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Dedicated to our friends, Mourad Ismail and Dennis Stanton

Abstract. We give a new generalization of the spt-function of G.E. Andrews, namely

Sptj(n), and give its combinatorial interpretation in terms of successive lower-Durfee squares.

We then generalize the higher order spt-function sptk(n), due to F.G. Garvan, to jsptk(n),

thus providing a two-fold generalization of spt(n), and give its combinatorial interpretation.

1. Introduction

Two fundamental statistics in the theory of partitions are Dyson’s rank [6] and the Andrews-

Garvan crank [4]. While the rank of a partition is defined as the largest part minus the number

of parts, the crank is defined as the largest part if the partition contains no ones, and other-

wise as the number of parts larger than the number of ones minus the number of ones. Dyson

observed [6] that the rank of a partition could explain two of Ramanujan’s famous partition

congruences, namely,

p(5n+ 4) ≡ 0 (mod 5) (1.1)

p(7n+ 5) ≡ 0 (mod 7), (1.2)

but not the third one, i.e.,

p(11n+ 6) ≡ 0 (mod 11). (1.3)

This led him to hypothesize the existence of another statistic, namely the crank, though its

discovery [4] was not made until 1988.

Let N(m,n) denote the number of partitions of n with rank m. Then the rank generating

function R(z, q) is given by

R(z, q) =

∞∑
n=0

∞∑
m=−∞

N(m,n)zmqn =

∞∑
n=1

qn
2

(zq)n(z−1q)n
. (1.4)
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Here, and in the sequel, we employ the standard notation

(A)0 := (A; q)0 = 1,

(A)n := (A; q)n = (1−A)(1−Aq) · · · (1−Aqn−1), n ≥ 1,

(A)∞ := (A; q)∞ = lim
n→∞

(A; q)n, |q| < 1.

Similarly, if M(m,n) denote the number of partitions of n with crank m, then the crank

generating function C(z, q) is given by

C(z, q) =
∞∑
n=0

∞∑
m=−∞

M(m,n)zmqn =
(q)∞

(zq)∞(z−1q)∞
. (1.5)

The generating functions of N(m,n) and M(m,n) are respectively given by

∞∑
n=0

N(m,n)qn =
1

(q)∞

∞∑
n=1

(−1)n−1qn(3n−1)/2+|m|n(1− qn) (1.6)

and

∞∑
n=0

M(m,n)qn =
1

(q)∞

∞∑
n=1

(−1)n−1qn(n−1)/2+|m|n(1− qn). (1.7)

In [5], Atkin and Garvan introduced the rank and crank moments which are defined by

Nt(n) :=
∞∑

m=−∞
mtN(m,n) (1.8)

and

Mt(n) :=

∞∑
m=−∞

mtM(m,n) (1.9)

respectively. The above series are really finite series with m ranging from −n to n. The odd

moments of rank and crank equal zero. This follows from the facts that N(m,n) = N(−m,n)

and M(m,n) = M(−m,n), which in turn are easy consequences of (1.6) and (1.7).

Recently, Andrews [3] defined the smallest part function spt(n) as the total number of

appearances of the smallest parts in all the partitions of n and showed that

spt(n) = np(n)− 1

2
N2(n), (1.10)

where p(n) is the number of partitions of n and N2(n) is the second Atkin-Garvan rank

moment defined in (1.8). Andrews proved (1.10) by obtaining an identity involving the

generating functions of spt(n), np(n) and N2(n), i.e.,

∞∑
m=1

qm

(1− qm)2(qm+1; q)∞
=

1

(q; q)∞

∞∑
n=1

nqn

1− qn
+

1

(q; q)∞

∞∑
n=1

(−1)nqn(3n+1)/2(1 + qn)

(1− qn)2
.

(1.11)
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To see his derivation, we first need Watson’s q-analogue of Whipple’s theorem [3, Equation

(2.2)] given by

8φ7

[
a, q

√
a, −q

√
a, b, c, d, e, q−N

√
a, −

√
a,

aq

b
,
aq

c
,
aq

d
,
aq

e
, aqN+1 ; q,

a2qN+2

bcde

]

=
(aq)N

(aq
de

)
N(aq

d

)
N

(aq
e

)
N

4φ3


aq

bc
, d, e, q−N

aq

b
,
aq

c
,
deq−N

a

; q, q

 , (1.12)

where

rφr−1

[
a1, a2, . . . , ar

b1, b2, . . . , br−1
; q, z

]
=
∞∑
n=0

(a1)n(a2)n · · · (ar)n
(q)n(b1)n · · · (br−1)n

zn.

Andrews obtained (1.11) by first specializing d = e−1 = z, then letting b, c,N → ∞ and

a→ 1 in (1.12), thereby obtaining

∞∑
n=0

(z)n(z−1)nq
n

(q)n
=

(zq)∞(z−1q)∞
(q)2∞

(
1 +

∞∑
n=1

(−1)nqn(3n+1)/2(1 + qn)(z)n(z−1)n
(zq)n(z−1q)n

)
, (1.13)

then taking the second derivative with respect to z of both sides of (1.13), and then letting

z = 1.

Now Andrews [1] has obtained a generalization of (1.12) for j ≥ 1 which is as follows:

2j+6φ2j+5

[
a, q

√
a, −q

√
a, b1, c1, · · · , bj+1, cj+1, q

−N
√
a, −

√
a, aq

b1
, aq

c1
, · · · , aq

bj+1
, aq

cj+1
, aqN+1 ; q,

aj+1qN+j+1

b1 · · · bj+1c1 · · · cj+1

]

=
(aq)N ( aq

bj+1cj+1
)N

( aq
bj+1

)N ( aq
cj+1

)N

∑
m1,··· ,mj≥0

( aq
b1c1

)m1( aq
b2c2

)m2 · · · (
aq
bjcj

)mj (b2)m1(c2)m1(b3)m1+m2(c3)m1+m2

(q)m1(q)m2 · · · (q)mj (
aq
b1

)m1(aqc1 )m1(aqb2 )m1+m2(aqc2 )m1+m2

×
· · · (bj+1)m1+···+mj (cj+1)m1+···+mj (q

−N )m1+···+mj (aq)
mj−1+2mj−2+···+(j−1)m1qm1+···+mj

· · · (aqbj )m1+···+mj (
aq
cj

)m1+···+mj (
bj+1cj+1

aqN
)m1+···+mj (b2c2)

m1(b3c3)m1+m2 · · · (bjcj)m1+···+mj−1

.

(1.14)

It then seems natural to generalize Andrews’ approach by specializing (1.14) to obtain an

identity similar to (1.13) and then taking second derivatives with respect to z of both sides

of this identity to obtain a generalization of (1.10). This may then lead us to a generalization

of Andrews’ spt-function. In this paper, we show that this is indeed the case, i.e., we obtain

a generalization of spt(n) (which we denote by Sptj(n)), and of (1.10). We also provide a

combinatorial interpretation of Sptj(n).

To see how (1.10) can be generalized, we first need to generalize N(m,n). This was done

by Garvan [8] who generalized Dyson’s rank to j-rank which is defined as follows. For a

partition π, define n1(π), n2(π) · · · to be the sizes of the successive Durfee squares of π. Then

the j-rank of the partition π is defined as the ‘number of columns in the Ferrers graph of

π which lie to the right of the first Durfee square and whose length ≤ nj−1(π) minus the
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number of parts of π that lie below the (j − 1)st-Durfee square’. When j = 2, this gives

Dyson’s rank. Let Nj(m,n) be the number of partitions of n with at least j − 1 successive

Durfee squares whose j-rank is equal to m. Then Garvan showed that for j ≥ 2,

∞∑
n=0

Nj(m,n)qn =
1

(q)∞

∞∑
n=1

(−1)n−1qn((2j−1)n−1)/2+|m|n(1− qn). (1.15)

and

Rj(z, q) =

∞∑
n=1

∞∑
m=−∞

Nj(m,n)zmqn

=
∑

nj−1≥···≥n1≥1

qn
2
1+···+n2

j−1

(q)nj−1−nj−2 · · · (q)n2−n1(zq)n1(z−1q)n1

=
z

(q)∞

∞∑
n=−∞
n 6=0

(−1)n−1qn((2j−1)n+1)/2 1− qn

1− zqn
. (1.16)

Now (1.15) readily implies that Nj(m,n) = Nj(−m,n). Define the j-rank moment jNt(n),

analogous to (1.8) and (1.9), by

jNt(n) :=

∞∑
m=−∞

mtNj(m,n). (1.17)

The above series is really a finite series with m ranging from −n to n. It is easy to see that

for odd t, we have jNt(n) = 0. When j = 2, 2Nt(n) is the same as the Atkin-Garvan rank

moment Nt(n). Also, j = 1 corresponds to the crank moment Mt(n), i.e., 1Nt(n) = Mt(n).

We show in Section 2 that (1.10) can be generalized to

Sptj(n) = np(n)− 1

2
j+1N2(n), (1.18)

where Sptj(n) is defined in (2.12) below.

Dyson [7] proved that for n > 1,

np(n) =
1

2
M2(n), (1.19)

where M2(n) is defined in (1.9). Thus, in [3], Andrews indeed studied the difference of the

second moments of crank and rank. Inspired by Andrews’ results, Garvan [9] investigated

a further relationship by studying the difference of the 2k-th symmetrized moments of rank

and crank. He considered the higher order smallest part function sptk(n), that specializes

to spt(n) for k = 1, and he discovered many interesting arithmetic properties of sptk(n).

Garvan first defined the symmetrized crank moment µk(n) by

µk(n) =
∞∑

m=−∞

(
m+ bk−12 c

k

)
M(m,n) (1.20)
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and showed that
∞∑
n=1

µ2k(n)qn =
1

(2k)!

((
d

dz

)2k

zk−1C(z, q)

)∣∣∣∣∣
z=1

,

where C(z, q) is defined in (1.5). From [2], we have

∞∑
n=1

η2k(n)qn =
1

(2k)!

((
d

dz

)2k

zk−1R(z, q)

)∣∣∣∣∣
z=1

,

where R(z, q) is defined in (1.4) and

ηk(n) =

∞∑
m=−∞

(
m+ bk−12 c

k

)
N(m,n). (1.21)

He [9] then defined the higher order smallest part function sptk(n) as

sptk(n) = µ2k(n)− η2k(n),

and proved that

∞∑
n=1

sptk(n)qn =
∑

nk≥···≥n1≥1

qn1+···+nk

(1− qnk)2 · · · (1− qn1)2(qn1+1; q)∞
. (1.22)

If we define the k-th symmetrized j-rank function by

jµk(n) :=

∞∑
m=−∞

(
m+ bk−12 c

k

)
Nj(m,n), (1.23)

then it is easy to see that 1µk(n) = µk(n) and 2µk(n) = ηk(n). Therefore, a natural question

is to see if it is possible to generalize the work of Andrews and Garvan using the 2k-th

symmetrized moments of j-rank. We do this here by generalizing sptk(n) to jsptk(n). When

k = 1, we show how jspt1(n) can be represented in terms of Sptj(n).

Garvan [9] proved that M2k(n) > N2k(n) for all k ≥ 1 and n ≥ 1. To prove this inequality,

he used an analogue of Stirling numbers of the second kind, namely S∗(n, k), to relate the

ordinary and symmetrized moments. The numbers S∗(n, k) are defined by [9]

x2n =

n∑
k=1

S∗(n, k)gk(x),

for n ≥ 1, where for k ≥ 1,

gk(x) =
k−1∏
j=0

(x2 − j2).

The above inequality between the rank and crank moments can be easily generalized to the

following inequality between moments of j-rank and (j + 1)-rank.

Theorem 1.1. For all j, k, n ≥ 1, let jNk(n) be defined in (1.17). Then,

jN2k(n) > j+1N2k(n). (1.24)
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This paper is organized as follows. In Section 2, we prove (1.18). Then in Section 3, we

give a combinatorial interpretation of Sptj(n) and explain the motivation behind generaliz-

ing Garvan’s sptk(n) to jsptk(n) by studying the difference of two 2k-th symmetrized j-rank

functions. In Section 4, we prove some lemmas involving the k-th symmetrized j-rank func-

tion and obtain the generating function of jsptk(n). In Section 5, we give a combinatorial

interpretation of jsptk(n). Finally, in Section 6, we prove Theorem 1.1.

2. Proof of (1.18)

We first prove the following result.

Theorem 2.1. We have∑
nj≥1

∑
nj−1≥···≥n1≥0

qn
2
1+···+n2

j−1+nj (q)nj

(q)n1(q)n2−n1 · · · (q)nj−nj−1(1− qnj )2(qnj+1)∞

=
1

(q)∞

∞∑
n=1

nqn

1− qn
+

1

(q)∞

∞∑
n=1

(−1)nqn((2j+1)n+1)/2(1 + qn)

(1− qn)2
. (2.1)

We first need the following two lemmas.

Lemma 2.2. We have∑
nj≥nj−1≥···≥n1≥0

(z)nj (z
−1)njq

n2
1+···+n2

j−1+nj

(q)n1(q)n2−n1 · · · (q)nj−nj−1

=
(zq)∞(z−1q)∞

(q)2∞

(
1 +

∞∑
n=1

(−1)nqn((2j+1)n+1)/2(1 + qn)(z; q)n(z−1; q)n
(zq; q)n(z−1q; q)n

)
. (2.2)

Proof. Let bj+1 = z = c−1j+1, b1, c1, b2, c2, · · · bj , cj →∞, N →∞, a→ 1 in (1.14). This gives

(2.2) upon simplification. �

Lemma 2.3. We have

d2

dz2
Rj(z, q)

∣∣∣∣
z=1

=
−2

(q)∞

∞∑
n=1

(−1)nqn((2j−1)n+1)/2(1 + qn)

(1− qn)2
. (2.3)

Proof. From (1.16), we have

Rj(z, q) =
z

(q)∞

∞∑
n=−∞
n6=0

(−1)n−1qn((2j−1)n+1)/2 1− qn

1− zqn
. (2.4)

Differentiating both sides with respect to z, we have

d2

dz2
Rj(z, q) =

−2

(q)∞

∞∑
n=−∞
n 6=0

(−1)nqn((2j−1)n+1)/2+n 1− qn

(1− zqn)3
. (2.5)
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Now let z = 1 to see that

d2

dz2
Rj(z, q)

∣∣∣∣
z=1

=
−2

(q)∞

∞∑
n=−∞
n 6=0

(−1)nqn((2j−1)n+1)/2+n

(1− qn)2

=
−2

(q)∞

∞∑
n=1

(−1)nqn((2j−1)n+1)/2(1 + qn)

(1− qn)2
. (2.6)

�

Proof of Theorem 2.1. The idea is to take the second derivative on both sides of (2.2) with

respect to z and then let z = 1. Since [3, Equation (2.1)][
d2

dz2
(1− z)(1− z−1)f(z)

]
z=1

= −2f(1), (2.7)

we see that  d2

dz2

∑
nj≥nj−1≥···≥n1≥0

(z)nj (z
−1)njq

n2
1+···+n2

j−1+nj

(q)n1(q)n2−n1 · · · (q)nj−nj−1


z=1

= −2
∑
nj≥1

∑
nj−1≥···≥n1≥0

(q)2nj−1q
n2
1+···+n2

j−1+nj

(q)n1(q)n2−n1 · · · (q)nj−nj−1

.

(2.8)

From [3, Equation (2.4)], we have[
d2

dz2
(zq)∞(z−1q)∞

(q)2∞

]
z=1

= −2

∞∑
n=1

nqn

1− qn
. (2.9)

Now [
d

dz

(
1 +

∞∑
n=1

(−1)nqn((2j−1)n+1)/2(1 + qn)(z)n(z−1)n
(zq)n(z−1q)n

)]
z=1

= 0. (2.10)

Using (2.7), we have[
d2

dz2

(
1 +

∞∑
n=1

(−1)nqn((2j−1)n+1)/2(1 + qn)(z)n(z−1)n
(zq)n(z−1q)n

)]
z=1

= −2

∞∑
n=1

(−1)nqn((2j−1)n+1)/2(1 + qn)

(1− qn)2
. (2.11)

Then from (2.2), (2.8), (2.9), (2.10) and (2.11), we obtain (2.1) upon simplification. This

completes the proof. �

Now define Sptj(n) by

∞∑
n=1

Sptj(n)qn :=
∑
nj≥1

∑
nj−1≥···≥n1≥0

qnj

(1− qnj )2(qnj+1)∞

[
nj
nj−1

]
· · ·
[
n2
n1

]
qn

2
1+···+n2

j−1 , (2.12)
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where [
n

m

]
=


(q)n

(q)m(q)n−m
, if 0 ≤ m ≤ n,

0, otherwise.

From [3, Equation (3.3)], we have

∞∑
n=1

np(n)qn =
1

(q)∞

∞∑
n=1

nqn

1− qn
. (2.13)

Also, from (1.16) and the fact that the odd moments of j-rank are equal to zero, we have

d2

dz2
Rj(z, q)

∣∣∣∣
z=1

=

∞∑
n=1

∞∑
m=−∞

m(m− 1)Nj(m,n)qn

=
∞∑
n=1

∞∑
m=−∞

m2Nj(m,n)qn

=
∞∑
n=1

jN2(n)qn. (2.14)

Along with Lemma 2.3, this implies

−1

2

∞∑
n=1

jN2(n)qn =
1

(q)∞

∞∑
n=1

(−1)nqn((2j−1)n+1)/2(1 + qn)

(1− qn)2
. (2.15)

Finally, Theorem 2.1 along with (2.12), (2.13) and (2.15) gives (1.18). This completes the

proof.

Remarks. 1. If j > n, then j+1N2(n) = 0 as Nj+1(m,n) = 0. Then (1.18) implies that

Sptj(n) = np(n), for j > n. (2.16)

This, along with (1.19) gives

Spt∞(n) = np(n) =
1

2
M2(n), (2.17)

so that we have by using (1.18),

Spt∞(n)− Spt1(n) =
1

2
N2(n). (2.18)

Also, in view of (1.1)-(1.2), we see that,

Sptj(`n+m) ≡ 0 (mod `) for (`,m) = (5, 4), (7, 5) and (11, 6) and j > `n+m. (2.19)

2. Note that from (1.18), we have

Sptj(n)− Sptj−1(n) =
1

2
(jN2(n)− j+1N2(n)) . (2.20)
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3. A combinatorial interpretation of Sptj(n)

Here we give a combinatorial interpretation of Sptj(n) defined in (2.12).

For a partition π, we take the largest square that fits inside the Ferrers digram of π starting

from the lower left corner. We call this square the lower-Durfee square. The partition π can

be divided into two portions: the square and the parts to its right, and the parts above the

square. If there exists one, we take a second lower-Durfee square that fits inside π right

above the first lower-Durfee square. We can successively define lower-Durfee squares as long

as there exist parts in the upper portion. For an s ≥ 0, we call these s lower-Durfee squares

defined from the bottom the s successive lower-Durfee squares of π.

Throughout this paper, if a positive integer occurs as a part in a partition, we mark all

of its occurences with positive integers in an increasing order from the left to right. For

instance, for π = 5 + 5 + 4 + 3 + 3 + 3, we write π = 51 + 52 + 41 + 31 + 32 + 33 and call the

subscript of each part of that partition as its mark.

Take a partition π of n and consider its j − 1 successive lower-Durfee squares, and define

a weight of π by

Wj(π) =
∑
im

m, (3.1)

where the sum is over the part right above the (j − 1)st lower-Durfee square if it exists and

all the parts that are contained in the j − 1 successive lower-Durfee squares. For instance,

let j = 3 and π = 91 + 81 + 82 + 83 + 84 + 61 + 62 + 51 + 41 + 42 + 31. Consider its first 2

successive lower-Durfee squares of sides 3 and 5 as shown in Figure 1. Then,

W3(π) = 2 + 3 + 4 + 1 + 2 + 1 + 1 + 2 + 1 = 17.

For π = 41 + 42 + 31 + 32 + 21, we have

W3(π) = 1 + 2 + 1 + 2 + 1 = 7.

If π has fewer than j − 1 successive lower-Durfee squares, we define

Wj(π) =
∑
im

m,

where the sum is over all the parts of π. For instance, if π = 41 + 42, then

W3(π) = 1 + 2 = 3.

We show that the following theorem holds.

Theorem 3.1. With Sptj(n) and Wj(π) defined in (2.12) and (3.1) respectively, we have

Sptj(n) =
∑
π

Wj(π),

where the sum is over all partitions of n.
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91

81

82

83

84

61

62

51

41

42

31

Figure 1. π : 91 + 81 + 82 + 83 + 84 + 61 + 62 + 51 + 41 + 42 + 31.

Before we proceed, we make some remarks on lower-Durfee squares. Suppose that π has

exactly s successive lower-Durfee squares of sides d1, d2, . . . , ds from the bottom to top. Then

di ≤ di+1 (3.2)

for i = 1, . . . , s − 2. However, it is not necessary that ds−1 ≤ ds since ds < ds−1 if there

exist less than ds−1 parts above the s − 1st lower-Durfee square. Also, for i = 1, . . . , s − 1,

all the parts below the ith lower-Durfee square cannot exceed di. If all parts below the s-th

lower-Durfee square are less than or equal to ds, we call π a Rogers-Ramanujan partition with

s successive lower-Durfee squares.

The dotted lines in Figure 1 form the successive Durfee squares of the partition whereas

the complete lines form the successive lower-Durfee squares.

We now prove two lemmas which are crucial for the proof of Theorem 3.1.

Lemma 3.2. Let π be a Rogers-Ramanujan partition with s successive lower-Durfee squares.

Then π is a partition with exactly s successive Durfee squares. Indeed, the lower-Durfee

squares form the Durfee squares.

Proof. We prove by induction on s. Clearly, the statement holds true for s = 1.

For s > 1, we now show that the s-th lower-Durfee square is the Durfee square of π. By

construction, since π is a Rogers-Ramanujan partition, the part right below the s-th lower-

Durfee square is less than or equal to ds, so there are exactly ds parts greater than or equal

to ds. Thus, the first Durfee square of π has to be of side ds, namely the first Durfee square
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matches the s-th lower-Durfee square. The parts below the first Durfee square form a Rogers-

Ramanujan partition with s− 1 successive lower-Durfee squares. By induction hypothesis, it

follows that the lower-Durfee squares form the Durfee squares. This completes the proof. �

Lemma 3.3. Let π be a partition with exactly s successive lower-Durfee squares. Then π

has exactly s successive Durfee squares.

Proof. We prove by induction on s. For s = 1, clearly π is a Rogers-Ramanujan partition

with one lower-Durfee square. Thus, the statement follows from Lemma 3.2.

For s > 1, if π is a Rogers-Ramanujan partition, then it follows from Lemma 3.2. Other-

wise, we now show that the side of the first Durfee square of π is less than ds + ds−1. From

construction of successive lower-Durfee squares, the smallest part in the s− 1st lower-Durfee

square is equal to its side ds−1. Thus, the square of side ds + ds−1 cannot fit inside π, which

implies that the parts below the first Durfee square of π form a partition with s−1 successive

lower-Durfee squares. It follows from the induction hypothesis that the partition with s− 1

successive lower-Durfee squares has exactly s− 1 successive Durfee squares. Therefore, π has

exactly s successive Durfee squares. �

Proof of Theorem 3.1. Consider the series on the right-hand side of (2.12). Since, for nj ≥ 1,

qnj

(1− qnj )2(qnj+1)∞
=
qnj + 2q2nj + 3q3nj + · · ·

(qnj+1)∞
,

the outer summation generates partitions ν with the smallest part equal to nj and weight

equal to the number of occurrences of nj . Also, note that∑
nj−1≥···≥n1≥0

[
nj
nj−1

]
· · ·
[
n2
n1

]
qn

2
1+···+n2

j−1

generates Rogers-Ramanujan partitions µ with the largest part ≤ nj and at most j − 1

successive Durfee squares. Thus, the union of the parts of µ and ν is a partition where the

parts below the part nj form a Rogers-Ramanujan partition with at most j − 1 successive

Durfee squares.

For a partition π of n, we take successive lower-Durfee squares, whose sides are d1, d2, . . .

from the bottom to top. If there are only s lower-Durfee squares, we define di = 0 for i > s.

For convenience, we write the parts of π in increasing order, namely π1 is the smallest, π2

is the second smallest, etc. For i = 0, . . . , d, d = d1 + d2 + · · · + dj−1, we define a pair of

partition µi and νi by

µi = π1 + · · ·+ πi,

νi = πi+1 + · · · .

From the construction, µi has at most j − 1 successive lower-Durfee squares. Thus it follows

from Lemma 3.3 that µi has at most j−1 successive Durfee squares. In addition, we see that

µi and νi for i = 0, . . . , d are the only possible pairs for µ and ν generated by the right hand

of (2.12) which make π.
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Each pair µi and νi is counted with weight equal to the number of appearances of the

smallest part of νi in νi, namely πi+1. By marking the same parts in increasing order as

introduced at the beginning of this section, we see that the number of appearances of πi+1 is

its mark. So, the partition π is generated by the right hand side of (2.12) with weight equal

to the sum of the marks of π1 through πd+1, which is exactly the same as Wj(π). Therefore,

the coefficient of qn on the left-hand side of (2.12) is equal to
∑

πWj(π). This completes the

proof. �

Remarks. 1. When j = 1, we take a partition π of n and consider j−1 = 0 successive lower

Durfee squares. Thus, W1(π) is nothing but the number of appearances of the smallest part

of π. Hence, Spt1(n) = spt(n).

2. By letting j go to infinity in Theorem 3.1, we see that Spt∞(n) counts the sum of the

marks of the parts of all the partitions of n.

3. From (2.20) and the fact that the odd moments of j-rank are equal to zero, we have

Sptj(n)− Sptj−1(n) =
1

2
(jN2(n)− j+1N2(n))

=
1

2

∞∑
m=−∞

m2 (Nj(m,n)−Nj+1(m,n))

=
1

2

∞∑
m=−∞

(m2 −m) (Nj(m,n)−Nj+1(m,n))

= jµ2(n)− j+1µ2(n), (3.3)

where jµk(n) is defined in (1.23). When j = 1, we have seen that this gives nothing but

spt(n) since by (1.19), we have Spt0(n) = 0. In light of what Garvan has done for his higher-

order spt-function, this gives us a motivation to study the difference jµ2k(n)− j+1µ2k(n). We

make the following definition:

Definition 3.4. For j, k ≥ 1, define

jsptk(n) = jµ2k(n)− j+1µ2k(n). (3.4)

We call jsptk(n) a generalized higher order spt-function.

4. Generating function for the generalized higher order spt-function

jsptk(n)

We begin with some lemmas involving the 2k-th symmetrized j-rank function which will

be used in the sequel.
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Lemma 4.1. For j, k ≥ 1, we have

∞∑
n=1

jµ2k(n)qn =
1

(2k)!

((
d

dz

)2k

zk−1Rj(z, q)

)∣∣∣∣∣
z=1

.

Proof. Since

zk−1Rj(z, q) =

∞∑
m=−∞

∞∑
n=1

Nj(m,n)zm+k−1qn,

we have

1

(2k)!

((
d

dz

)2k

zk−1Rj(z, q)

)∣∣∣∣∣
z=1

=
1

(2k)!

∞∑
m=−∞

∞∑
n=1

(m+ k − 1) · · · (m− k)Nj(m,n)qn

=
1

(2k)!

∞∑
n=1

∞∑
m=−∞

(m+ k − 1)!

(m− k − 1)!
Nj(m,n)qn

=

∞∑
n=1

∞∑
m=−∞

(
m+ k − 1

2k

)
Nj(m,n)qn

=
∞∑
n=1

jµ2k(n)qn,

which completes the proof. �

Lemma 4.2. For j, k ≥ 1, we have

∞∑
n=1

jµ2k(n)qn =
1

(q)∞

∞∑
n=−∞
n6=0

(−1)n−1qn((2j−1)n+1)/2+kn

(1− qn)2k
. (4.1)

Proof. By Leibniz’s rule,

1

(2k)!

((
d

dz

)2k

zk−1Rj(z, q)

)∣∣∣∣∣
z=1

=
1

(2k)!

k−1∑
m=0

(
2k

m

)
(k − 1) · · · (k −m)R

(2k−m)
j (1, q),

and by (1.16),

R
(m)
j (z, q) =

−m!

(q)∞

∞∑
n=−∞
n 6=0

(−1)nqn((2j−1)n+1)/2+(m−1)n(1− qn)

(1− zqn)m+1
.

Hence, from Lemma 4.1, we see that

∞∑
n=1

jµ2k(n)qn

=
1

(2k)!

k−1∑
m=0

(
2k

m

)
(k − 1) · · · (k −m)R

(2k−m)
j (z, q)

∣∣∣∣∣
z=1

=
−1

(2k)!(q)∞

k−1∑
m=0

(2k −m)!

(
2k

m

)
(k − 1) · · · (k −m)

∞∑
n=−∞
n 6=0

(−1)nqn((2j−1)n+1)/2+(2k−m−1)n(1− qn)

(1− zqn)2k−m+1

∣∣∣∣∣∣∣
z=1
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=
1

(q)∞

∞∑
n=−∞
n6=0

(−1)n−1qn((2j−1)n+1)/2+(2k−1)n

(1− qn)2k

k−1∑
m=0

(k − 1) · · · (k −m)

m!
(q−n − 1)m

=
1

(q)∞

∞∑
n=−∞
n6=0

(−1)n−1qn((2j−1)n+1)/2+(2k−1)n

(1− qn)2k

k−1∑
m=0

(
k − 1

m

)
(q−n − 1)m

=
1

(q)∞

∞∑
n=−∞
n6=0

(−1)n−1qn((2j−1)n+1)/2+(2k−1)n

(1− qn)2k
(1 + q−n − 1)k−1

=
1

(q)∞

∞∑
n=−∞
n6=0

(−1)n−1qn((2j−1)n+1)/2+kn

(1− qn)2k
,

where in the penultimate step, we used the binomial theorem (a+ 1)` =
∑`

t=0

(
`
t

)
at. �

We now need Garvan’s theorem.

Theorem 4.3. [9, Theorem 3.3] Suppose (αn, βn) = (αn(1, q), βn(1, q)) is a Bailey pair with

a = 1 and α0 = 1, β0 = 1. Then∑
nk≥···≥n1≥1

(q)2n1
qn1+···+nkβn1

(1− qn1)2 · · · (1− qnk)2
=

∑
nk≥···≥n1≥1

qn1+···+nk

(1− qn1)2 · · · (1− qnk)2
+
∞∑
n=1

qknαn
(1− qn)2k

.

We now take the Bailey pair (αn, βn):

αn(a, q) =
(1− aq2n)(a)n

(1− a)(q)n
(−1)narnqn(n−1)/2+rn

2

βn(a, q) =
∑

n≥n1≥···≥nr−1≥0

an1+···+nr−1qn
2
1+···+n2

r−1

(q)n−n1(q)n1−n2 · · · (q)nr−1

Let a = 1. Then

αn(1, q) =

1 if n = 0,

(−1)nqn(n−1)/2+rn
2
(1 + qn) if n ≥ 1,

βn(1, q) =

1 if n = 0,∑
n≥n1≥···≥nr−1≥0

q
n2
1+···+n2

r−1

(q)n−n1 (q)n1−n2 ···(q)nr−1
if n ≥ 1.

Substituting (αn(1, q), βn(1, q)) in Theorem 4.3, we obtain∑
nk≥···≥n1≥1

(q)2n1
qn1+···+nk

(1− qn1)2 · · · (1− qnk)2

∑
m1≥···≥mr−1≥0

qm
2
1+···+m2

r−1

(q)n1−m1(q)m1−m2 · · · (q)mr−1

=
∑

nk≥···≥n1≥1

qn1+···+nk

(1− qn1)2 · · · (1− qnk)2
+
∞∑
n=1

(−1)nqn(n−1)/2+rn
2+kn(1 + qn)

(1− qn)2k
. (4.2)
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In the following theorem, we obtain the generating function of jsptk(n).

Theorem 4.4. We have
∞∑
n=1

jsptk(n)qn

=
∑

nk≥···≥n1≥m1≥···≥mj−1≥1

qnk+···+n1+m2
1+···+m2

j−1(q)n1

(1− qnk)2 · · · (1− qn1)2(qn1+1)∞(q)n1−m1(q)m1−m2 · · · (q)mj−1

.

(4.3)

Proof. Substituting r = j and j − 1 in (4.2), we obtain∑
nk≥···≥n1≥1

(q)2n1
qn1+···+nk

(1− qn1)2 · · · (1− qnk)2

∑
m1≥···≥mj−1≥0

qm
2
1+···+m2

j−1

(q)n1−m1(q)m1−m2 · · · (q)mj−1

=
∑

nk≥···≥n1≥1

qn1+···+nk

(1− qn1)2 · · · (1− qnk)2
+

∞∑
n=1

(−1)nqn(n−1)/2+jn
2+kn(1 + qn)

(1− qn)2k
(4.4)

and ∑
nk≥···≥n1≥1

(q)2n1
qn1+···+nk

(1− qn1)2 · · · (1− qnk)2

∑
m1≥···≥mj−2≥0

qm
2
1+···+m2

j−2

(q)n1−m1(q)m1−m2 · · · (q)mj−2

=
∑

nk≥···≥n1≥1

qn1+···+nk

(1− qn1)2 · · · (1− qnk)2
+

∞∑
n=1

(−1)nqn(n−1)/2+(j−1)n2+kn(1 + qn)

(1− qn)2k
. (4.5)

Subtracting (4.5) from (4.4), we have∑
nk≥···≥n1≥1

(q)2n1
qn1+···+nk

(1− qn1)2 · · · (1− qnk)2

∑
m1≥···≥mj−1≥0

qm
2
1+···+m2

j−1

(q)n1−m1(q)m1−m2 · · · (q)mj−1

−
∑

nk≥···≥n1≥1

(q)2n1
qn1+···+nk

(1− qn1)2 · · · (1− qnk)2

∑
m1≥···≥mj−2≥0

qm
2
1+···+m2

j−2

(q)n1−m1(q)m1−m2 · · · (q)mj−2

=
∞∑
n=1

(−1)nqn(n−1)/2+jn
2+kn(1 + qn)

(1− qn)2k
−
∞∑
n=1

(−1)nqn(n−1)/2+(j−1)n2+kn(1 + qn)

(1− qn)2k
. (4.6)

First, the right-hand side of (4.6) can be written as

∞∑
n=−∞
n6=0

(−1)nqn(n−1)/2+jn
2+kn

(1− qn)2k
−

∞∑
n=−∞
n 6=0

(−1)nqn(n−1)/2+(j−1)n2+kn

(1− qn)2k

=
∞∑

n=−∞
n 6=0

(−1)n−1qn((2j−1)n+1)/2+kn

(1− qn)2k
−

∞∑
n=−∞
n6=0

(−1)n−1qn((2j+1)n+1)/2+kn

(1− qn)2k

= (q)∞

∞∑
n=1

(jµ2k(n)− j+1µ2k(n))qn
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= (q)∞

∞∑
n=1

jsptk(n)qn, (4.7)

where we invoked (4.1) in the penultimate step. Also, the left-hand side of (4.6) can be

written as∑
nk≥···≥n1≥1

(q)2n1
qn1+···+nk

(1− qn1)2 · · · (1− qnk)2

∑
m1≥···≥mj−1≥1

qm
2
1+···+m2

j−1

(q)n1−m1(q)m1−m2 · · · (q)mj−1

=
∑

nk≥···≥n1≥m1≥···≥mj−1≥1

(q)2n1
qnk+···+n1+m2

1+···+m2
j−1

(1− qnk)2 · · · (1− qn1)2(q)n1−m1(q)m1−m2 · · · (q)mj−1

, (4.8)

since (q)n1−m1 = 0 unless n1 ≥ m1. Thus, from (4.7) and (4.8), we have

(q)∞

∞∑
n=1

jsptk(n)qn

=
∑

nk≥···≥n1≥m1≥···≥mj−1≥1

(q)2n1
qnk+···+n1+m2

1+···+m2
j−1

(1− qnk)2 · · · (1− qn1)2(q)n1−m1(q)m1−m2 · · · (q)mj−1

. (4.9)

Finally, dividing both sides of (4.9) by (q)∞, we arrive at (4.3). �

Remarks. 1. Equation (4.3) can also be written as

∞∑
n=1

jsptk(n)qn

=
∑

nk+j−1≥···≥nj≥···≥n1≥1

qnk+j−1+···+nj

(1− qnk+j−1)2 · · · (1− qnj )2(qnj+1)∞

[
nj

nj−1

]
· · ·

[
n2

n1

]
qn

2
j−1+···+n2

1 .

(4.10)

Also, note that 1sptk(n) = sptk(n).

2. From (3.3) and (3.4), we have

jspt1(n) = Sptj(n)− Sptj−1(n), (4.11)

which implies that

Sptj(n) =

j∑
`=1

`spt1(n). (4.12)

This in turn gives Sptj(n) = 1µ2(n)− j+1µ2(n).

5. A combinatorial interpretation of jsptk(n)

We recall the higher order spt-function sptk(n) studied by Garvan. For a partition π, let

wk(π) =
∑

m1+···+mr=k
1≤r≤k

(
ft1 +m1 − 1

2m1 − 1

) ∑
t1<t2<t3···<tr

(
ft2 +m2

2m2

)
· · ·
(
ftr +mr

2mr

)
, (5.1)
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where the outer sum is over all compositions m1 + · · · + mr of k, t1, t2, . . . , tr are distinct

parts of π with the smallest part t1, and ft denotes the number of occurrences of t in the

partition π. He then defined sptk(n) as

sptk(n) =
∑
π

wk(π),

where the sum is over all partitions π of n, and showed that the generating function of sptk(n)

is given by (1.22).

We now generalize this to jsptk(n). Let j, k ≥ 1. For a partition π, we define a weight

jwk(π) =
∑
t1

∑
m1+···+mr=k

1≤r≤k

(
f ′t1 +m1 − 1

2m1 − 1

) ∑
t1<t2<···<tr

(
ft2 +m2

2m2

)
· · ·
(
ftr +mr

2mr

)
,

where the outer sum is over all parts t1 right above each of the parts contained in the (j−1)st

lower-Durfee square, and the middle sum is over all compositions m1+ · · ·+mr of k, t2, . . . , tr

are distinct parts of π greater than t1 and f ′t denotes the mark of t. Then, we obtain the

following theorem.

Theorem 5.1. With jsptk defined in (3.4), we have

jsptk(n) =
∑
π

jwk(π),

where the sum is over all partitions of n.

Proof. We take the right hand side of (4.10):∑
nk+j−1≥···≥nj≥···≥n1≥1

qnk+j−1+···+nj

(1− qnk+j−1)2 · · · (1− qnj )2(qnj+1)∞

[
nj

nj−1

]
· · ·

[
n2

n1

]
qn

2
j−1+···+n2

1 .

(5.2)

Then, we see that ∑
nj≥···≥n1≥1

[
nj

nj−1

]
· · ·

[
n2

n1

]
qn

2
j−1+···+n2

1

generates partitions µ into parts less than or equal to nj with exactly j− 1 successive Durfee

squares. Also, it follows from (1.22) that∑
nk+j−1≥···≥nj≥1

qnk+j−1+···+nj

(1− qnk+j−1)2 · · · (1− qnj )2(qnj+1)∞
.

generates weighted partitions ν with the smallest part equal to nj and weight wk(ν) defined

in (5.1).

Clearly, the union of µ and ν is generated by (5.2) with weight wk(ν). With the same

argument in the proof of Theorem 3.1, a partition π generated by (5.2) can be split into such

µ and ν by separating the parts above any part in its (j−1)st successive lower-Durfee square.

That is, the part right above each of the parts in the (j− 1)st successive lower-Durfee square
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can be the smallest part of ν. In addition, the number of occurrences of the smallest part in

ν is equal to its mark in π, namely fnj in ν equals f ′nj
in π. Thus, the partition π is generated

with weight jwk(π) as desired. �

6. Inequality between the moments of j-rank and (j + 1)-rank

Since the idea is completely analogous to the one used for proving M2k(n) > N2k(n), we

just give the main results below. With jµk(n) defined in (1.23), we have the following:

Theorem 6.1. For k ≥ 1,

jµ2k(n) =
1

(2k)!

n∑
m=−n

gk(m)Nj(m,n),

jN2k(n) =

k∑
t=1

(2t)!S∗(k, t)jµ2t(n). (6.1)

Proof of Theorem 1.1. Suppose k ≥ 1. From (4.10) and (3.4), we have

∞∑
n=1

(jµ2t(n)− j+1µ2t(n)) qn =
qt+j−1

(1− q)2(t+j−1)
· q

j−1

(q2)∞
+ · · · , (6.2)

and hence

jµ2t(n) > j+1µ2t(n), (6.3)

for all n ≥ t ≥ 1 and j ≥ 1. Using (6.1) and the fact that S∗(k, t) are positive integers, we

have

jN2k(n)− j+1N2k(n) =

k∑
t=1

(2t)!S∗(k, t) (jµ2t(n)− j+1µ2t(n)) ≥ 2 (jµ2t(n)− j+1µ2t(n)) > 0,

(6.4)

for all n ≥ 1. �

A simple consequence of Theorem 1.1 is that M2k(n) = 1µ2k(n) > jµ2k(n) for all j > 1.
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