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ABSTRACT. We give a simple and a more explicit proof of a mod 4 congruence for a series
involving the little g-Jacobi polynomials which arose in a recent study of a certain restricted

overpartition function.

1. INTRODUCTION

In [3], Andrews, Schultz, Yee and the author studied the overpartition function p,(n),
namely, the number of overpartitions of n such that all odd parts are less than twice the
smallest part, and in which the smallest part is always overlined. In the same paper, they
obtained a representation for the generating function of p,(n) in terms of a 3¢9 basic hyper-
geometric series and an infinite series involving the little g-Jacobi polynomials. The latter
are given by [2, Equation (3.1)]
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where the basic hypergeometric series ,41¢, is defined by
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The precise representation for the generating function of p,(n) obtained in [3] is as follows.

Theorem 1.1. The following identity holds for |q| < 1:

— =N 1 (¢59)00(q; 4o —1, g2, —ig'/?
Py(q) =) p,(n)qd" =—5 o) 10, q
@ ;_:1 ) 2~ Qoc(—0: P’ -\ 2 —g?

(490 x~_ (4:¢*)n(=9)" on—1
+ > pon(=13¢7 7", =1:q).  (1.2)
(G900 = (—¢:¢*)n(1+¢>")""
12010 Mathematics Subject Classification: Primary, 11P81; Secondary, 05A17

2Keywords and phrases: overpartitions, congruence, little g-Jacobi polynomials
1



2 ATUL DIXIT

Later, Bringmann, Jennings-Shaffer and Mahlburg [4, Theorem 1.1] showed that P, (q) +
1 n(4r)

4 2n(27)2°
function B, (7), which transforms like a weight 1 modular form. They called the function

P,(q) + i — 222;1:;2 a higher depth mock modular form.

While the series involving the little g-Jacobi polynomials in Theorem 1.1 itself looks for-

where ¢ = ¢*™ and 7(7) is the Dedekind eta function, can be completed to a

midable, it was shown in [3, Theorem 1.3] that modulo 4, it is a simple g-product. The mod

4 congruence proved in there is given below.

Theorem 1.2. The following congruence holds:
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The proof of this congruence in [3] is beautiful but somewhat involved. The objective of
this short note is to give a very simple proof of it. In fact, we derive it as a trivial corollary
of the following result.

Theorem 1.3. For |q| < 1, we have
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The presence of 4 in front of the series on the right-hand side in the above equation

immediately implies that Theorem 1.2 holds.

2. PROOF OF THEOREM 1.3

Observe that from (1.1),
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However, let us first consider
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The only difference in the series on the right-hand side of (2.1) and the series in (2.2) is the
presence of (—1)/ inside the finite sum in the former.

To simplify A(q), we start with a result of Alladi [1, p. 215, Equation (2.6)]:
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Let a = —1,b =1 and replace n by 2n so that

2 .
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Substitute (2.4) in (2.2) to see that
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where in the last step we used the g-binomial theorem 7 , EZZ;Z 2" = %, valid for
|z| <1 and |q| < 1.

From (2.1) and (2.2),
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Invoking (2.5), we see that the proof of Theorem 1.3 is complete.
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