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Abstract. A new transformation involving the error function erf(z),
the imaginary error function erfi(z), and an integral analogue of a partial
theta function is given along with its character analogues. Another com-
plementary error function transformation is also obtained which when
combined with the first explains a transformation in Ramanujan’s Lost
Notebook termed by Berndt and Xu as the one for an integral analogue
of theta functions. These transformations are used to obtain a variety
of exact and approximate evaluations of some non-elementary integrals
involving hypergeometric functions. Several asymptotic expansions, in-
cluding the one for a non-elementary integral involving a product of
the Riemann Ξ-function of two different arguments, are obtained, which
generalize known results due to Berndt and Evans, and Oloa.

1. Introduction

Mordell initiated the study of the integral

∫ ∞
−∞

eax
2+bx

ecx + d
dx, Re(a) < 0, in

his two influential papers [33, 34]. Prior to his work, special cases of this

integral had been studied, for example, by Riemann in his Nachlass [48] to

derive the approximate functional equation for the Riemann zeta function,

by Kronecker [27, 28] to derive the reciprocity for Gauss sums, and by Lerch

[30, 31, 32]. Mordell showed that the above integral can be reduced to two

standard forms, namely,

ϕ(z, τ) := τ

∫ ∞
−∞

eπiτx
2−2πzx

e2πx − 1
dx, (1.1)

σ(z, τ) :=

∫ ∞
−∞

eπiτx
2−2πzx

e2πτx − 1
dx,

for Im(τ) > 0, and was the first to study the properties of these integrals

with respect to modular transformations. Bellmann [5, p. 52] coined the

terminology ‘Mordell integrals’ for these types of integrals.
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Mordell integrals play a very important role in the groundbreaking Ph.D.

thesis of Zwegers [51] which sheds a clear light on Ramanujan’s mock theta

functions. The definition of a Mordell integral h(z; τ), Im(τ) > 0, employed

by Zwegers [51, p. 6], and now standard in the contemporary literature is,

h(z; τ) :=

∫ ∞
−∞

eπiτx
2−2πzx

cosh πx
dx.

As remarked by Zwegers himself [51, p. 5], h(z; τ) is essentially the function

ϕ(z; τ) defined in (1.1), i.e.,

h(z; τ) = −2i
τ
e−(πiτ4 +πiz)ϕ

(
z + τ−1

2
, τ
)
. (1.2)

Kuznetsov [29] has recently used h(z; τ) to simplify Hiary’s algorithm [23]

for computing the truncated theta function
∑n

k=0 exp(2πi(zk+τk2)), which

in turn is used to compute ζ
(

1
2

+ it
)

to within ±t−λ in Oλ(t
1
3 (ln t)κ) arith-

metic operations [22]. We refer the reader to a more recent article [10] and

the references therein for further applications of Mordell integrals.

In [43] and [44], Ramanujan studied the integrals

φω(z) :=

∫ ∞
0

cos(πxz)

cosh(πx)
e−πωx

2

dx,

ψω(z) :=

∫ ∞
0

sin(πxz)

sinh(πx)
e−πωx

2

dx.

Of course, we require Re ω > 0 for the integrals to converge. If we replace

ω by −iτ with Im(τ) > 0 and z by 2iz, then the integral φ is nothing but

the Mordell integral. That is,

h(z, τ) = 2φ−iτ (2iz).

Later, Ramanujan briefly worked on these two integrals in a two-page frag-

ment transcribed by G. N. Watson from Ramanujan’s loose papers and

published along with Ramanujan’s Lost Notebook [47, p. 221-222]. See also

[4, pp. 307-328] for details.

A third integral of this kind studied by Ramanujan in [47, p. 198] is

Fω(z) :=

∫ ∞
0

sin(πxz)

tanh (πx)
e−πωx

2

dx.

As before, one needs Re ω > 0 for convergence. One can easily rephrase it

as

Fω(z) =

∫ ∞
−∞

e−πωx
2

sin(πxz)

e2πx − 1
dx =

∫ ∞
−∞

e−πωx
2+2πx sin(πxz)

e2πx − 1
dx. (1.3)
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For Im(τ) > 0, this integral F is connected to the integral ϕ(z, τ) in (1.1)

(and hence to the Mordell integral h(z; τ)) via

F−iτ (2iz) =
1

2iτ
(ϕ(z, τ)− ϕ(−z, τ)) .

Thus Mordell integrals pervade Ramanujan’s papers and his Lost Note-

book. In a further support to this claim, we refer the readers to Andrews’

interesting paper [2].

Berndt and Xu [9] have proved all of the properties of Fω(z) claimed

by Ramanujan in the Lost Notebook. Following Ramanujan, we assume

ω > 0. Suppose a certain result holds for ω > 0, it is clear that by analytic

continuation, one may be able to extend it to complex values of ω in a cer-

tain region containing the positive real line. Among the various properties

claimed by Ramanujan is the transformation

Fω(z) =
−i√
ω
e−

πz2

4ω F1/ω

(
iz

ω

)
. (1.4)

In view of this property, Berndt and Xu call Fω(z) as an integral analogue

of a theta function.

Assume α > 0, let ω = α2 and replace z by αz/
√
π in (1.4). Using

(1.3), one sees that the above transformation translates into the following

identity.

For α, β > 0 such that αβ = 1,

√
αe

z2

8

∫ ∞
−∞

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx =

√
βe
−z2
8

∫ ∞
−∞

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx.

(1.5)

Now consider the integral∫ ∞
0

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx. (1.6)

In analogy with the partial theta function which is the same as a theta

function but summed over only half of the integer lattice, we call the above

integral an integral analogue of partial theta function. Among other things,

partial theta functions play a significant role in proving many non-trivial

theorems in the theory of partitions [3, Section 7]. So it is natural to study

the above integral analogue of partial theta function both, for its own sake,

and also from the point of view of finding its applications in Mathematics.

Indeed, our theorems on these integral analogue help us evaluate some non-

trivial integrals involving hypergeometric functions. They, along with the

results of Ramanujan that are proved in [9] allow us to anticipate a rich
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theory of integral analogues of theta functions similar to Jacobi’s theory of

classical theta functions.

Note that unlike Fω(z), the integral in (1.6) cannot be expressed solely in

terms of Mordell integrals, which makes them further worth studying. Also

unlike how the transformation formula for the Jacobi theta function triv-

ially gives the transformation formula for the corresponding partial theta

function [50, p. 22, Equation (2.6.3)], the transformation in (1.5) does not

give rise to a corresponding transformation for the integral in (1.6). (It

is easy to check that the integrands in (1.5) are not even functions of x).

Nevertheless, the primary goal of this paper is to prove a new and inter-

esting modular transformation for the integral in (1.6) which involves error

functions.

The error function erf(z) and the complementary error function erfc(z),

defined by [49, p. 275]

erf(z) =
2√
π

∫ z

0

e−t
2

dt (1.7)

and

erfc(z) = 1− erf(z) =
2√
π

∫ ∞
z

e−t
2

dt

respectively, are two important special functions having a number of ap-

plications in probability theory, statistics, physics and partial differential

equations. In probability, they are related to the Gaussian normal distribu-

tion. Glashier [17] was the first person to coin the term Error-function and

then the term Error-function complement in the sequel [18]. However, his

definitions are exactly opposite to the standard definitions given above and

do not involve the normalization factor 2/
√
π.

The imaginary error function erfi(z) is defined by [24, p. 32]1

erfi(z) =
2√
π

∫ z

0

et
2

dt. (1.8)

From (1.7) and (1.8), it is straightforward that

erf(iz) = ierfi(z). (1.9)

We now give below the transformation linking the integrals of the type

in (1.6) with the error functions erf(z) and erfi(z). This transformation is

of the form G(z, α) = G(iz, β) for α, β > 0, αβ = 1 and z ∈ C. It is also

related to an integral involving the Riemann Ξ-function, which is defined

by

Ξ(t) := ξ(1
2

+ it), (1.10)

1This definition differs from a factor of 2√
π

from the definition in [24].
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where ξ(s) is Riemann’s ξ-function defined by [12, p. 60]

ξ(s) :=
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s), (1.11)

Γ(s) and ζ(s) being the Gamma function and the Riemann zeta function re-

spectively. It involves the case p = q = 1 of the generalized hypergeometric

function [40, p. 73]

pFq(a1, · · · , ap; b1, · · · , bq;w) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

wn

n!
, (1.12)

where (a)n := a(a + 1) · · · (a + n − 1) = Γ(a+n)
Γ(a)

. The hypergeometric func-

tion in this special case is known as Kummer’s confluent hypergeometric

function.

Theorem 1.1. Let z ∈ C, α > 0 and let ∆
(
α, z, 1+it

2

)
be defined by

∆(x, z, s) := ω(x, z, s) + ω(x, z, 1− s), (1.13)

with

ω(x, z, s) := x
1
2
−se−

z2

8 1F1

(
1− s

2
;
3

2
;
z2

4

)
. (1.14)

Let Ξ(t) be defined in (1.10). Then for αβ = 1,

√
αe

z2

8

(
erf
(z

2

)
− 4

∫ ∞
0

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)

=
√
βe
−z2
8

(
erfi
(z

2

)
− 4

∫ ∞
0

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx

)

=
z

8π2

∫ ∞
0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2

)
∆

(
α, z,

1 + it

2

)
dt, (1.15)

where erf(z) and erfi(z) are defined in (1.7) and (1.8) respectively.

We prove Theorem 1.1 by evaluating the integral on the extreme right of

(1.15) to be equal to the extreme left, and by exploiting the fact that when

we replace α by β and z by iz in the integral, we get it back except for an

extra i in front.

This transformation generalizes a formula of Ramanujan which he wrote

in his first letter to Hardy [45, p. XXVI] and which also appears in [41,

Equation (13)]. This formula is equivalent to the first equality in the fol-

lowing identity, valid for αβ = 1, and which is also due to Ramanujan
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[42]:

α
1
2 − 4πα

3
2

∫ ∞
0

xe−πα
2x2

e2πx − 1
dx = β

1
2 − 4πβ

3
2

∫ ∞
0

xe−πβ
2x2

e2πx − 1
dx

=
1

4π
√
π

∫ ∞
0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2

)
cos

(
1

2
t logα

)
dt.

(1.16)

Mordell [34, p. 331] rephrased the first equality in the above formula in the

form 2 ∫ ∞
−∞

xe−πix
2/τ

e2πx − 1
dx = (−iτ)3/2

∫ ∞
−∞

xe−πiτx
2

e2πx − 1
dx. (1.17)

That (1.16) is a special case of Theorem 1.1 is not difficult to derive: for

z 6= 0, divide both sides by z, let z → 0 and note that

lim
z→0

erf(z)

z
=

2√
π

= lim
z→0

erfi(z)

z
.

A one-variable generalization of the integral on the extreme right-hand

side in (1.16) was given in [13, Theorem 1.5], which in turn gave a gen-

eralization of the extreme left side. However, this general integral is not

invariant under the simultaneous application of α→ β and z → iz, and so

a transformation formula generalizing the first equality in (1.16) could not

be obtained there. This shortcoming is overcome in Theorem 1.1.

We also obtain another transformation involving error functions that is

complementary to the one in Theorem 1.1.

Theorem 1.2. Let z ∈ C. For α, β > 0, αβ = 1,

√
αe

z2

8

(
erf
(z

2

)
+ 4

∫ 0

−∞

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)

=
√
βe
−z2
8

(
erfi
(z

2

)
+ 4

∫ 0

−∞

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx

)
. (1.18)

It is important to observe here that subtracting the corresponding sides

of the first equality in (1.15) from those of (1.18) results in (1.5), thus

providing a new proof of (1.5), and hence of (1.4).

Let χ denote a primitive Dirichlet character modulo q. The character

analogue Ξ(t, χ) of Ξ(t) is given by

Ξ(t, χ) := ξ

(
1

2
+ it, χ

)
,

2There is a misprint in Mordell’s formulation of Equation (1.17), namely, there is an
extra minus sign in front of the right-hand side which should not be present.
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where ξ(s, χ) := (π/q)−(s+a)/2 Γ
(
s+a

2

)
L(s, χ), and a = 0 if χ(−1) = 1 and

a = 1 if χ(−1) = −1. The functional equation of ξ(s, χ) is given by ξ(1 −
s, χ) = ε(χ)ξ(s, χ), where ε(χ) = iaq1/2/G(χ) andG(χ) =

∑q
m=1 χ(m)e2πim/q

is the Gauss sum. See [12, p. 69-72]. For real primitive characters, we have

G(χ) =

{√
q, for χ even,

i
√
q, for χ odd.

Hence the functional equation in this case reduces to ξ(1− s, χ) = ξ(s, χ),

which also gives Ξ(−t, χ) = Ξ(t, χ).

We now give below the analogues of Theorem 1.1 for real primitive char-

acters.

Theorem 1.3. Let z ∈ C and let α and β be positive numbers such that

αβ = 1. Let χ be a real primitive Dirichlet character modulo q.

(i) If χ is even,

√
αe

z2

8

∫ ∞
0

e−
πα2x2

q sin

(√
παxz
√
q

)∑q−1
r=1 χ(r)e−

2πrx
q

1− e−2πx
dx

=
√
βe
−z2
8

∫ ∞
0

e−
πβ2x2

q sinh

(√
πβxz
√
q

)∑q−1
r=1 χ(r)e−

2πrx
q

1− e−2πx
dx

=
z
√
q

16π2

∫ ∞
0

Γ

(
3 + it

4

)
Γ

(
3− it

4

)
Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt. (1.19)

(ii) If χ is odd,

√
αe

z2

8

∫ ∞
0

e−
πα2x2

q cos

(√
παxz
√
q

)∑q−1
r=1 χ(r)e−

2πrx
q

1− e−2πx
dx

=
√
βe
−z2
8

∫ ∞
0

e−
πβ2x2

q cosh

(√
πβxz
√
q

)∑q−1
r=1 χ(r)e−

2πrx
q

1− e−2πx
dx

=
1

16π
3
2

∫ ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt. (1.20)

Note that the sums inside the integrals in the above theorem are Gauss

sums of purely imaginary arguments.

The first equality in (1.16) can be rewritten for αβ = π2 as

α−
1
4

(
1 + 4α

∫ ∞
0

xe−αx
2

e2πx − 1
dx

)
= β−

1
4

(
1 + 4β

∫ ∞
0

xe−βx
2

e2πx − 1
dx

)
. (1.21)

In [46, Volume 2, p. 268], Ramanujan gives an elegant approximation to the

above expressions.

Let α > 0, β > 0, αβ = π2. Define

I(α) := α−
1
4

(
1 + 4α

∫ ∞
0

xe−αx
2

e2πx − 1
dx

)
.
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Then

I(α) =

(
1

α
+

1

β
+

2

3

)1/4

, “nearly”. (1.22)

As mentioned by Berndt and Evans in [8], Ramanujan frequently used

the words “nearly” or “very nearly” at the end of his asymptotic expansions

and approximations. The above approximation is very good for values of α

that are either very small or very large. A proof of the above fact was given

in [8], where as an intermediate result, the following asymptotic expansion

for I(α) as α→ 0 was first obtained:

I(α) ∼ 1

α1/4
+
α3/4

6
− α7/4

60
+ · · · .

Observe that for αβ = π2 and z 6= 0, the first equality in Theorem 1.1

can be rephrased as follows:

I(z, α) :=

√
π

z
α−

1
4 e

z2

8 erf
(z

2

)
+

4

z
α

1
4 e−

z2

8

∫ ∞
0

e−αx
2

sinh(
√
αxz)

e2πx − 1
dx

=

√
π

z
β−

1
4 e−

z2

8 erfi
(z

2

)
+

4

z
β

1
4 e

z2

8

∫ ∞
0

e−βx
2

sin(
√
βxz)

e2πx − 1
dx =: I(iz, β),

(1.23)

of which (1.21) is the special case when z → 0. The following general

asymptotic expansion holds for the two sides in the above identity as α→ 0,

or equivalently as β →∞.

Theorem 1.4. Fix z ∈ C. As α→ 0,

I(z, α) ∼ −2√
π
α−1/4ez

2/8

∞∑
m=0

(
−α
π2

)m
ζ(2m)Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.

(1.24)

That is,

I(z, α) ∼
√
π

z
ez

2/8erf
(z

2

)
α−1/4 +

e−z
2/8

6
α3/4 +

(z2 − 6)e−z
2/8

360
α7/4

+
(60− 20z2 + z4)e−z

2/8

15120
α11/4 + · · · .

Note that both sides of (1.23) are even functions of z. If we successively

differentiate (1.23) n times with respect to z and then let z → 0, we do

not get anything interesting for odd n. However for n even, two different

behaviors are noted.

First, n ≡ 0 (mod 4), i.e., n = 4k, k ∈ N ∪ {0}, gives the following

transformation of the form Hk(α) = Hk(β).
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Theorem 1.5. Let αβ = π2. Then for a non-negative integer k,

α−1/4
2F1

(
−2k, 1;

3

2
; 2

)
+ 4α3/4

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

= β−1/4
2F1

(
−2k, 1;

3

2
; 2

)
+ 4β3/4

∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2βx2

)
dx.

(1.25)

Ramanujan’s approximation in (1.22) is a special case, when k = 0, of

the following result:

Theorem 1.6. Let k be a non-negative integer. Both sides of (1.25) are

approximated by

α−1/4
2F1

(
−2k, 1;

3

2
; 2

)
+ 4α3/4

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

= 2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+

2

3 · 2F1

(
−2k, 1; 3

2
; 2
))1/4

, “nearly”.

(1.26)

Again, the above right side is a very good approximation of the left side

for the values of α that are either very small or very large.

When n ≡ 2 (mod 4), i.e., n = 4k+ 2, k ∈ N∪ {0}, we get a transforma-

tion of the form Jk(α) = −Jk(β) given below.

Theorem 1.7. Let αβ = π2 and let k be a non-negative integer. Then,

Jk(α) := α−1/4
2F1

(
−2k − 1, 1;

3

2
; 2

)
+ 4α3/4

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2αx2

)
dx

= −β−1/4
2F1

(
−2k − 1, 1;

3

2
; 2

)
− 4β3/4

∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2βx2

)
dx =: −Jk(β).

(1.27)

In particular, Jk(π) = 0, which results in a beautiful exact evaluation of

the integral in (1.27).

Corollary 1.8. For any non-negative integer k,∫ ∞
0

xe−πx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2πx2

)
dx = − 1

4π
2F1

(
−2k − 1, 1;

3

2
; 2

)
.

(1.28)
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Results corresponding to the ones in Theorem 1.5 - Corollary 1.8 that

can be obtained by writing Theorem 1.2 in an alternate form (see (4.12)

below) are collectively put in Theorem 5.1 at the end of Section 5. When we

combine the results from Theorem 1.5-Corollary 1.8 with those in Theorem

5.1, we obtain the following interesting theorem.

Theorem 1.9. Let α, β be two positive numbers such that αβ = π2 and let

k be any non-negative integer. Then

(i) α3/4

∫ ∞
−∞

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

= β3/4

∫ ∞
−∞

xe−βx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2βx2

)
dx.

(ii) α3/4

∫ ∞
−∞

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

=
1

2
· 2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+

2

3 · 2F1

(
−2k, 1; 3

2
; 2
))1/4

, “nearly”.

(1.29)

(iii) α3/4

∫ ∞
−∞

xe−αx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2αx2

)
dx

= −β3/4

∫ ∞
−∞

xe−βx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2βx2

)
dx.

(1.30)

In particular when α = β = π, we have∫ ∞
−∞

xe−πx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2πx2

)
dx = 0. (1.31)

In [42], Ramanujan considered two integrals, one being that on the ex-

treme right of (1.16), and the second one given by

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos(1

2
t logα) dt

t2 + (z + 1)2
.

(1.32)

Oloa [36, Equation 1.5] found the asymptotic expansion3 of the special case

of this integral when z = 0, namely, as α→∞,

3There is a misprint in this asymptotic expansion given in Oloa’s paper. The minus
sign in front of the second expression on the right should be a plus.



AN INTEGRAL ANALOGUE OF PARTIAL THETA FUNCTION 11

1

π3/2

∫ ∞
0

Ξ2

(
1

2
t

) ∣∣∣∣Γ(−1 + it

4

)∣∣∣∣2 cos
(

1
2
t logα

)
1 + t2

dt

∼ 1

2

logα√
α

+
1

2
√
α

(log 2π − γ) +
π2

72α3/2
− π4

10800α7/2
+ · · · .

In the following theorem, we obtain the asymptotic expansion of the

general integral (1.32) as α→∞.

Theorem 1.10. Fix z such that −1 < Re z < 1. As α→∞,

1

π
z+3
2

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos(1

2
t logα) dt

t2 + (z + 1)2

∼ −Γ(z)ζ(z)α
z−1
2

(2π)z
− Γ(z + 1)ζ(z + 1)

2α
z+1
2 (2π)z

+ 2α
z+1
2

∞∑
m=0

(−1)m

(2πα)2m+z+2
Γ(2m+ 2 + z)ζ(2m+ 2)ζ(2m+ z + 2).

(1.33)

This paper is organized as follows. In Section 2, we state preliminary

theorems and lemmas that are subsequently used. Section 3 contains proofs

of Theorems 1.1 and 1.3. In Section 4, we prove Theorems 1.2 and 1.4.

The analogues of Theorem 1.4 corresponding to the second error function

transformation and to Ramanujan’s transformation (1.5) are also given in

this section. Section 5 is devoted to proofs of Theorem 1.5 - Corollary 1.8

and their analogues. We prove Theorem 1.10 in Section 6. Finally, Section

7 is reserved for some concluding remarks and open problems.

2. Nuts and bolts

Let f be an even function of t of the form f(t) = φ(it)φ(−it), where φ is

analytic in t as a function of a real variable. Using the functional equation

for ζ(s) in the form ξ(s) = ξ(1 − s), where ξ(s) is defined in (1.11), it is

easy to obtain the following line integral representation for the integral on

the left side below, of which the integral on the extreme right of (1.15) is a

special case ∫ ∞
0

f

(
t

2

)
Ξ

(
t

2

)
∆

(
α, z,

1 + it

2

)
dt

=
2

i

∫ 1
2

+i∞

1
2
−i∞

φ

(
s− 1

2

)
φ

(
1

2
− s
)
ξ(s)ω(α, z, s) ds, (2.1)
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whenever the integral on the left converges. Here ∆(x, z, s) and ω(x, z, s)

are the same as defined in (1.13) and (1.14). Analogous to these, define

∇(x, z, s) := ρ(x, z, s) + ρ(x, z, 1− s), (2.2)

where

ρ(x, z, s) := x
1
2
−se−

z2

8 1F1

(
1− s

2
;
1

2
;
z2

4

)
.

Then for χ, a real primitive character modulo q, the following formulas can

be similarly proved.∫ ∞
0

f

(
t

2

)
Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt

=
2

i

∫ 1
2

+i∞

1
2
−i∞

φ

(
s− 1

2

)
φ

(
1

2
− s
)
ξ(s, χ)ρ(α, z, s) ds,∫ ∞

0

f

(
t

2

)
Ξ

(
t

2
, χ

)
∆

(
α, z,

1 + it

2

)
dt

=
2

i

∫ 1
2

+i∞

1
2
−i∞

φ

(
s− 1

2

)
φ

(
1

2
− s
)
ξ(s, χ)ω(α, z, s) ds, (2.3)

whenever the integrals on the left-hand sides converge. Note that for αβ =

1,

∆

(
α, z,

1 + it

2

)
= ∆

(
β, iz,

1 + it

2

)
,∇
(
α, z,

1 + it

2

)
= ∇

(
β, iz,

1 + it

2

)
,

(2.4)

both of which can be proved using Kummer’s first transformation for 1F1(a; c;w)

[40, p. 125, Equation (2)] given by

1F1(a; c;w) = ew1F1(c− a; c;−w). (2.5)

The formulas in (2.4) render the integrals on the left-hand sides of (2.1) and

(2.3) invariant under the simultaneous replacement of α by β and z by iz,

and hence, as a by-product of the evaluation of these integrals, we obtain

identities of the form G(z, α) = G(iz, β) and G(z, α, χ) = G(iz, β, χ).

In proving Theorem 1.3, we make use of the following special case [7,

Theorem 2.1] of a result due to Berndt [6, Theorem 10.1]:

Theorem 2.1. Let x > 0 and let Kν(z) be the modified Bessel function of

order ν. If χ is even with period q and Re ν ≥ 0, then

∞∑
n=1

χ(n)nνKν

(
2πnx

q

)
=

π
1
2

2xG(χ)

(
qx

π

)ν+1

Γ

(
ν+

1

2

) ∞∑
n=1

χ(n)(n2+x2)−ν−
1
2 ;
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if χ is odd with period k and Re ν > −1, then
∞∑
n=1

χ(n)nν+1Kν

(
2πnx

q

)
=
iπ

1
2 (qx/π)ν+2

2x2G(χ)
Γ

(
ν+

3

2

) ∞∑
n=1

χ(n)n(n2+x2)−ν−
3
2 .

(2.6)

The following two lemmas, given in [19, p. 503, Formula (3.952.7)] and

[16, pp. 318, 320, Formulas (10), (30)] respectively, will also be employed in

the proof of Theorem 1.3.

Lemma 2.2. For c = Re s > −1 and Re a > 0, we have

1

2πi

∫ c+i∞

c−i∞

b

2
a−

1
2
− s

2 e−
b2

4aΓ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
b2

4a

)
x−s ds = e−ax

2

sin bx.

Lemma 2.3. For c = Re s > 0 and Re a > 0, we have

1

2πi

∫ c+i∞

c−i∞

1

2
a−

s
2 Γ
(s

2

)
e−

b2

4a 1F1

(
1− s

2
;
1

2
;
b2

4a

)
x−s ds = e−ax

2

cos bx.

(2.7)

We note that [13, Equation (2.10)]

1F1

(
1
4
− λ; 1

2
; z

2

4

)
∼ ez

2/8 cos
(√

λz
)
,

as |λ| → ∞ and | arg(λz)| < 2π, and the Stirling’s formula for Γ(s), s =

σ + it, in a vertical strip α ≤ σ ≤ β given by

|Γ(s)| = (2π)
1
2 |t|σ−

1
2 e−

1
2
π|t|
(

1 +O

(
1

|t|

))
, (2.8)

as |t| → ∞ give convergence of the integrals on the extreme right-hand sides

of (1.15), (1.19) and (1.20). If F (s) and G(s) denote the Mellin transforms

of f(x) and g(x) respectively and s with Re s = c lies in a common strip

where both F and G are analytic, then a variant of Parseval’s formula [39,

p.83, Equation (3.1.13)] gives

1

2πi

∫ c+i∞

c−i∞
F (s)G(s)w−s ds =

∫ ∞
0

f(x)g
(w
x

) dx
x
. (2.9)

Watson’s lemma [37, p. 71] is given by

Lemma 2.4. If q(t) is a function of the positive real variable t such that

q(t) ∼
∞∑
s=0

ast
(s+λ−µ)/µ (t→ 0)

for positive constants λ and µ, then∫ ∞
0

e−xtq(t) dt ∼
∞∑
s=0

Γ

(
s+ λ

µ

)
as

x(s+λ)/µ
(x→∞), (2.10)
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provided that this integral converges throughout its range for all sufficiently

large x.

The above result also holds [49, p. 32] for complex λ with Re λ > 0, and

for x ∈ C with the integral being convergent for all sufficiently large values

of Re x.

3. The first error function transformation and its

character analogues

We begin by proving the first error function transformation given in

Theorem 1.1 and then proceed to a proof of its character analogues given

in Theorem 1.3.

Proof of Theorem 1.1. Let φ(s) = Γ
(−1

4
+ s

2

)
and let

J(z, α) =

∫ ∞
0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2

)
∆

(
α, z,

1 + it

2

)
dt.

Use (1.10), (1.11), (2.1), the functional equation for Γ(s) and the reflection

formula to see that

J(z, α) =
2
√
αe−

z2

8

i

∫ 1
2

+i∞

1
2
−i∞

Γ

(
s+ 1

2

)
Γ
(
−s

2

)
Γ
(

1 +
s

2

)
ζ(s)

× 1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
)−s

ds

= −4
√
αe−

z2

8

i

∫ 1
2

+i∞

1
2
−i∞

π (
√
πα)

−s

sin
(

1
2
πs
) Γ

(
s+ 1

2

)
ζ(s)1F1

(
1− s

2
;
3

2
;
z2

4

)
ds.

Now in order to use the series representation for ζ(s), we shift the line of

integration from Re s = 1
2

to Re s = 1 + δ, where 0 < δ < 1. Consider

a positively oriented rectangular contour with sides [1
2

+ iT, 1
2
− iT ], [1

2
−

iT, 1 + δ − iT ], [1 + δ − iT, 1 + δ + iT ] and [1 + δ + iT, 1
2

+ iT ], where T is

any positive real number. We have to consider the contribution of the pole

of order 1 of the integrand (due to ζ(s)). Using the residue theorem, noting

that by (2.8) the integrals along the horizontal line segments tend to zero as

T →∞, and then interchanging the order of summation and integration [49,

p. 30, Theorem 2.1], which is valid since the series representation of ζ(s),

namely
∑∞

n=1 n
−s, is absolutely and uniformly convergent in Re s ≥ 1 + ε

for any ε > 0, we find that

J(z, α) = −4
√
αe−

z2

8

i

( ∞∑
n=1

∫ 1+δ+i∞

1+δ−i∞

π

sin
(

1
2
πs
)Γ

(
s+ 1

2

)
× 1F1

(
1− s

2
;
3

2
;
z2

4

)(√
παn

)−s
ds− 2πiL

)
,
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where

L = lim
s→1

(s− 1)ζ(s)
π

sin
(

1
2
πs
)Γ

(
s+ 1

2

)
1F1

(
1− s

2
;
3

2
;
z2

4

)(√
πα
)−s

.

It is easy to see that

L =

√
π

α
1F1

(
1

2
;
3

2
;
z2

4

)
.

Now using the fact [39, p. 98] that for 0 < c = Re s < 2,

1

2πi

∫ c+i∞

c−i∞

π

sin
(

1
2
πs
)x−s ds =

2

(1 + x2)
,

combined with the special case when b = z 6= 0, a = 1 of Lemma 2.2, and

(2.9), we see that

J(z, α) = −8π
√
αe−

z2

8

(
4e

z2

4

z

∞∑
n=1

∫ ∞
0

e−x
2

sinxz

1 +
(√

παn
x

)2

dx

x
−
√
π

α
1F1

(
1

2
;
3

2
;
z2

4

))
.

Employ the change of variable x→
√
παx and (2.5) to see that

J(z, α) = −8π
√
αe

z2

8

(
4e

z2

4

z

∞∑
n=1

∫ ∞
0

xe−πα
2x2 sin (

√
παxz)

n2 + x2
dx

−
√
π

α
1F1

(
1;

3

2
;
−z2

4

))
. (3.1)

Now for t 6= 0 [11, p. 191],

∞∑
n=1

1

t2 + n2
=
π

t

(
1

e2πt − 1
− 1

2πt
+

1

2

)
. (3.2)

Since the above sum is uniformly convergent on any compact interval in

(0,∞), interchanging the order of summation and integration in (3.1) using

[49, p. 30, Theorem 2.1] and then substituting (3.2) and simplifying, we

observe that

J(z, α) = −8π
√
αe

z2

8

{
4π

z

∫ ∞
0

e−πα
2x2 sin (

√
παxz)

e2πx − 1
dx

− 2

z

∫ ∞
0

e−πα
2x2 sin (

√
παxz)

x
dx+

2π

z

∫ ∞
0

e−πα
2x2 sin

(√
παxz

)
dx

−
√
π

α
1F1

(
1;

3

2
;
−z2

4

)}
. (3.3)

However from [19, p. 488, formula 3.896, no. 3],∫ ∞
0

e−πα
2x2 sin

(√
παxz

)
dx =

z

2
√
πα

1F1

(
1;

3

2
;
−z2

4

)
(3.4)



16 ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

and by [19, p. 503, formula 3.952, no. 7] and [19, p. 889, formula 8.253, no.

1] (see also [18, p. 421]),∫ ∞
0

e−πα
2x2 sin (

√
παxz)

x
dx =

π

2
erf
(z

2

)
. (3.5)

Thus, substituting (3.4) and (3.5) in (3.3) and simplifying, we finally arrive

at

1

8π2
J(z, α) =

√
αe

z2

8

z

(
erf
(z

2

)
− 4

∫ ∞
0

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)
. (3.6)

Using (1.9), it is clear that simultaneously replacing α by β and z by iz in

(3.6) and employing (2.4) and (1.9) give (1.15) since J(z, α) is invariant. �

Proof of Theorem 1.3. We prove the theorem only for odd real χ. The

case when χ is even and real can be similarly proved. Let φ(s) = Γ
(

1
4

+ s
2

)
and let

P (z, α, χ) =

∫ ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ

(
t

2
, χ

)
∇
(
α, z,

1 + it

2

)
dt.

Using the first equality in (2.3), we see that

P (z, α, χ) =
2
√
αqe−

z2

8

i
√
π

∫ 1
2

+i∞

1
2
−i∞

Γ
(s

2

)
Γ

(
1− s

2

)
Γ

(
s+ 1

2

)
L(s, χ)

× 1F1

(
1− s

2
;
1

2
;
z2

4

)(√
πα
√
q

)−s
ds

=
2
√
αqe−

z2

8

i
√
π

∫ 1
2

+i∞

1
2
−i∞

π

cos
(

1
2
πs
)Γ
(s

2

)
L(s, χ)

× 1F1

(
1− s

2
;
1

2
;
z2

4

)(√
πα
√
q

)−s
ds,

where in the last step, we used a different version of the reflection formula,

namely, Γ
(

1
2

+ z
)

Γ
(

1
2
− z
)

= π
cosπz

for z − 1
2
/∈ Z. As before, shift the line

of integration from Re s = 1
2

to Re s = 1 + δ, 0 < δ < 2, employ the residue

theorem and take into account the contribution from the pole of order 1 at

s = 1 of the integrand (due to cos 1
2
πs). This gives,

P (z, α, χ) =
2
√
αqe−

z2

8

i
√
π

( ∞∑
n=1

χ(n)

∫ 1+δ+i∞

1+δ−i∞

π

cos
(

1
2
πs
)Γ
(s

2

)
× 1F1

(
1− s

2
;
1

2
;
z2

4

)(√
παn
√
q

)−s
ds− 2πiL1

)
,

(3.7)
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where

L1 = lim
s→1

(s− 1)πΓ
(
s
2

)
L(s, χ)

cos
(

1
2
πs
) 1F1

(
1− s

2
;
1

2
;
z2

4

)(√
πα
√
q

)−s
= −

2
√
q

α
L(1, χ).

(3.8)

Also replacing s by (s + 1)/2, x by x2 in the formula [39, p. 91, Equation

(3.3.10)]

1

2πi

∫ c+i∞

c−i∞

x−s

sin πs
ds =

1

π(1 + x)
,

and simplifying, we see that for −1 < Re s < 1,

1

2πi

∫ c+i∞

c−i∞

π

cos
(

1
2
πs
)x−s ds =

2x

1 + x2
.

Another application of the residue theorem yields for 0 < c < 1,∫ 1+δ+i∞

1+δ−i∞

π

cos
(

1
2
πs
)Γ
(s

2

)
1F1

(
1− s

2
;
1

2
;
z2

4

)(√
παn
√
q

)−s
ds

=

∫ c+i∞

c−i∞

π

cos
(

1
2
πs
)Γ
(s

2

)
1F1

(
1− s

2
;
1

2
;
z2

4

)(√
παn
√
q

)−s
ds−

4πi
√
q

αn

= 2πi

(
4e

z2

4

∫ ∞
0

n

x2 + n2
e−

πα2x2

q cos

(√
παxz
√
q

)
dx−

2
√
q

αn

)
, (3.9)

where in the last step we used Lemma 2.3 with a = 1, x =
√
παn√
q

and b = z,

and (2.9), followed by a change of variable x→
√
παx√
q

. Now substitute (3.9)

and (3.8) in (3.7) and simplify to obtain

P (z, α, χ) = 16
√
παqe

z2

8

∫ ∞
0

(
∞∑
n=1

nχ(n)

x2 + n2

)
e−

πα2x2

q cos

(√
παxz
√
q

)
dx.

(3.10)

Now use (2.6) with χ real and ν = −1/2 to see that

∞∑
n=1

nχ(n)

x2 + n2
=

π
√
q

∞∑
n=1

χ(n)e−
2πnx
q . (3.11)

Employing (3.11) in (3.10), we have

P (z, α, χ) = 16
√
π3αe

z2

8

∫ ∞
0

e−
πα2x2

q cos

(√
παxz
√
q

) ∞∑
n=1

χ(n)e−
2πnx
q dx.

(3.12)

Writing n = mq + r, 0 ≤ m < ∞, 0 ≤ r ≤ q − 1, and noting that χ is

periodic with period q, we have

∞∑
n=1

χ(n)e−
2πnx
q =

∑q−1
r=0 χ(r)e−

2πrx
q

1− e−2πx
. (3.13)
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Finally, (3.13) along with (3.12) gives

1

16π
3
2

P (z, α, χ) =
√
αe

z2

8

∫ ∞
0

e−
πα2x2

q cos

(√
παxz
√
q

)∑q−1
r=1 χ(r)e−

2πrx
q

1− e−2πx
dx.

This gives (1.20) as P (z, α, χ) is invariant under the simultaneous applica-

tion of the maps α→ β and z → iz, which can be seen from (2.4). �

4. The second error function transformation and an

asymptotic expansion

We first establish the second error function transformation given in The-

orem 1.2 and then the asymptotic expansion from Theorem 1.4.

Proof of Theorem 1.2. Note that from (3.4) and [19, p. 889, formula 8.253,

no. 1], ∫ ∞
0

e−πα
2x2 sin

(√
παxz

)
dx =

1

2α
e−

z2

4 erfi
(z

2

)
. (4.1)

Also,

√
αe

z2

8

(
erf
(z

2

)
+ 4

∫ 0

−∞

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)

=
√
αe

z2

8

(
erf
(z

2

)
+ 4

∫ ∞
0

e−πα
2x2 sin

(√
παxz

)
dx

+ 4

∫ ∞
0

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)
,

where in the first step, we replaced x by −x in the integral, and then

simplified it using e2πx/(e2πx− 1) = 1 + 1/(e2πx− 1). Now use (4.1) and the

first error function transformation in (1.15) to replace the second integral

in the above equation to obtain

√
αe

z2

8

(
erf
(z

2

)
+ 4

∫ 0

−∞

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)

=
√
αe

z2

8

(
2erf

(z
2

)
+

1

α
e−

z2

4 erfi
(z

2

)
+

4

α
e−

z2

4

∫ ∞
0

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx

)
=
√
βe
−z2
8

(
erfi
(z

2

)
+

2

β
e
z2

4 erf
(z

2

)
+ 4

∫ ∞
0

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx

)
,

(4.2)

where we used the fact αβ = 1 to simplify the last step. Now replace α by

β and z by iz in (4.1), and use (1.9) to obtain∫ ∞
0

e−πβ
2x2 sinh

(√
πβxz

)
dx =

1

2β
e
z2

4 erf
(z

2

)
. (4.3)
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Finally, use (4.3) to simplify the extreme right of (4.2), thereby obtaining

(1.18) and thus completing the proof. �

Proof of Theorem 1.4. By a change of variable x2 = t,∫ ∞
0

e−βx
2

sin(
√
βxz)

e2πx − 1
dx =

∫ ∞
0

e−βt sin(z
√
βt)

2
√
t(e2π

√
t − 1)

dt.

Let

f(t, z) =
sin(z

√
βt)

2
√
t(e2π

√
t − 1)

.

First consider, for |t| < 1,

2πt sin(at)

e2πt − 1
=

∞∑
m=0

Bm(2π)mtm

m!

∞∑
n=0

(−1)na2n+1t2n+1

(2n+ 1)!

=
∞∑
j=1

( ∑
m+2n+1=j

Bm(2π)m

m!

(−1)na2n+1

(2n+ 1)!

)
tj

=
∞∑
j=1

 j−1∑
k=0
k even

Bj−1−k(2π)j−1−k

(j − 1− k)!

(−1)k/2ak+1

(k + 1)!

 tj

= t
∞∑
j=0

 j∑
k=0
k even

Bj−k(2π)j−k

(j − k)!

(−1)k/2ak+1

(k + 1)!

 tj,

Replacing t by
√
t and a = z

√
β, we have for |t| < 1,

sin(z
√
βt)

2
√
t(e2π

√
t − 1)

=
1

4π

∞∑
j=0

 j∑
k=0
k even

Bj−k(2π)j−k

(j − k)!

(−1)k/2(z
√
β)k+1

(k + 1)!

 t
j−1
2

Thus, as t→ 0+,

f(t, z) ∼ 1

4π

∞∑
j=0

 j∑
k=0
k even

Bj−k(2π)j−k

(j − k)!

(−1)k/2(z
√
β)k+1

(k + 1)!

 t
j−1
2

Hence by Watson’s lemma, as β →∞,∫ ∞
0

e−βt sin(z
√
βt)

2
√
t(e2π

√
t − 1)

dt ∼
∞∑
j=0

Γ
(
j+1

2

)
β
j+1
2

j∑
k=0
k even

Bj−k(2π)j−k−1

2(j − k)!

(−1)k/2(z
√
β)k+1

(k + 1)!
.

(4.4)

From (4.4) and the notation in (1.23), we find that

I(iz, β) ∼
√
π

z
β−

1
4 e−

z2

8 erfi
(z

2

)
+
∞∑
j=0

Ij,z, (4.5)
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where

Ij,z =
4

z
β

1
4 e

z2

8
Γ
(
j+1

2

)
β
j+1
2

j∑
k=0
k even

Bj−k(2π)j−k−1

2(j − k)!

(−1)k/2(z
√
β)k+1

(k + 1)!
.

We first evaluate Ij,z when j is odd, say j = 2n + 1. Since all of the odd-

indexed Bernoulli numbers except B1 are equal to zero and B1 = −1/2,

only the last term, namely j = 2n + 1 and k = 2n, contributes to the sum

giving

I2n+1,z =
(−1)n+1n!

(2n+ 1)!
z2nez

2/8β−1/4. (4.6)

Now let j be even, say j = 2n. Then using the fact [49, p. 5, Equation

(1.14)] that

(−1)m−122m−1π2m

(2m)!
B2m = ζ(2m)

in the second step below, we see that

∞∑
n=0

I2n,z =
2

z
β

1
4 e

z2

8

∞∑
n=0

Γ
(
n+ 1

2

)
βn+ 1

2

n∑
m=0

B2n−2m(2π)2n−2m−1

(2n− 2m)!

(−1)m(z
√
β)2m+1

(2m+ 1)!

=
2

z
β

1
4 e

z2

8

∞∑
n=0

(−1)n(z
√
β)2n+1

βn+ 1
2

Γ

(
n+

1

2

)

×
n∑

m=0

B2m(2π)2m−1

(2m)!

(−1)m(z
√
β)−2m

(2n− 2m+ 1)!

=
−2

πz
β

1
4 e

z2

8

∞∑
n=0

(−1)nz2n+1Γ

(
n+

1

2

) n∑
m=0

ζ(2m)

(z
√
β)2m(2n− 2m+ 1)!

=
−2

π
β

1
4 e

z2

8

∞∑
m=0

ζ(2m)

(z
√
β)2m

∞∑
n=m

(−1)nz2n

(2n− 2m+ 1)!
Γ

(
n+

1

2

)

=
−2

π
β

1
4 e

z2

8

∞∑
m=0

(−1)mζ(2m)

βm
Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.

(4.7)

From (4.5), (4.6) and (4.7), we obtain the asymptotic expansion of I(iz, β)

as β →∞ as

I(iz, β) ∼

(√
π

z
e−

z2

8 erfi
(z

2

)
− e

z2

8

∞∑
m=0

(−1)mm!z2m

(2m+ 1)!

)
β−

1
4

− 2

π
β

1
4 e

z2

8

∞∑
m=0

(−1)mζ(2m)

βm
Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.

(4.8)
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Note that erf(z) has the following Taylor series expansion, which is valid for

all z ∈ C [38, p. 162, 7.6.1]:

erf(z) =
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1)
. (4.9)

From (1.9),

erfi(z) =
2√
π

∞∑
n=0

z2n+1

n!(2n+ 1)
. (4.10)

It is now easy to see that
∞∑
m=0

(−1)mm!z2m

(2m+ 1)!
=

√
π

z
e−z

2/4erfi
(z

2

)
. (4.11)

Substituting (4.11) in (4.8), we arrive at

I(iz, β) ∼ − 2

π
β

1
4 e

z2

8

∞∑
m=0

(−1)mζ(2m)

βm
Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.

Since αβ = π2, using (1.23), this also gives the asymptotic expansion of

I(z, α) as α→ 0 as claimed in (1.24). �

The second error function transformation in Theorem 1.2 can be rephrased

for αβ = π2 and z 6= 0 as follows:

K(z, α) :=

√
π

z
α−

1
4 e

z2

8 erf
(z

2

)
− 4

z
α

1
4 e−

z2

8

∫ 0

−∞

e−αx
2

sinh(
√
αxz)

e2πx − 1
dx

=

√
π

z
β−

1
4 e−

z2

8 erfi
(z

2

)
− 4

z
β

1
4 e

z2

8

∫ 0

−∞

e−βx
2

sin(
√
βxz)

e2πx − 1
dx

=: K(iz, β). (4.12)

The analogue of Theorem 1.4 for the above identity is given below. The

details are similar to those in the proof of Theorem 1.4 and hence not

provided.

Theorem 4.1. Fix z ∈ C. As α→ 0,

K(z, α) ∼ 2√
π
α−

1
4 e

z2

8

∞∑
m=0

(
−α
π2

)m
ζ(2m)Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.

Combining Theorems 1.4 and 4.1 leads us to the following asymptotic

expansion of the integral analogue of theta function.

Theorem 4.2. Fix z ∈ C. As α→ 0,∫ ∞
−∞

e−αx
2

sinh(
√
αxz)

e2πx − 1
dx

∼ −z√
πα

ez
2/4

∞∑
m=0

(
−α
π2

)m
ζ(2m)Γ

(
m+

1

2

)
1F1

(
m+

1

2
;
3

2
;
−z2

4

)
.
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5. Generalization of Ramanujan’s approximation and integral

identities involving hypergeometric functions

The results from this section follow from successively differentiating the

first error function transformation in the form (1.23) with respect to z.

The presence of −x2 in the exponential term in the numerator of either

sides justifies differentiation under the integral sign. As mentioned in the

introduction, differentiating (1.23) n times where n is odd just gives 0 = 0.

However when n is even, two different behaviors are observed accordingly

as n ≡ 0 (mod 4) and as n ≡ 2 (mod 4).

5.1. The case n ≡ 0 (mod 4).

Proof of Theorem 1.5. Let n = 4k for a non-negative integer k. Let

G(z, α) :=

√
π

z
α−

1
4 e

z2

8 erf
(z

2

)
+

4

z
α

1
4 e−

z2

8

∫ ∞
0

e−αx
2

sinh(
√
αxz)

e2πx − 1
dx (5.1)

and let

Hk(α) :=
d4k

dz4k
G(z, α)

∣∣∣∣
z=0

. (5.2)

Using (1.23) leads us to a transformation of the form Hk(α) = Hk(β) since

Hk(α) =
d4k

dz4k
G(z, α)

∣∣∣∣
z=0

=
d4k

d(iz)4k
G(iz, β)

∣∣∣∣
z=0

= Hk(β). (5.3)

Multiply the power series expansion of ez
2/8 with that of erf(z) given in (4.9)

and extract the coefficient of z4k in the product. This gives

d4k

dz4k

e
z2

8

z
erf
(z

2

)∣∣∣∣∣
z=0

=
2(4k)!√

π

2k∑
m=0

(−1)m

24k+2m+1m!(2k −m)!(4k − 2m+ 1)

=
(4k)!

24k
√
π(2k)!(4k + 1)

2F1

(
−1

2
− 2k,−2k;

1

2
− 2k;

1

2

)
.

In [49, p. 113, Equation (5.12)], we find the following hypergeometric trans-

formation, valid for | arg(1− z)| < π:

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(1− z)−a2F1

(
a, c− b; a− b+ 1;

1

1− z

)
+

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(1− z)−b2F1

(
b, c− a; b− a+ 1;

1

1− z

)
.

(5.4)

Use this transformation with z = 1/2, a = −1
2
− 2k, b = −2k, c = 1

2
− 2k to

obtain

2F1

(
−1

2
− 2k,−2k;

1

2
− 2k;

1

2

)
=

(4k + 1)

22k 2F1

(
−2k, 1;

3

2
; 2

)
.
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This gives

d4k

dz4k

e
z2

8

z
erf
(z

2

)∣∣∣∣∣
z=0

=
(4k)!

26k
√
π(2k)!

2F1

(
−2k, 1;

3

2
; 2

)
. (5.5)

Similarly multiplying the power series expansion of e−z
2/8 with that of

sinh(
√
αxz) and extracting the coefficient of z4k in the product, we get

d4k

dz4k

e−
z2

8

z
sinh(

√
αxz)

∣∣∣∣∣
z=0

= (4k)!
2k∑
m=0

(−1)m(
√
αx)4k−2m+1

8mm!(4k − 2m+ 1)!

=
(4k)!

√
αx

26k

2k∑
m=0

(−8)m(
√
αx)2m

(2k −m)!(2m+ 1)!
,

where we replaced m by 2k −m in the last step. It can be seen that

2k∑
m=0

(−8)m(
√
αx)2m

(2k −m)!(2m+ 1)!
=

1

(2k)!
1F1

(
−2k;

3

2
; 2αx2

)
.

Thus

d4k

dz4k

e−
z2

8

z
sinh(

√
αxz)

∣∣∣∣∣
z=0

=
(4k)!

√
αx

26k(2k)!
1F1

(
−2k;

3

2
; 2αx2

)
. (5.6)

Hence from (5.1), (5.2), (5.5) and (5.6), we obtain

Hk(α) =
(4k)!

26k(2k)!

{
α−1/4

2F1

(
−2k, 1;

3

2
; 2

)
+ 4α3/4

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

}
,

which when combined with (5.3), proves Theorem 1.5. �

Next, we prove a generalization of Ramanujan’s approximation in (1.22).

Proof of Theorem 1.6. Let Hk(β) be as defined in (5.2) and consider the

integral ∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2βx2

)
dx. (5.7)

Employing the change of variable x =
√
t, using the series definition of 1F1

and interchanging the order of summation and integration, it is seen that∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
− 2k;

3

2
; 2βx2

)
dx =

1

2

2k∑
m=0

(−2k)m(2β)m(
3
2

)
m
m!

∫ ∞
0

e−βttmdt

e2π
√
t − 1

.

Now use the generating function for Bernoulli numbers to obtain, for |t| < 1,

tm

e2π
√
t − 1

=
∞∑
j=0

Bj(2π)j−1

j!
t
j−1+2m

2 .
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Using Watson’s lemma from (2.10), we find that as β →∞,

Hk(β) ∼ β−1/4
2F1

(
−2k, 1;

3

2
; 2

)
+ 2β3/4

2k∑
m=0

(−2k)m(2β)m(
3
2

)
m
m!

∞∑
j=0

Bj(2π)j−1

j!β
j+2m+1

2

Γ

(
j + 2m+ 1

2

)
.

Since Hk(α) = Hk(β), using the fact β = π2/α yields for α→ 0,

Hk(α) ∼ α1/4

√
π

2F1

(
−2k, 1;

3

2
; 2

)
+

2√
π
α−1/4

2k∑
m=0

(−2k)m2m(
3
2

)
m
m!

∞∑
j=0

Bj2
j−1αj/2

j!
Γ

(
j + 2m+ 1

2

)

=
α−1/4

√
π

∞∑
j=0
j 6=1

Bj2
jαj/2

j!
Γ

(
j + 1

2

)
2F1

(
−2k,

1 + j

2
;
3

2
; 2

)

= α−1/4
2F1

(
1

2
,−2k;

3

2
; 2

)
+
α3/4

6

+
α−1/4

√
π

∞∑
j=3

Bj2
jαj/2

j!
Γ

(
j + 1

2

)
2F1

(
−2k,

1 + j

2
;
3

2
; 2

)
.

We now find a simpler function, namely the one claimed on the right-hand

side of (1.26), that is “nearly” equal to Hk(α) when α is very small in

the sense that the asymptotic expansion of this simpler function as α → 0

matches the first two terms in those of Hk(α). Note that such a function

should preserve the invariance under replacing α by β and vice-versa. In

order to match the leading term in the asymptotic expansion, we raise 1/α

to the power 1/4 and have its coefficient as 2F1

(
1
2
,−2k; 3

2
; 2
)
, which is equal

to 2F1

(
−2k, 1; 3

2
; 2
)

by Pfaff’s transformation [49, p. 110, Equation (5.5)]

2F1(a, b; c; z) = (1− z)−b2F1

(
c− a, b; c; z

z − 1

)
.

Since the approximating function has to be symmetric, we need to raise 1/β

along with 1/α to the power 1/4. So the function we are seeking assumes

the form

2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+ c(k)

)1/4

,

where c(k) is some constant depending on only k. Since α is very small, the

main contribution in the asymptotic expansion comes from 1/α and c(k)

but not from 1/β. Thus, the next term in the Taylor series of this function

is
α3/4

4
2F1

(
−2k, 1;

3

2
; 2

)
c(k).
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As we want this to be equal to α3/4

6
, it is clear that c(k) = 2

3·2F1(−2k,1; 3
2

;2)
.

Thus the required function is

2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+

2

3 · 2F1

(
−2k, 1; 3

2
; 2
))1/4

.

This completes the proof of (1.26). �

5.2. The case n ≡ 2 (mod 4).

Proof of Theorem 1.7. Now let n = 4k + 2, where k is again any non-

negative integer. Let

Jk(α) :=
d4k+2

dz4k+2
G(z, α)

∣∣∣∣
z=0

,

where G(z, α) is defined in (5.1). This time (1.23) gives us a transformation

of the form Jk(α) = −Jk(β) since

Jk(α) =
d4k+2

dz4k+2
G(z, α)

∣∣∣∣
z=0

=
d4k+2

dz4k+2
G(iz, β)

∣∣∣∣
z=0

= − d4k+2

d(iz)4k+2
G(iz, β)

∣∣∣∣
z=0

= −Jk(β).

The proof is now similar to that of Theorem 1.5 and so we state only the

important steps. Let us start with the fact that

−Jk(β) =
d4k+2

dz4k+2
G(iz, β)

∣∣∣∣
z=0

. (5.8)

Multiply the power series expansion of e−z
2/8 with that of erfi

(
z
2

)
given in

(4.10) and extract the coefficient of z4k+2 in the product. Then identifying

the coefficient as a hypergeometric function and using the transformation

(5.4) with z = 1/2, a = −3
2
− 2k, b = −1− 2k, c = −1

2
− 2k to simplify this

hypergeometric function results in

d4k+2

dz4k+2

e
−z2
8

z
erfi
(z

2

)∣∣∣∣∣
z=0

=
(4k + 2)!

26k+3
√
π(2k + 1)!

2F1

(
−2k − 1, 1;

3

2
; 2

)
.

Similarly,

d4k+2

dz4k+2

e
z2

8

z
sin(
√
βxz)

∣∣∣∣∣
z=0

= −(4k + 2)!
2k+1∑
m=0

(−1)m(
√
βx)4k−2m+3

8mm!(4k − 2m+ 3)!

=
(4k + 2)!

√
βx

26k+3

2k+1∑
m=0

(−8)m(
√
βx)2m

(2k + 1−m)!(2m+ 1)!

=
(4k + 2)!

√
βx

26k+3(2k + 1)!
1F1

(
−2k − 1;

3

2
; 2βx2

)
.

(5.9)
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From (5.8) and (5.9),

−Jk(β) =
(4k + 2)!

26k+3(2k + 1)!

{
β−1/4

2F1

(
−2k − 1, 1;

3

2
; 2

)
+ 4β3/4

∫ ∞
0

xe−βx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2βx2

)
dx

}
.

This proves Theorem 1.7. �

As remarked in the introduction, results corresponding to the ones in The-

orem 1.5 - Corollary 1.8 can be obtained using similar techniques through

(4.12). These results are collectively put in the following theorem. We re-

frain from giving the proof since the details are similar to those of Theorem

1.5 - Corollary 1.8.

Theorem 5.1. Let α, β be two positive numbers such that αβ = π2. Then

(i) α−1/4
2F1

(
−2k, 1;

3

2
; 2

)
− 4α3/4

∫ 0

−∞

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

= β−1/4
2F1

(
−2k, 1;

3

2
; 2

)
− 4β3/4

∫ 0

−∞

xe−βx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2βx2

)
dx.

(ii) α−1/4
2F1

(
−2k, 1;

3

2
; 2

)
− 4α3/4

∫ 0

−∞

xe−αx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2αx2

)
dx

= −2F1

(
−2k, 1;

3

2
; 2

)(
1

α
+

1

β
+

2

3 · 2F1

(
−2k, 1; 3

2
; 2
))1/4

, “nearly”.

(iii) − α−1/4
2F1

(
− 2k − 1, 1;

3

2
; 2

)
+ 4α3/4

∫ 0

−∞

xe−αx
2

e2πx − 1
1F1

(
− 2k − 1;

3

2
; 2αx2

)
dx

= β−1/4
2F1

(
− 2k − 1, 1;

3

2
; 2

)
− 4β3/4

∫ 0

−∞

xe−βx
2

e2πx − 1
1F1

(
− 2k − 1;

3

2
; 2βx2

)
dx.

In particular when α = β = π, we have

∫ 0

−∞

xe−πx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2πx2

)
dx =

1

4π
· 2F1

(
−2k − 1, 1;

3

2
; 2

)
.

(5.10)
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6. Generalization of an asymptotic expansion of Oloa

We first explain how the integral in (1.32) is related to the one on the

extreme right side of (1.16). Write the latter integral as∫ ∞
0

(1 + t2)Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ
(
t
2

)
1 + t2

cos

(
1

2
t logα

)
dt. (6.1)

If we now square the expression
Ξ( t2)
1+t2

in (6.1), then as discussed in [14], this

amounts to squaring the functional equation of the Riemann zeta function,

and moreover the squared expression admits a generalization

Ξ
(
t+iz

2

)
Ξ
(
t−iz

2

)
(t2 + (z + 1)2)(t2 + (z − 1)2)

.

This is what Ramanujan may have had at the back of his mind when he

worked [42, Section 5] with the generalization∫ ∞
0

(t2 + (z − 1)2)Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
×

Ξ
(
t+iz

2

)
Ξ
(
t−iz

2

)
(t2 + (z + 1)2)(t2 + (z − 1)2)

cos

(
1

2
t logα

)
dt,

of (6.1), which upon simplification gives (1.32). Ramanujan [42] obtains a

transformation formula associated with this integral. In [14], Moll and one of

the authors found the following new representation of this transformation,

which generalizes a transformation of Koshliakov [25, Equation (6)] [26,

Equations (21), (27)].

Assume −1 < Re z < 1. Let Ω(x, z) be defined by

Ω(x, z) = 2
∞∑
n=1

σ−z(n)nz/2
(
eπiz/4Kz(4πe

πi/4
√
nx) + e−πiz/4Kz(4πe

−πi/4√nx)
)
,

where σ−z(n) =
∑

d|n d
−z. Then for α, β > 0, αβ = 1,

α(z+1)/2

∫ ∞
0

e−2παxxz/2
(

Ω(x, z)− 1

2π
ζ(z)xz/2−1

)
dx

= β(z+1)/2

∫ ∞
0

e−2πβxxz/2
(

Ω(x, z)− 1

2π
ζ(z)xz/2−1

)
dx

=
1

2π(z+5)/2

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
× Ξ

(
t− iz

2

)
cos(1

2
t logα) dt

(t2 + (z + 1)2)
. (6.2)

Theorem 1.10 is now proved using (6.2).

Proof of Theorem 1.10. We obtain the asymptotic expansion of the inte-

gral indirectly by obtaining the same for the integral on the extreme left of
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(6.2). Let

g(t, z) := tz/2
(

Ω(t, z)− 1

2π
ζ(z)tz/2−1

)
.

We use the following identity established in [14, Proposition 6.1].

Ω(t, z) = −Γ(z)ζ(z)

(2π
√
t)z

+
tz/2−1

2π
ζ(z)− tz/2

2
ζ(z + 1) +

tz/2+1

π

∞∑
n=1

σ−z(n)

n2 + t2
.

Since for |t| < 1,

∞∑
n=1

σ−z(n)

n2 + t2
=
∞∑
n=1

σ−z(n)

n2

1(
1 +

(
t
n

)2
)

=
∞∑
n=1

σ−z(n)

n2

∞∑
m=0

(−1)m
(
t

n

)2m

=
∞∑
m=0

(−1)mt2m
∞∑
n=1

σ−z(n)

n2m+2

=
∞∑
m=0

(−1)mζ(2m+ 2)ζ(2m+ 2 + z)t2m,

we see that if

h(t, z) := g(t, z) +
Γ(z)ζ(z)

(2π)z
+
tz

2
ζ(z + 1),

then

h(t, z) =
∞∑
m=0

(−1)m

π
ζ(2m+ 2)ζ(2m+ 2 + z)t2m+z+1,

so also as t→ 0,

h(t, z) ∼
∞∑
m=0

(−1)m

π
ζ(2m+ 2)ζ(2m+ 2 + z)t2m+z+1.

We now apply Lemma 2.4 with λ = (z+2)/2 and µ = 1/2. The condition

−1 < Re z < 1 guarantees that Re λ > 0 which is necessary as remarked

after Lemma 2.4. Then as α→∞,∫ ∞
0

e−2παth(t, z) dt ∼
∞∑
m=0

(−1)m

π(2πα)2m+z+2
Γ(2m+2+z)ζ(2m+2)ζ(2m+2+z).

(6.3)
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Note that∫ ∞
0

e−2παth(t, z) dt =

∫ ∞
0

e−2παtg(t, z) dt+
Γ(z)ζ(z)

(2π)z

∫ ∞
0

e−2παt dt

+
ζ(z + 1)

2

∫ ∞
0

e−2παttz dt

=

∫ ∞
0

e−2παtg(t, z) dt+
Γ(z)ζ(z)

α(2π)z+1
+
ζ(z + 1)Γ(z + 1)

2(2πα)z+1
.

(6.4)

From (6.3) and (6.4) and (6.2), one now obtains (1.33) after simplification.

�

7. Concluding remarks and some open questions

1. In this paper, we found two new transformations involving error func-

tions, namely the ones in Theorems 1.1 and 1.2, which when combined give

Ramanujan’s transformation (1.5) (or equivalently (1.4)) for an integral ana-

logue of theta functions, thus giving a better understanding of Ramanujan’s

transformation. Also, the results in Theorem 1.9 could have been obtained

directly without having to resort to Theorems 1.5 - Corollary 1.8 and The-

orem 5.1. However, obtaining Theorem 1.9 from these theorems is useful

since they give us many interesting results which otherwise would not have

been revealed. For example, one could have proved (1.31) directly through

(1.30). However, proving it through (1.28) and (5.10) gives those non-trivial

integral evaluations in addition.

In light of the existence of the integral on the extreme right side of

(1.15) which equals two sides of the first error function transformation, it is

natural to ask if a similar such integral exists for the second error function

transformation in (1.2). We were unable to find such an integral and so

we leave it as an open problem. However, it is important to state here the

difficulty in finding this integral, if it exists.

If we reverse the steps used in proving the equality of the extreme

sides of the transformation (1.15) in Theorem 1.1, we notice that a cru-

cial step was to use the integral representation for the error function given

in (3.5). However, employing the same method to the left-hand side of (1.2)

does not help as the error function there does not cancel with the integral
2

π

∫ ∞
0

e−πα
2x2+2πx sin (

√
παxz)

x
dx. Another reason why this is a difficult

problem is that while the Mellin transform of e−ax
2

sin bx is essentially just

a 1F1 (see Lemma 2.2), that of e−ax
2−cx sin bx involves parabolic cylinder

functions [19, p. 503, formula 3.953, no. 1].



30 ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

We now explain the significance of this integral, provided it exists. As

remarked in the introduction, subtracting the first error function transfor-

mation in (1.15) from the second given in (1.18) leads to Ramanujan’s trans-

formation (1.5) for, what is called, an integral analogue of the Jacobi theta

function. The corresponding transformation for the Jacobi theta function,

which has an integral involving Ξ(t) equal to it [13, Theorem 1.2], is

√
α

(
e−

z2

8

2α
− e

z2

8

∞∑
n=1

e−πα
2n2

cos(
√
παnz)

)

=
√
β

(
e
z2

8

2β
− e−

z2

8

∞∑
n=1

e−πβ
2n2

cos(i
√
πβnz)

)
=

1

π

∫ ∞
0

Ξ(t/2)

1 + t2
∇
(
α, z,

1 + it

2

)
dt, (7.1)

where the ∇ function is defined in (2.2).

The equality of the extreme left and right sides of the special case z = 0

of the above identity was used by Hardy [20, Eqn.(2)] to prove that infinitely

many non-trivial zeros of ζ(s) lie on the critical line Re s = 1
2
. Thus if an

integral involving Ξ(t) equal to both sides of (1.5) is found, then this integral

analogue of Hardy’s formula may be used to obtain more information on

the non-trivial zeros of ζ(s). However, this requires us to first obtain an

integral involving Ξ(t) equal to the two sides of (1.18).

Further, since our results involve an extra parameter z, it may be im-

portant to see what else about ζ(s), or some generalization of it, could be

extracted from them. It would also be worth further studying these two er-

ror function transformations from the point of view of further applications

in analytic number theory.

Remark. Hardy [21] conjectured that Ramanujan’s formula (1.16) may

also be used for proving the infinitude of the zeros of ζ(s) on the critical

line. However, we believe that it is not this formula but rather the special

case z = 0 of the identity which has an integral involving Ξ(t) equal to both

sides of (1.5) which leads to the existence of infinitely many zeros.

2. Consider the transformation in (1.16) and its equivalent version (1.17)

given by Mordell. Let q = eiπw, Im w > 0, and let Λ(w) :=
∑∞

n=1 F (n)qn,

where F (D) denotes the number of classes of positive definite binary qua-

dratic forms ax2 +2hxy+by2 with a, b not both even, and determinant −D.



AN INTEGRAL ANALOGUE OF PARTIAL THETA FUNCTION 31

Then Mordell [34, Equation (2.18)] proved∫ ∞
0

xeπiwx
2

e2πx − 1
dx = − i

4πw
− Λ(w) +

√
−iw
w2

Λ

(
− 1

w

)
+

1

8

(
∞∑

n=−∞

eiπn
2w

)3

,

(7.2)

so that with α2 = −iw, we have for Re α2 > 0,∫ ∞
0

xe−πα
2x2

e2πx − 1
dx =

−1

4πα2
−
∞∑
n=1

F (n)e−πnα
2 − 1

α3

∞∑
n=1

F (n)e−πn/α
2

+
1

8

(
∞∑

n=−∞

e−πα
2n2

)3

.

It will be interesting to see whether the above result admits a generalization

when we work with the integral in (1.15).

3. For a fixed z ∈ C, consider the integral∫ ∞
−∞

xe−αx
2

e2πx − 1
1F1

(
z;

3

2
; 2αx2

)
dx. (7.3)

Using the asymptotic expansion of the confluent hypergeometric function

[1, p. 508, Equation 13.5.1], it can be seen that as |x| → ∞,

1F1

(
z;

3

2
; 2αx2

)
∼
√
π

2

(
eiπz(2αx2)−z

Γ
(

3
2
− z
) +

e2αx2(2αx2)z−
3
2

Γ(z)

)
.

Note that because of the presence of e2αx2 in the second expression of the

asymptotic expansion, and since α > 0, the only way the integral in (7.3)

can converge is if this expression is annihilated by Γ(z). This happens only

when z is a non-positive integer. This leads us to consider two cases based

on the parity of such z.

Case 1: z is a non-positive even integer. Note that for α either

very small or very large, the integral in (1.29) is nicely approximated by the

expression on its right side, as in this case β is respectively very large or very

small. However, the case α = β = π is the worst in terms of approximating

this integral, i.e., the integral∫ ∞
0

xe−πx
2

e2πx − 1
1F1

(
−2k;

3

2
; 2πx2

)
dx,

since then α and β are not only of the same order of magnitude but in fact

equal. Table 1 below shows how the integral in (1.29) is approximated by

the right side of (1.29) for some small values of α. (The calculations in this

table are done for the identity obtained by dividing both sides of (1.29) by

α3/4. They are performed in Mathematica.)
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Case 2: z is a non-positive odd integer. When α = π in the integral

(7.3), we have shown in (1.31) that it is equal to zero.

Thus there is a trade-off in that (1.29) has no restriction on α (except

α > 0) but is an approximation, where as we can exactly evaluate the

integral (7.3), but only for a specific value of α, i.e., when α = π. This

leads us to two open questions:

Question 1: Find the exact evaluation of

∫ ∞
0

xe−πx
2

e2πx − 1
1F1(−2k; 3

2
; 2πx2)dx

for k ∈ Z+ ∪ {0}.
Question 2: Find the exact evaluation of, or at least an approximation

to, the integral

∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2αx2

)
dx when α 6= π is a

positive real number and k ∈ Z+ ∪ {0}.
It is interesting to note that in Theorem 1.3, the integral involving Ξ(t, χ)

involves the ∆ function when χ is even and the ∇ function when χ is odd,

which is exactly opposite of what happens in Theorems 1.3, 1.4 and 1.5

in [15]. Besides the fact that, in doing so, one can explicitly evaluate the

Mellin transforms and that one does get what one is looking for, is there

some intrinsic reason behind this reversal?

Table 1. Both side of (1.29) (after dividing throughout by α3/4)

α .000007 1.5 2.378 9361.79

k LHS RHS LHS RHS LHS RHS LHS RHS

1 33333.4 33333.4 .212975 .210775 0.1483410 0.1465060 0.00136109 0.001361096

2 24263.1 24263.1 .162014 .161821 0.112982 0.112883 0.000990862 0.000990862

3 19861.2 19861.2 .135921 .137363 0.0948065 0.0960151 0.000811187 0.000811187

4 17166.6 17166.6 .11939 .122057 0.0832805 0.085431 0.000701201 0.000701201

5 15309.6 15309.6 .107718 .111318 0.0751402 0.07799044 0.000625405 0.000625405

6 13934 13934 .0989131 .103239 0.0689983 0.0723852 0.000569256 0.000569256

7 12864 12864 .091965 .096872 0.0641517 0.0679618 0.000525582 0.000525583

8 12002 12002 .0863014 .0916811 0.060201 0.0643522 0.000490396 0.000490397

9 11288.8 11288.8 .0815698 .0873407 0.0569004 0.0613316 0.000461286 0.000461287

10 10686.4 10686.4 .0775398 .0836389 0.0540892 0.0587534 0.000436698 0.000436698
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[48] C. L. Siegel, Über Riemanns Nachlass zur analytischen Zahlentheorie.

Quellen und Studien zu Geschichte de Mathematik, Astronomie und

Physik, 2 (1933), 45–80.

[49] N.M. Temme, Special functions: An introduction to the classical func-

tions of mathematical physics, Wiley-Interscience Publication, New

York, 1996.

[50] E. C. Titchmarsh, The Theory of the Riemann Zeta Function, Claren-

don Press, Oxford, 1986.

[51] S. P. Zwegers, Mock Theta Functions, PhD thesis, Universiteit Utrecht,

2001.

http://arxiv.org/pdf/0807.4834v1.pdf

Department of Mathematics, Tulane University, New Orleans, LA 70118,
USA

E-mail address: adixit@tulane.edu
Current address: Department of Mathematics, Indian Institute of Technology Gand-

hinagar, Palaj, Gandhinagar 382355, India
E-mail address: adixit@iitgn.ac.in

Department of Mathematics, University of Illinois, 1409 West Green
Street, Urbana, IL 61801, USA

E-mail address: roy22@illinois.edu

Department of Mathematics, University of Illinois, 1409 West Green
Street, Urbana, IL 61801, USA and Simion Stoilow Institute of Mathe-
matics of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest,
Romania

E-mail address: zaharesc@illinois.edu


