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Abstract. The finite Fourier transform of a family of orthogonal poly-
nomials is the usual transform of these polynomials extended by 0 out-
side their natural domain of orthogonality. Explicit expressions are given
for the Legendre, Jacobi, Gegenbauer and Chebyshev families.

1. Introduction

Compendia of formulas, such as the classical Table of Integrals, Series
and Products by I. S. Gradshteyn and I. M. Ryzhik [6] and the recent NIST
Handbook of Mathematical Functions [11] do not contain a systematic col-
lection of Fourier transforms of orthogonal polynomials.

Special cases do appear. For instance, [11, formula 18.17.19] contains the
identity

(1.1)

∫ 1

−1
Pn(x)eıλxdx = ın

√
2π

λ
J
n+

1
2
(λ),

for the finite Fourier transform of the Legendre polynomial Pn. Here Jα is
the Bessel function defined by

(1.2) Jα(λ) =
∞∑
k=0

(−1)k(λ/2)2k+α

k!Γ(k + α+ 1)
, λ ∈ C.

The use of formula (1.1) in developing algorithms for the convolution in-
volving Legendre polynomials is described in [8].

A second example is [4, formula 3.3(7), page 123]

(1.3)

∫ 1

−1
Pν(x)eıλxdx =

2π sinπν

ν(ν + 1)
e−ıλ2F2

(
1, 1

−ν, 2 + ν

∣∣∣∣2ıλ) ,
where Pν(x) is the associated Legendre function.

The more natural situation, where the corresponding weight function ap-
pears in the integrand, is included in the tables. For instance, for the Jacobi
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polynomial, [11, 18.17.16] gives
(1.4)∫ 1

−1
(1−x)α(1+x)βP (α,β)

n (x)eıλx dx = Xn(λ;α, β)1F1

(
n+ α+ 1

2n+ α+ β + 2

∣∣∣∣−2ıλ

)
,

with

(1.5) Xn(λ;α, β) =
(ıλ)neıλ

n!
2n+α+β+1 ×B(n+ α+ 1, n+ β + 1).

Here B(a, b) is the classical Euler beta function.
The work presented here was stimulated by a result of A. Fokas et al.

[5] involving the Fourier transform of Chebyshev polynomials of the first
kind. In turn, this was needed for a project involving Fourier expansions of
Zagier polynomials [2]. Properties of these polynomials appear in [1, 3]. It
was surprising to the authors that the finite Fourier transform of classical
orthogonal polynomials was not readily available in the literature. Some of
the results presented here also appear in [5] and [7]. The authors wish to
thank A. Fokas and T. Koornwinder for correspondence on the questions
discussed here.

The goal of this project is to produce closed-form evaluations of definite
integrals of the form

(1.6) P̂ (λ) :=

∫ b

a
eıλxP (x) dx

for a variety of polynomials P , orthogonal on the interval [a, b]. The func-

tion P̂ (λ) is called the finite Fourier transform of the polynomial P . The
cases considered here include the Legendre polynomial Pn(x), the Jacobi

polynomial P
(α,β)
n (x), from which the Gegenbauer polynomials C

(ν)
n (x) and

both types of Chebyshev polynomials Tn(x) and Un(x) are derived.
Naturally, depending on the representation given of the polynomial P ,

it is possible to obtain a variety of expressions for P̂ . For instance, if an
expression for the coefficients of P is available, the identity in Lemma 1.1

and a simple scaling give directly a double-sum representation for P̂ (λ).

It is convenient to introduce the notation

(1.7) En(x) =
n∑
j=0

xj

j!

for the partial sums of the exponential function. Many of the results may be
expressed in terms of En. The following result is elementary and it appears
in [6, formula 2.323].

Lemma 1.1. Let k ≥ 0 be an integer and λ an indeterminate. Then, for
λ 6= 0,

(1.8)

∫ 1

−1
xkeıλxdx =

(−1)kk!

(ıλ)k+1

[
eıλEk(−ıλ)− e−ıλEk(ıλ)

]
,
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and

(1.9)

∫ 1

0
xkeıλxdx =

(−1)kk!

(ıλ)k+1

[
eıλEk(−ıλ)− 1

]
.

Proof. Integrate by parts. �

Note 1.2. The notation employed here is standard. The symbol (a)n denotes
the raising factorial, defined by (a)n = a(a+ 1) · · · (a+ n− 1) and (a)0 = 1.
For n, k ∈ N, the elementary properties

(1)n = n!(1.10)

(a)n =
Γ(a+ n)

Γ(a)
(1.11)

(a+ 1
2)n =

(2a)2n
22n(a)n

(1.12)

(−n)k =
(−1)kn!

(n− k)!
for n > k and 0 otherwise,(1.13)

(n+ 1)k =
(n+ k)!

n!
,(1.14)

(−a)n = (−1)n(a− n+ 1)n,(1.15)

are used throughout. These can be found in [14, p. 72].

Section 2 contains the results for Legendre polynomials Pn(x) and Sec-
tion 3 gives explicit formulas for the Fourier transform of Jacobi polynomials

P
(α,β)
n (x). Several special cases of this Fourier transform of Jacobi polyno-

mials are given in Section 4: the first one confirms the values for Legendre
polynomials and the other two cases give Fourier transforms of Gegenbauer
and Chebyshev polynomials. Section 5 describes consequences of Parseval’s

identity for Jacobi polynomials P
(α,β)
n (x). This is made explicit in the case

α = β = 0, where the result is expressed in terms of Bessel functions and
for α = β = −1

2 where Parseval’s identity is given in terms of Ménage poly-
nomials, a class of polynomials connected to the hypergeometric function

3F1. Finally, Section 6 presents an alternative procedure for the evaluation
of Fourier transforms of polynomials.

2. Legendre polynomials

This section contains a variety of formulas for the finite Fourier transform
of the Legendre polynomials Pn(x). These are orthogonal polynomials on
the interval [−1, 1], with weight w(x) ≡ 1. The next theorem gives all the
results.

Theorem 2.1. The finite Fourier transform of the Legendre polynomial
Pn(x) is given, for λ 6= 0, by one of the four equivalent forms:
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P̂n(λ) = 2n
n∑
k=0

(
n

k

)(1
2(n+ k − 1)

n

)
(−1)kk!

(ıλ)k+1

[
eıλEk(−ıλ)− e−ıλEk(ıλ)

]
= ın

√
2π

λ
Jn+1/2(λ)

= 2

n∑
k=0

(n+ k)!

(n− k)! k!

[
e−ıλEk(2ıλ)− eıλ

]
(−2ıλ)k+1

= 2
n∑
k=0

(n+ k)!

(n− k)! k!

[
(−1)n+ke−ıλ − eıλ

]
(−2ıλ)k+1

.

For λ = 0, the value is

(2.1) P̂n(0) =

∫ 1

−1
Pn(x) dx =

{
2 if n = 0,

0 if n 6= 0.

Proof. The first formula follows from Lemma 1.1 and the explicit represen-
tation

(2.2) Pn(x) = 2n
n∑
k=0

(
n

k

)(1
2(n+ k − 1)

n

)
xk

which follows from (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)−nPn−1(x), the three-
terms recurrence satisfied by the Legendre polynomials. The second expres-

sion for P̂n(λ) comes from their Rodrigues formula

(2.3) Pn(x) =
1

2n n!

(
d

dx

)n
(x2 − 1)n,

(see [6, Formula 8.910.2]) and it appears as entry 7.242.5 in [6]. Then

(2.4) P̂n(λ) =
1

2nn!

∫ 1

−1
eıλx

(
d

dx

)n
(x2 − 1)n dx

and integrating by parts n-times yields

(2.5) P̂n(λ) =
(−ıλ)n

2nn!

∫ 1

−1
(x2 − 1)neıλx dx.

Entry 3.387.2 of [6] states that

(2.6)

∫ 1

−1
(1− x2)ν−1eıµx dx =

√
π

(
2

µ

)ν−1
2

Γ(ν)J
ν−1

2
(µ), Re ν > 0.

The result is obtained by choosing µ = λ and ν = n+ 1.

The third form of the finite Fourier transform of the Legendre polynomials
is obtained from their hypergeometric representation

(2.7) Pn(x) = 2F1

(
−n n+ 1

1

∣∣∣∣1− x2

)
=

n∑
k=0

(−n)k(n+ 1)k
(1)k k!

(
1− x

2

)k
,
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that gives

(2.8) P̂n(λ) =
n∑
k=0

(−n)k(n+ 1)k
k!2

∫ 1

−1
eıλx

(
1− x

2

)k
dx.

The change of variables x = 1− 2t and the formulas (1.14) and (1.15) give

(2.9) P̂n(λ) = 2eıλ
n∑
k=0

(−1)k(n+ k)!

(n− k)!k!2

∫ 1

0
tke−2ıλt dt.

Lemma 1.1 now gives the stated result.

To produce the last form for P̂n(λ), let t = 2ıλ in the third expression
for this transform. Then, after multiplication by tn and some simplification,
the claim is equivalent to the polynomial identity

(2.10)
n∑
k=0

(2n− k)!

k!(n− k)!
(−1)ktk

n−k∑
j=0

tj

j!
=

n∑
k=0

(2n− k)!

k!(n− k)!
tk.

To simplify the sum, let ν = k + j on the left-hand side to show that the
desired identity is equivalent to

(2.11)
n∑
ν=0

[
ν∑
k=0

(−1)k(2n− k)!

k! (n− k)! (ν − k)!

]
tν =

n∑
k=0

(2n− k)!

k! (n− k)!
tk.

Matching coefficients, the result follows from

(2.12)
k∑
j=0

(−1)j(2n− j)!
j! (n− j)! (k − j)!

=
(2n− k)!

k! (n− k)!

for every 0 ≤ k ≤ n. This is equivalent to the binomial identity given in
Lemma 2.2 below. The proof is complete. �

Lemma 2.2. For n ∈ N and 0 ≤ k ≤ n

(2.13)
k∑
j=0

(−1)j
(
n

j

)(
2n− j
2n− k

)
=

(
n

k

)
.

Proof. The proof uses
(
r
k

)
= (−1)k

(
k−r−1
k

)
to write

(2.14)

(
2n− j
2n− k

)
=

(
2n− j
k − j

)
= (−1)k−j

(
k − 2n− 1

k − j

)
and then (2.13) is converted into Vandermonde identity

(2.15)
n∑
k=0

(
a

k

)(
b

n− k

)
=

(
a+ b

n

)
.

�
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3. Jacobi polynomials

The Jacobi polynomials P
(α,β)
n (x), defined by

(3.1) P (α,β)
n (x) =

1

2n

n∑
k=0

(
α+ n

k

)(
β + n

n− k

)
(x− 1)n−k(x+ 1)k

are orthogonal on [−1, 1] with respect to the weight

(3.2) w(x) = (1− x)α(1 + x)β, α, β > −1.

This section contains expressions for their finite Fourier transform. The
hypergeometric representation

(3.3) P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1

∣∣∣∣1− x2

)
,

is used in the calculations.

Theorem 3.1. The finite Fourier transform of the Jacobi polynomials P
(α,β)
n (x)

is given by one of the two equivalent forms

P̂
(α,β)
n (λ) = 2eıλ(α+ 1)n

n∑
k=0

(n+ α+ β + 1)k
(n− k)!(α+ 1)k

[
e−2ıλEk(2ıλ)− 1

(−2ıλ)k+1

]

= 2
n∑
k=0

(n+ α+ β + 1)k
(−2ıλ)k+1(n− k)!

×
[
(−1)n−ke−ıλ(β + k + 1)n−k − eıλ(α+ k + 1)n−k

]
for λ 6= 0. For λ = 0,

(3.4) P̂
(α,β)
n (0) =

2

(n+ α+ β)

[(
α+ n

n+ 1

)
+ (−1)n

(
β + n

n+ 1

)]
.

Proof. The first statement comes from the hypergeometric form

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1

∣∣∣∣1− x2

)
(3.5)

=
(α+ 1)n

n!

n∑
k=0

(−n)k(n+ α+ β + 1)k
(α+ 1)kk!2k

(1− x)k

and use Lemma 1.1 to produce

(3.6)

∫ 1

−1
(1− x)keıλxdx = −eıλ k!

(ıλ)k+1

[
e−2ıλEk(2ıλ)− 1

]
and then (1.13) to simplify the result.

Now use identity (the case m = 1 of [6, 8.961.4]):

(3.7)
d

dx
P (α,β)
n (x) =

n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x).
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and integrate by parts to obtain

P̂
(α,β)
n (λ) =

eıλx

ıλ
P (α,β)
n (x)

∣∣∣1
−1
− (n+ α+ β + 1)

2ıλ

̂
P

(α+1,β+1)
n−1 (λ).

Introduce the notation for the boundary term

(3.8) a(α,β)n (λ) =
eıλx

ıλ
P (α,β)
n (x)

∣∣∣1
−1
,

to write the previous computation as the recurrence

(3.9) P̂
(α,β)
n (λ) = a(α,β)n (λ)− (n+ α+ β + 1)

2ıλ

̂
P

(α+1,β+1)
n−1 (λ).

Iteration yields

P̂
(α,β)
n (λ) =

n∑
k=1

(−1)n−k
(n+ α+ β + 1)n−k

(2ıλ)n−k
a
(α+n−k,β+n−k)
k (λ)

+ (−1)n
(n+ α+ β + 1)n

(2ıλ)n
̂

P
(α+n,β+n)
0 (λ).

Evaluate the last term as a
(α,β)
0 (λ) and use

(3.10) P (α,β)
n (1) =

(
α+ n

n

)
and P (α,β)

n (−1) = (−1)n
(
β + n

n

)
from (3.1) to obtain

(3.11) a(α,β)n =
1

ıλ

[
eıλ
(
α+ n

n

)
− (−1)ne−ıλ

(
β + n

n

)]
.

Some algebraic simplification now gives the stated result. The value for
λ = 0 comes directly from (3.7). �

The next statement represents a hypergeometric rewrite of the last for-
mula in Theorem 3.1.

Theorem 3.2. The finite Fourier transform of the Jacobi polynomial, for
λ 6= 0, is given by

P̂
(α,β)
n (λ) =

(β + 1)n
ıλn!

(−1)n+1e−ıλ3F1

(
n+ α+ β + 1,−n, 1

β + 1

∣∣∣∣−1

2ıλ

)
+

+
(α+ 1)n
ıλn!

eıλ3F1

(
n+ α+ β + 1,−n, 1

α+ 1

∣∣∣∣ 1

2ıλ

)
.

Proof. The first term in the expression of the last formula in Theorem 3.1

is simplified using (1.13) and (β + k + 1)n−k = (β+1)n
(β+1)k

to obtain

(−1)n−k(n+ α+ β + 1)k(β + k + 1)n−k
(−2ıλ)k+1(n− k)!

=

(−1)n+1(β + 1)n
2ıλn!

(n+ α+ β + 1)k(−n)k(1)k
(β + 1)k

tk

k!



8 A. DIXIT, L. JIU, V. H. MOLL, AND C. VIGNAT

with t = −1/2ıλ. Summing from k = 0 to n gives the first term in the
answer. A similar argument simplifies the second term in Theorem 3.1. �

Note 3.3. Define

(3.12) A(α,β)
n (t) =

(α+ 1)n
n!

3F1

(
n+ α+ β + 1,−n, 1

α+ 1

∣∣∣∣1t
)
.

then the finite Fourier transform of the Jacobi polynomial P
(α,β)
n (x), for

λ 6= 0, is given by

(3.13) P̂
(α,β)
n (λ) =

1

ıλ

[
(−1)n+1e−ıλA(β,α)

n (−2ıλ) + eıλA(α,β)
n (2ıλ)

]
.

4. A collection of special cases

This section presents a collection of special cases of the Jacobi polynomials
and their respective finite Fourier transforms.

4.1. Legendre polynomials. These polynomials were discussed in Section
3 and correspond to the special case α = β = 0; that is,

(4.1) Pn(x) = P (0,0)
n (x).

The first formula in Theorem 3.1 reproduces the third formula in Theorem
2.1. Similarly, the second formula in Theorem 3.1 gives the last expression
for the finite Fourier transform of Legendre polynomials in Theorem 2.1.

4.2. Gegenbauer polynomials. These polynomials are also special cases

of P
(α,β)
n (x) where α = β = ν − 1

2 :

(4.2) C(ν)
n (x) =

(2ν)n
(ν + 1/2)n

P (ν−1/2,ν−1/2)
n (x).

Theorem 4.1. The finite Fourier transform of the Gegenbauer polynomial

C
(ν)
n (x) is given, for λ 6= 0, by one of the three equivalent forms

Ĉ
(ν)
n (λ) = 2(2ν)ne

ıλ
n∑
k=0

22k
(n+ 2ν)k(ν)k
(n− k)!(2ν)2k

[
e−2ıλEk(2ıλ)− 1

(−2ıλ)k+1

]

= 2(2ν)n

n∑
k=0

22k
(n+ 2ν)k(ν)k
(n− k)!(2ν)2k

[
(−1)n−ke−ıλ − eıλ

(−2ıλ)k+1

]
and

Ĉ
(ν)
n (λ) =

(2ν)n
ıλn!

×
[
(−1)n+1e−ıλ3F1

(
n+ 2ν,−n, 1

ν + 1
2

∣∣∣∣− 1

2ıλ

)
+

eıλ3F1

(
n+ 2ν,−n, 1

ν + 1
2

∣∣∣∣ 1

2ıλ

)]
.

For λ = 0, the Fourier transform is

(4.3) Ĉ
(ν)
n (0) =

(2ν)n

(ν + 1
2)n

2(1 + (−1)n)

n+ 2ν − 1

(
n+ ν − 1

2

n+ 1

)
.
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4.3. Chebyshev polynomials. The Chebyshev polynomials are related to
Gegenbauer polynomials by

(4.4) Un(x) = C(1)
n (x) and Tn(x) = lim

ν→0

nC
(ν)
n (x)

2ν
, for n ≥ 1.

These formulas are now used to evaluate the finite Fourier transform of
Chebyshev polynomials. The proof is omitted.

Theorem 4.2. The finite Fourier transform of the Chebyshev polynomials
is given, for λ 6= 0, by

Ûn(λ) = eıλ
n∑
k=0

22k+1k!

(
n+ k + 1

n− k

)[
e−2ıλEk(2ıλ)− 1

(−2ıλ)k+1

]

=
n∑
k=0

22k+1(n+ k + 1)! k!

(2k + 1)! (n− k)!

[
(−1)n−ke−ıλ − eıλ

]
(−2ıλ)k+1

and

T̂n(λ) =

n∑
k=0

(−1)k+1 n2k(n+ k)!k!

(n− k)!(2k)!(n+ k)

[
(−1)n−ke−ıλ − eıλ

]
(ıλ)k+1

For λ = 0, the values are

(4.5) T̂n(0) =

∫ 1

−1
Tn(x) dx =


2 if n = 0,

0 if n = 1,
1+(−1)n
1−n2 if n > 1,

and

(4.6) Ûn(0) =

∫ 1

−1
Un(x) dx =

1 + (−1)n

1 + n
.

5. Biorthogonality for the Jacobi polynomials

The sequence of functions { 1√
2
eπıjx : j ∈ Z} forms an orthonormal family

on the Hilbert space L2([−1, 1]). Therefore, every f ∈ L2([−1, 1]) may be
expanded in the form

(5.1) f(x) =
1√
2

∞∑
j=−∞

aj(f)eπıjx,

where the Fourier coefficients are given by

(5.2) aj(f) =
1√
2

∫ 1

−1
f(x)e−πıjx dx.

Parseval’s identity [9, Theorem 14] states that

(5.3)

∫ 1

−1
f(x)g(x) dx =

∞∑
j=−∞

aj(f)aj(g).
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This identity is now made explicit for the case

f(x) = P (α,β)
n (x) and g(x) = Q(α,β)

n (x) := (1− x)α(1 + x)βP (α,β)
n (x).

The Fourier coefficients aj(Q
(α,β)
m (x)) are given in (1.4) and aj(P

(α,β)
n (x))

have been evaluated in Theorem 3.2. Parseval’s identity and the orthogo-
nality of Jacobi polynomials give

∞∑
j=−∞

aj(P
(α,β)
n (x))aj(Q

(α,β)
m (x)) =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)n!Γ(n+ α+ β + 1)
δn,m,

where δn,m is Kronecker’s delta (1 if n = m and 0 if n 6= m). Only the
case n 6= m leads to an interesting relation. A direct calculation shows that

a0(Q
(α,β)
m (x)) = 0, so that Parseval’s identity is written as∑

j∈Z,j 6=0

aj(P
(α,β)
n (x))aj(Q

(α,β)
m (x)) = 0, for n 6= m.

Now replace λ = −πj in (1.4) to obtain

aj(Q
(α,β)
m ) =

(−1)j(πı)mjm

m!
2m+α+β+1/2B(m+ α+ 1,m+ β + 1)

1F1

(
m+ α+ 1

2m+ α+ β + 2

∣∣∣∣−2πıj

)
.

Similarly, Theorem 3.2 with λ = −πj gives

aj(P
(α,β)
n ) =

(−1)j√
2πıjn![

(−1)n(β + 1)n 3F1

(
n+ α+ β + 1,−n, 1

β + 1

∣∣∣∣ 1

2πıj

)
−

(α+ 1)n 3F1

(
n+ α+ β + 1,−n, 1

α+ 1

∣∣∣∣− 1

2πıj

)]
.

Parseval’s identity now produces the next result. Kummer’s identity

(5.4) 1F1

(
u

u+ v

∣∣∣∣z) = ez1F1

(
v

u+ v

∣∣∣∣−z)
is used in the simplification.

Theorem 5.1. Define

W (α,β)
n,m (j) = (α+ 1)nj

m−1

3F1

(
n+ α+ β + 1,−n, 1

α+ 1

∣∣∣∣ 1

2πıj

)
1F1

(
m+ α+ 1

2m+ α+ β + 2

∣∣∣∣2πıj) .
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Then, for n 6= m,

(5.5) (−1)n+m+1
∞∑
j∈Z
j 6=0

W (β,α)
n,m (j) =

∞∑
j∈Z
j 6=0

W (α,β)
n,m (j).

In particular, if n and m have opposite parity, then

(5.6)

∞∑
j∈Z
j 6=0

W (β,α)
n,m (j) =

∞∑
j∈Z
j 6=0

W (α,β)
n,m (j).

Two special cases of the result in Theorem 5.1 are described next. Both
examples have α = β and n ≡ m mod 2. Theorem 5.1 reduces to the next
statement.

Corollary 5.2. Assume α > −1, n 6= m and n ≡ m mod 2. Then

(5.7)

∞∑
j∈Z
j 6=0

W (α,α)
n,m (j) = 0,

where

W (α,α)
n,m (j) = (α+1)nj

m−1
3F1

(
n+ 2α+ 1,−n, 1

α+ 1

∣∣∣∣ 1

2πıj

)
1F1

(
m+ α+ 1

2m+ 2α+ 2

∣∣∣∣2πıj) .
To simplify these expressions, use the identity

(5.8) 1F1

(
a

2a

∣∣∣∣z) = 22a−1Γ(a+ 1/2)z1/2−aez/2I
a−1

2

(z
2

)
,

where Iα(z) is the modified Bessel function of the first kind (see [13, p. 487,
formula 7.11.1.5]), to obtain

1F1

(
m+ α+ 1

2m+ 2α+ 2

∣∣∣∣2πıj) =

2m+α+1/2Γ(m+ α+ 3/2)

(πı)m+α+1/2
×

(−1)jI
m+α+

1
2
(πıj)

jm+α+1/2
.

In the general case, the term involving 3F1 does not simplify. Moreover, the
usual tables do not contain many occurrences of this function.

Example A. Take α = β = 0 and let z = 2πıj. Then

(5.9) W (0,0)
n,m (j) = n!jm−13F1

(
n+ 1,−n, 1

1

∣∣∣∣1z
)

1F1

(
m+ 1

2m+ 2

∣∣∣∣z) .
The reduction of the 1F1 described above gives

(5.10) 1F1

(
m+ 1

2m+ 2

∣∣∣∣2πıj) =
2m+1/2Γ(m+ 3/2)

(πı)m+1/2
×

(−1)jIm+1/2(πıj)

jm+1/2
.
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For α = 0, there is the reduction

(5.11) 3F1

(
n+ 1,−n, 1

1

∣∣∣∣1z
)

= 2F0

(
n+ 1,−n
−

∣∣∣∣1z
)

and now use [13, p. 614, Formula 7.17.1.4]

(5.12) 2F0

(
n+ 1,−n
−

∣∣∣∣w) =
e−1/(2w)√
−πw

Kn+1/2

(
− 1

2w

)
.

This needs to be evaluated at w = 1/2πıj. Here K
n+

1
2

is the modified Bessel

function of the second kind.

In order to simplify these expressions, the values Im+1/2(πıj) andKn+1/2(−πıj),
are now expressed in terms of the Bessel J function.

Lemma 5.3. Let j, n, m ∈ N, then

I
m+

1
2
(πıj) =

1 + ı√
2
eıπm/2J

m+
1
2
(πj)

and

K
n+

1
2
(−πıj) = (−1)n

π

2
√

2

[
(1 + i)eπın/2J

−n−1
2
(πj)− (1− i)e−πın/2J

n+
1
2
(πj)

]
.

Proof. This follows directly from the power series representation of Jν , Iν
and the identity

(5.13) Kν(z) =
π

2

Iν(z)− Iν(z)

sinπν
, ν 6∈ Z

that appears in [6, formula 8.485]. �

Corollary 5.4. For n 6= m and n ≡ m mod 2

(5.14)
∞∑
j∈Z
j 6=0

1

j
I
m+

1
2
(πıj)K

n+
1
2
(−πıj) = 0.

Proof. The term W
(0,0)
n,m (j) in (5.9) is given by

(5.15) W (0,0)
n,m (j) =

Cn,m
j

I
m+

1
2
(πıj)K

n+
1
2
(−πıj)

with a constant Cn,m independent of j. The result now follows from (5.5).
�

Using the values given in Lemma 5.3 the identity (5.14) reduces to

∞∑
j∈Z
j 6=0

1

j
J
m+

1
2
(πj)

[
(1 + ı)eπın/2J

−n−1
2
(πj)− (1− ı)e−πın/2J

n+
1
2
(πj)

]
= 0.
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Now split the sum over j > 0 and j < 0 and use Jα(−x) = (−1)αJα(x)
and the fact that n ≡ m mod 2 to obtain

∞∑
j=1

J
m+

1
2
(πj)

j

[
(1 + ı)eπın/2J

−n−1
2
(πj)− (1− ı)e−πın/2J

n+
1
2
(πj)

]
=

∞∑
j=1

J
m+

1
2
(πj)

j

[
(1 + ı)eπın/2J

−n−1
2
(πj) + (1− ı)e−πın/2J

n+
1
2
(πj)

]
.

The terms containing J
−n−1

2
(πj) cancel and the remaining ones lead to the

following identity. It is the limiting case of entry 5.7.24.4 in [12].

Corollary 5.5. Let n 6= m and n ≡ m mod 2. Then

(5.16)

∞∑
j=1

1

j
J
m+

1
2
(πj)J

n+
1
2
(πj) = 0.

Example B. The elusive function 3F1 appears in the next special case of
the Fourier transform of the Jacobi polynomials, for α = β = −1

2 , in terms
of the polynomials

(5.17) φn(t) = 2(t− 1)n3F1

(
−n, n, 1

1
2

∣∣∣∣ 1

4(1− t)

)
,

named Ménage polynomials in [10]. These polynomials extend the classical
combinatorial problem of counting the number of ways in which n married
couples can sit at a circular table so that no wife sits next to her husband.
These numbers are given by Touchard [15] with the so-called Ménage num-
bers

(5.18) Mn = 2n!

n∑
k=0

(−1)k
2n

2n− k

(
2n− k
k

)
(n− k)!, n ≥ 1.

The Ménage polynomials are also given by

(5.19) φn(t) = 2n!
n∑
k=0

(t− 1)k
2n

2n− k

(
2n− k
k

)
(n− k)!, t ∈ R, n ≥ 1.

Observe that Mn = φn(0). The result in Corollary 5.2 now gives the identity

(5.20)
∞∑
j=1

(−1)j

jn+1
φn
(
1− 1

2πıj
)
Im(πıj) = 0,

for n ≡ m mod 2.
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6. An operator point of view

The previous results may also be obtained via a different approach out-
lined here. To obtain the finite Fourier transform of a polynomial start
with

(6.1)

∫ 1

−1
xkeıλx dx = (−ıD)k(2 sinc λ)

where the sinc function is

(6.2) sinc λ =
sinλ

λ

and D = d
dλ . The action is extended by linearity to obtain

(6.3) P̂ (λ) = P (−ıD)(2 sinc λ).

For instance, for the Chebyshev polynomial

(6.4) Un(x) =

n∑
k=0

(−2)k
(
n+ k + 1

n− k

)
(1− x)k

leads to

Ûn(λ) =

n∑
k=0

(−2)k
(
n+ k + 1

n− k

)
(1 + ıD)k(2 sinc λ)(6.5)

= Un(−ıD)(2 sinc λ).

It is elementary to check that

(6.6)

(
d

dλ

)n
sinc λ = An(λ) sinλ+Bn(λ) cosλ

where An, Bn are polynomials in 1/λ that satisfy the recurrences

An+1(λ) = A′n(λ)−Bn(λ)

Bn+1(λ) = An(λ) +B′n(λ),

with initial values A0(λ) = 1/λ and B0(λ) = 0. An explicit expression for
these polynomials can be obtained from

(6.7)

(
d

dλ

)n
sinc λ =

n∑
j=0

n!

(n− j)!
sin(λ+ (n+ j)π2 )

λj+1
.

It follows from here that

An(λ) = (−1)n
n!

2λn+1
(En(ıλ) + En(−ıλ))(6.8)

Bn(λ) = (−1)n
ın!

2λn+1
(En(ıλ)− En(−ıλ)) .
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The use of this method is illustrated with the evaluation of the finite
Fourier transform of Legendre polynomials:∫ 1

−1
Pn(x)eıλx dx = Pn(−ıD)(2 sinc λ)

= 2n+1
n∑
k=0

(
n

k

)(1
2(n+ k − 1)

n

)
(−ı)kDk( sinc λ)

= 2n+1
n∑
k=0

(
n

k

)(1
2(n+ k − 1)

n

)
[Ak(λ) sinλ+Bk(λ) cosλ] ,

and (6.8) then gives the second formula in Theorem 2.1.
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