

L(2s+ 1, χ)

(
qα2

π

)−s
ds =

∞∑
n=1

χ(n)µ(n)

n

∫ λ+i∞

λ−i∞
Γ

(
1

2
− s
)(

qα2n2

π

)−s
ds

=

√
π

α
√
q

∞∑
n=1

χ(n)µ(n)

n2

∫ d+i∞

d−i∞
Γ(s)

(
π

α2n2q

)−s
ds,

(6.14)
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where in the penultimate line, we have made the change of variable s→ 1
2
− s so that

−1 < d < 0. Thus, (6.12), (6.13), (6.14) and (6.3) imply∫ c+i∞

c−i∞

Γ
(

1
2
− s
)

L(2s+ 1, χ)

(
qα2

π

)−s
ds

= −2π3/2i

α
√
q

∞∑
n=1

χ(n)µ(n)

n2

(
1− e−

π
α2n2q

)
− 2πi

(
α2q

4
√
πL′(−1, χ)

+
∑
ρ

Γ
(

2−ρ
2

)
2L′(ρ, χ)

(
π

qα2

) ρ−1
2

−
√
π

α
√
qL(2, χ)

)
. (6.15)

From (6.7), (6.15) and the facts that αβ = 1 and
√
G(χ)G(χ) = i

√
q, we find that

α
√
α
√
G(χ)

∞∑
n=1

χ(n)µ(n)

n2
e
−πα

2

n2q

=
α
√
α
√
G(χ)

L(2, χ)
−
β
√
β
√
G(χ)

L(2, χ)
+ β

√
β
√
G(χ)

∞∑
n=1

χ(n)µ(n)

n2
e
−πβ

2

n2q

−
α
√
αq3/2

√
G(χ)

4πL′(−1, χ)
−
q
√
G(χ)

2π
√
β

∑
ρ

Γ
(

2−ρ
2

)
L′(ρ, χ)

(
π

q

)ρ/2
βρ +

β
√
β
√
G(χ)

L(2, χ)
. (6.16)

Applying (6.1) with N = q and k = 3 and replacing χ by χ gives

1

L′(−1, χ)
=

4πi

qG(χ)L(2, χ)
. (6.17)

Thus (6.16) and (6.17) yield

α
√
α
√
G(χ)

∞∑
n=1

χ(n)µ(n)

n2
e
−πα

2

n2q − β
√
β
√
G(χ)

∞∑
n=1

χ(n)µ(n)

n2
e
−πβ

2

n2q

= −
q
√
G(χ)

2π
√
β

∑
ρ

Γ
(

2−ρ
2

)
L′(ρ, χ)

(
π

q

)ρ/2
βρ. (6.18)

Switching the roles of α and β and those of χ and χ gives

q
√
G(χ)

2π
√
α

∑
ρ

Γ
(

2−ρ
2

)
L′(ρ, χ)

(
π

q

)ρ/2
αρ +

q
√
G(χ)

2π
√
β

∑
ρ

Γ
(

2−ρ
2

)
L′(ρ, χ)

(
π

q

)ρ/2
βρ = 0. (6.19)

Finally (6.18) and (6.19) give (1.24) upon simplification. �
Remark. The approach used above for proving that the integrals along the horizontal
segments tend to zero as T → ∞ through the chosen sequence is adapted from [37,
p. 219].

To prove Theorem 1.10, we require the following lemma.

Lemma 6.1.
∞∑
n=1

χ(n)µ(n)

n
=

1

L(1, χ)
.
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Proof. Dividing n into its residue classes mod q by letting n = qr + b, 0 ≤ r < ∞,
0 ≤ b ≤ q − 1, we find that since χ has period q,

∞∑
n=1

χ(n)µ(n)

n
=
∞∑
r=0

q−1∑
b=0

χ(b)µ(qr + b)

qr + b
=

q−1∑
b=0

χ(b)
∞∑
r=0

µ(qr + b)

qr + b
. (6.20)

The series
∑∞

r=0 µ(qr+b)/(qr+b) was first studied by J.C. Kluyver [19] and its conver-
gence was proved by E. Landau [28]. In fact, Landau gave an explicit representation
for this series in terms of a finite sum consisting of L-functions. Thus (6.20) implies
convergence of

∑∞
n=1 χ(n)µ(n)/n. Then using (6.2) and an analogue of Abel’s theorem

for power series, we see that
∞∑
n=1

χ(n)µ(n)

n
= lim

s→1

∞∑
n=1

χ(n)µ(n)

ns
= lim

s→1

1

L(s, χ)
=

1

L(1, χ)
.

�

Proof of Theorem 1.10. The proof is very similar to that of Theorem 1.9 and hence
we omit the details. However we note that Lemma 6.1, (1.10) in the form [10, p. 69]

π−(1−s)/2q(1−s)/2Γ

(
1− s

2

)
L(1− s, χ) =

q1/2

G(χ)
π−s/2qs/2Γ

(s
2

)
L(s, χ)

and (6.1) with N = q and k = 2 are used in the proof. �

7. Open problems

The following are some open problems with which we will conclude.
1. We have indirectly given the proof of the fact that function F (α, χ) defined in

(5.10) is real (purely imaginary) respectively when χ is even (odd). Prove this directly,
i.e., without using Corollaries 5.1 and 5.2 and the integrals in those corollaries.

2. Since (1.23) is of the form F (α) = F (β), where αβ = 1, it is natural to ask if
there exists an integral representation involving the Riemann Ξ-function equal to the
two expressions in (1.23). Finding an integral representation for either side of (1.23)
may throw light on the convergence of

∑
ρ (Γ ((1− ρ)/2) aρ) /ζ

′
(ρ) provided, of course,

that the integral converges in the first place. It should be remarked here that Hardy
and Littlewood [18, p. 161] have shown that the relation

P (y) = O
(
y−

1
4

+δ
)
, (7.1)

where P (y) =
∑∞

n=1(−y)n/(n!ζ(2n+1)), can be derived from (1.23) provided we assume
the Riemann hypothesis and the absolute convergence of

∑
ρ Γ ((1− ρ)/2) /ζ

′
(ρ). They

have further shown that (7.1) is a necessary and sufficient condition for the Riemann
hypothesis to be true.

Similarly, it is natural to ask if the expressions in (1.24) and (1.25) have integral
representations involving Ξ

(
t
2
, χ
)
.

3. Does there exist a generalization of Theorem 1.8 admitting representations of the
form F (z, α) = F (z, β)? Similarly, do there exist generalizations of Theorems 1.9 and



CHARACTER ANALOGUES 27

1.10 admitting representations of the form F (z, α, χ) = F (−z, β, χ) = F (−z, α, χ) =
F (z, β, χ)?
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