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1. INTRODUCTION

The study of character analogues perhaps begins with the introduction of Dirichlet
L-functions by P.G.L. Dirichlet in the 1830’s. In this paper, our starting point is a
result (Theorem 2.1) arising from a character analogue of a theorem of G.N. Watson
[13] established by the first author in [3] using periodic or character analogues of the
Poisson summation formula [2, 3, 7]. We establish character analogues of recent results
involving the modified Bessel function K,(z) proved by B.C. Berndt, Y. Lee, and
J. Sohn [6] found in Ramanujan’s Lost Notebook [12]. These include formulas of
N.S. Koshliakov [10] and A.P. Guinand [8]. Koshliakov’s formula can be considered
an analogue of the familiar transformation formula for the classical theta function [5,
p. 122].

Theorem 1.1 (Koshliakov’s Formula). If v denotes Euler’s constant, d(n) denotes the
number of divisors of n, K,(z) denotes the modified Bessel function of order v and
a >0, then

~v — log (%”) + 4§: d(n)Ko(2man)

- é (,y — log(4ma) + 4Zd(n)Ko (?)) - (1.1

n=1
Guinand’s formula is associated with the Fourier expansions of Eisenstein series and
Epstein zeta functions [6].

Theorem 1.2 (Guinand’s Formula). Let ox(n) = >_,, d*, and let ((s) denote the
Riemann zeta function. If o and 3 are positive numbers such that a3 = w2, and if s
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1s any complex number, then

\/_Za 5/2KS/2 2na) \/_Za /2Ks/2(2n6)

1

= 17 (5) c{BI/2 a2y 4 zf (—3) Cl=s){BO2 —at+9/2) (1.2)

In this paper, we prove analogues (Theorems 3.1, 4.1) of Guinand’s formula for
primitive characters. We further establish character analogues (Theorems 3.3, 4.4) of
Koshliakov’s formula. Several corollaries and special cases are also given. We could
have generalized our results to arbitrary even and odd periodic sequences; but with
the restriction that the sequences be completely multiplicative, such sequences must
be Dirichlet characters [1, p. 145, Exercise 17(b)].

2. PRELIMINARY RESULTS
We use the well-known fact [9, p. 978, formula 8.469, no. 3]

T
Kl/Q(Z) = Ze"z. (2].)

We require the simple asymptotic formula [14, p. 202]
Ku(z) ~ 56_27 z = 00,

to ensure the convergence of series and integrals and to also justify the interchange of
integration and summation several times in the sequel. We need several integrals of
Bessel functions beginning with [9, p. 705, formula 6.544, no. §]

/OO K, <Z> (bx)dx gKQV(Q\/%), Rea > 0,Re b > 0. (2.2)
Also,
/0 Ky(a/z)Ko(yx)dx = gKO(Q\/@) (2.3)
and

/ xv e Ble- dr =2(6/7) ”/2 2\/_ (2.4)
0

for s € C, Re > 0 and Re 7 > 0. We need the related pair [9, p. 697, formula 6.521,
no. 3

/000 zK,(ax)K,(bx)dx = Z(S?z)(;j;(;__bb;;,

and

[Re v] <1, Re (a+b) >0, (2.5)

log(a/b)

2 a,b >0, (2.6)

/OOO rKo(az)Ko(bx)dx =
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which can be obtained by letting v — 0 in (2.5). Also, we need the evaluation [9,
p. 708, formula 6.561, no. 16], for Re @ > 0 and Re(pu + 1+ v) > 0,

& 1 1 —
/ P (az)ds = 2 1a—#-1T (%) r (++) . 27)
0

We now state a theorem of Berndt specialized to characters [3, p. 171], which gener-
alizes a theorem of Watson [13], and which will be used in Theorems 3.1 and 4.1 below.
First, let

k
=3 x(mpermnrr, (28)
n=1

where x is a primitive character with period k. We make use of the fact [1, p. 168]
that |G(x)]* = k.

Theorem 2.1. Let x > 0. If x is even with perz'od k and Re v > 0, then

ZX n* K, (2mnz k) = 2x7(;()(kx) ( )ZX (n® +2%)™7%; (2.9)

if x s odd with period k and Re v > —1, then

in2 A 3\ — _,_3
ZX V+1K 27Tnl'/l€) 21:2—% (?) I <V -+ 5) ZX(H)'H(’NP -+ 1'2) 2,
n=1

(2.10)

Lastly, we state Frullani’s integral theorem [11, p. 612, Equation (1)].

Theorem 2.2. Let f(x) be a Lebesque integrable function over any interval 0 < A <
r < B < oo. Assuming that the limits exist, write f(0) = lim, .o+ f(z) and f(oc0) =
lim, .o f(z). Then, for a,b >0,

/000 flat) ; fbt) (f(00) = £(0))log (%) _ (2.11)

3. CHARACTER ANALOGUES OF THEOREMS OF RAMANUJAN, KOSHLIAKOV AND
GUINAND FOR EVEN PRIMITIVE CHARACTERS

Throughout this section, x(n) denotes an even primitive character of modulus k.

Theorem 3.1. If o and 3 are positive numbers such that o8 = w2 and s is any complex
number, then

\/_ZX (k>5/2K5/2(2na/k)

k\/B 0 _ n\ $/2
- i ;X(n)a_s(n) <E> Kp2(2nf3/k).

(3.1)
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Proof. Invoking (2.9) in the third equality below, we find that

Va Z x(n)o_
n

= \/_Z x(n Z d—° <E> Kp2(2na/k)

d|n
S ()

n (7) K p(2na k)

ZX

K, o(2dma/k)

:\/ak:‘s/ZZX( s/2<2d (kda s/2+1 <S;1>iG(Y)(”2
)2

X(n) )
+ (da/m)?)(s+1)/2

(3.2)

By . X(dx()
2G( ) +1) 2I‘( dl; (n2m2 + d2a2)(+D/2
By symmetry,
o) s/
VB X (n) (7) " K, 5(2n8/k)
n=1
\/_ S - S X )
_ T eagy ( )ZZ L e
VT s N X(d)x(n)
= 25 (+D/2G (5 < >§; oy 2/62+d2)8+1
_ VT s N (n)x(d)
_ VT emrgg ( )ZZ T
Thus
N X(n)x(d)
; — (d?a? 4 m2n?)(s+1)/2

2\/3 e . n\ s/2
B VTaHDRG(X((s + 1)/2) ;X(”)U—s(n) <E> K,p(2nB/k). (3.3)

Substituting (3.3) in (3.2), we deduce (3.1) to complete the proof.

For example, let x(n) =

g

%), the Legendre symbol modulo p, where p is a prime

such that p =1 (mod4). Then from a well-known theorem of Gauss [4], we know that
for any prime p = 1 (mod4), G(x) = /p, where x(n) = (%) Thus, substituting (%)



for x(n) in (3.1) and simplifying, we find that

T (5) 0 () iy
_ \/ggjl (%) o_s(n) (g)sﬂ K,»(2n3/p).

(3.4)
Now let s = 1 in (3.4). Then using (2.1), we deduce the following corollary.

Corollary 3.2. If o and 3 are positive numbers, o3 = w2 and (ﬁ) 15 the Legendre
p
symbol, where p is a prime with p =1 (mod4), then

5 ()ome=s-5 (Do 6o

n=1 n=1

Next we state and prove a character analogue of Koshliakov’s formula.

Theorem 3.3. If a and 3 are positive numbers, a3 = 72 and s is any complex number,
then

fzx WEu(2na/B) = S5 X Kazis/R). (3

Proof. Setting s = 0 in (3.1) and noting that o¢(n) = d(n), the number of divisors of
n, we arrive at (3.6). O

Letting x(n) = (%) in (3.6), we find that

\/_Z( ) n)Ko(2na/p) = \/_Z( ) n) Ko(2n3/p). (3.7)

Next we give analogues of theorems on page 254 of Ramanujan’s Lost Notebook [6,
pp. 30-34], [12].

Theorem 3.4. If a > 0, then

/OO i Y<m> 6727rmx - Y(n) 6727rna/x d_(L’
o\ GKY) “—~ G(X) z
_ 1 /°° Yo X(s)e ™\ (S Xw)e v da
o G(Y)Q 0 1 — e—2mkz 1 — e—2mak/x T

= = S Xn)d(n) Ko(4m/an)

ak? = y(n)d(n)log(n/ak?
ok 5~ X)) og(n/ak’)

n2 — q2k4

(3.8)
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Proof. Writingm =kr+s,0<r<o0,0<s<k—1,andn=ku+v, 0 <u < oo,
0 <wv < k-1, we find that, since x has period k,

> - X m) 6727rma: - Y(TL) 6727rna/:p d_ZL‘
[ (&) (Geo)

m=1 =1
1 00 oo k-1 oo k-1 dx
_ —2 (kr+s)mx —2 (kutv)ra/z |
g [ (X e ) (S5 vt )
r=0 s=0 u=0 v=0
oo 00 k—1
_ 1 Z —2mkrz —2msx —2maku/z - —2mrav/z dx
L (S S roere) (S S e ) &
G(X) 0 s=0 u=0 v=0 z
_ 1 00 23:0 Y(S>e—27rsm Zf;é y(v)e—%ﬂw/r d_.T (3 9)
G(%)Z 0 1 — e—27kz 1 — e—2mak/x T’ ’

which proves the first equality.
Interchanging the order of summation and integration by absolute convergence, we

find that

=
VRS
hE
Q!
A‘S

)6—27rmz - Me—%ma/r d_[L'

o) (S8 ) s

_ 1 Nl Y(mn ooe—Qw(mx—}-an/x)@
G 2 Yo [

Y m=1 n=1 x
- G(ly)2 Z Zy(mn) /O"o e_zﬂ(uﬂmn/u)d;u
— G(;P Z Zy(mn)Ko(Zlﬂ\/m)
= G 2 Xl Ko dra) (3.10)

which proves the second equality.

Now letting o = ma and 3 = 7/a for a > 0 in (3.6) and simplifying, we deduce that

o0 o

> x(n)d(n)Ko(2nma/k) = Z n)Ko(2nm/ak). (3.11)

n=1 =1
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Multiplying both sides by aKy(2mayk) and integrating with respect to a from 0 to oo,
we have

/ CLZX n)Ko(2nma/k)Ko(2rayk)da
/ n)Ko(2nm/ak)Ko(2mayk)da. (3.12)

Interchanging the order of summation and integration and using (2.3) and (2.6), we
find that

x(n 1Og(n/ yk?) -

n)Ko(4m/n 3.13
471'2 Z — 2kt 2yG ; o(47y/ny). ( )

Multiplymg both sides by 4y and then lettmg y = a, we find that

ak? S x(n)d(n )log(n/ak2
? n2 — a2k4 ZX KO 477'\/ na) (314)
n=1

This proves the last equality in Theorem 3.4 and completes the proof. ]

Theorem 3.5. Ifa > 0, then

o Je-inan _ ak™? & X(n)o_12(n)
ZX e "GO 2 e )

Proof. Let s=1/21in (3.1) and set « = z and 3 = 7?/x. Then

n

\/_Zx n)o_1s(n (E>1/4K1/4(2nx/k)

nA 1/4

ZX o_1ya(n <E> " Ky a(onm? o). (3.16)

Now multiplying both sides by :c_5/ ?Ky4(2am?k/x), integrating with respect to = from
0 to 0o, and interchanging the order of summation and integration by absolute conver-
gence, we find that

<1
1/42)( n)o_i2(n 1/4/ ﬁK1/4(2nx/k)K1/4(2a7r2k/x)dx
0

T a2 Zy(n)a_lﬂ(n)nl/‘l /0°° i[('1/4(27”L7T /:L'k)Kl/4(2a7T k/x)dx

(3.17)

Now using (2.1), (2.2) and (2.5) and simplifying, we have
1 - _ 2k a4 & X(n)o_12(n
ZX(”)O‘,l/Q(TL)G tmy/an = 3/ (—=\2 X( 2) 1/2( ) )
425/ e A 8m3G(X)? 4= (n+ak?)(vn+ky/a)
(3.18)
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which upon further simplification yields (3.15). O

Finally we give a character analogue of the last theorem on page 254 of Ramanujan’s
Lost Notebook [12].

Theorem 3.6. Fora > 0,

ak® = X(n)o_i(n) = —ak?
2\/_ZX n)o— 1 \/_K1<47T\/%) 27TG< ) ot (n—l—ak2) — 27TG(Y>ZS(CL7 k)?
, (3.19)
where
= X (n) <= = (ak? —mn)
nz::l n? = (m) tz:; t(tnk + ak? —mn) (3:20)
Proof. Letting s =1 in (3.1) and setting o = z and 3 = 7?/x, we arrive at
Vi xtmo () (1) Kupa(na/h)
n=1
_ R i_(n)a (n) (ﬁ)l/ * K202/ zk) (3.21)
VRGP o TR T | |

Multiplying both sides of (3.21) by 27%/2K j»(2an?k/x) and integrating with respect to
x from 0 to oo, and interchanging the order of summation and integration by absolute
convergence, we obtain

ZX moi(n) (7 )1/2/000 L Ky p@na k) Ky o (2an?k ) de

k7r > 1

= ZX o_1( <k:>1/2/0 —K1/2(2n7r Jkx) Ky o(2a7’k /) d
(3.22)

Making the substitution = 1/u in the integral on the right-hand side of (3.22) and
then using (2.5) for this integral, and (2.2) for the integral on the left side, we find
after simplifying that

Zx W VAR = DY wnel e

2aﬂk

which after simplification yields the first equality.
Next, to show that the first and third expressions of (3.19) are equal, we use (2.1)
on the right-hand side of (3.21). After simplification, (3.21) becomes

oo

Z (n)vnaxKio(2nz/k) =

=1 n=1

—2n7r2/k:x. (324)
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Now multiplying both sides of (3.24) by 272K 5(2ar?k/z) and integrating with re-

spect to x from 0 to oo, interchanging the order of summation and integration by
absolute convergence, and using (2.2), we find that

\/% Z X(n)g_l(n)\/ﬁ/ooo %Kl/Q(an/k’)Kl/Q(2a7r2k/:v)dx

= m Z x(n)o_i(n)v/nKi(4mv/an)

> ko —_ —onm?/kz | .52 2
:/0 (G(Y)Q;X(n)g_l(n)e / )x /K1/2(2a7r k/x)dx. (3.25)

Since
_ —9mdr? /kx — —2dsn? /kx
> " X(m)e2mar/k = A=z 2 X8 2ot/ (3.26)
m=1

with d replaced by n, we deduce that

k = = —2nn? /kx — Y(m)Y(d) —2mdn? /kx
nz:l X(n)a_l(n)e =k Z Z WC

oo & 2GR
s X(n) [ X(s)e e ke
- k; eled ( GO0 — e 7m) ) . (3.27)
Hence
/OOO <G(];)2 o y(n)al(n)e—%ﬁ/l@x> l’_5/2K1/2(2a7T2k/x)dx
L VE O X)) (SRR Ny, da
2¢/ar Jg — nG(x) \ G(X)(1 — e-2nm2/x) 22
VR s X (SR gy,
E MW"’/Q/o 2 72G(0 \ G- ) - (3.28)
Now
Sh g X(s)e AR (s)e
GX)(1 —e™) G(x)(e* —1)
X X(m)erm Yk x(m)
G(X)(e* —1) uG(Y)
_NXm) (et
- n;) G(x (eu 1 u) ; (3.29)

for Zﬁ;o X(m) = 0, since x is non-principal. Thus we need to evaluate

00 eum/k 1
/ ( = —) e~ gy, 0<m<k—1. (3.30)
0 e — U
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Thus,

/oo eum/k B l e—aku/ndu _ /oo e—aku/n B 6—(ak/n—m/k+1)u "
0 e“* -1 wu 0 u 1—e
oo —aku/n __ _,—(ak/n—m/k+1)u e}
o (/ e=aku/n _ o= (ak/n=m/k+1) du+/ (1_ 1 )e<ak/nm/k+1>uciu),
0 U 0 u 1—e¥

(3.31)

The first integral in (3.31) can be evaluated with the help of Theorem 2.2 with f(u) =
e ". Since ak/n > 0,

oo —aku/n __ ,—(ak/n—m/k+1)u L _ k 1
/ ‘ ¢ du = log <a [n—m/k+ ) (3.32)
0

u ak/n

This integral can also be evaluated by differentiation under the integral sign.
To evaluate the second integral, we use the following representation for ¢ (z), the
logarithmic derivative of the gamma function I'(2) [9, p. 952, formula 8.361, no. 8]

() = log(2) + /0 N (% — _t> e, (3.33)

1—e

for Re (2) > 0.
Thus from (3.31), (3.33) and (3.32),

00 um/k
/ ( € . l) 6—aku/ndu
0 e“—1 wu
k k k k
= —log a__@+1 + log a — a——@—i-l + log a——T%—l
n k n n k n k

= log (%) by Z (ak/n —m/k)

n — t(ak/n—m/k+1)
- (ak?® — mn)
=1 .34
Og( >+7 ;ttnk—i-ak? n)’ (3:34)

since

¢()=—7+Z(——Z+i_1):—7 Zzi;nl_l (3.35)
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Hence by absolute convergence, we find that

/ ( Z n)o_i(n)e " ﬂm) 2K 9 (2ank ) x)dx

=1

B
N b )
= 4\/\5/55/2 3 nfgz) > Y(m; (log (ank) T ; t(tn(ljlfa_k? - 3nn)>
= 4;5\7/32 (G(;) i Yg) >_X(m) tf; t(tn(lj]—f e )mn))
VR

- 4,/am2G(x)?

where S(a, k) is defined in (3.20) and we made use of the fact that Zk ! oX(m)=0in
the penultimate step.
Thus from (3.25), we obtain

ak3/27r3/2 ZX n)o_1(n)vnK;(4r/an) =

51
O

2
=

S(a, k), (3.36)

_VE
L/ar G (x)?

which upon trivial simplification shows the equality of the first and third expressions

n (3.19). O

-S(a, k), (3.37)

Corollary 3.7. If a > 0 and (2> 15 the Legendre symbol, where p is a prime with
p
p =1(mod4), then

2/ Z( ) ik (4 am) = 2 fj (g) T

-t 3.38
—  n+pia (3:38)
Proof. Set x(n) = <%) in (3.19). Then after simplification, the first equality in (3.19)
yields (3.38). O

Remark. The middle expression in Theorem 3.6 converges extremely slowly. For
example, let a = 1 and x(n) = (%) The value of the leftmost expression of Theorem

3.6 is 2.51273028 - - - x 107°, which is correct up to the decimals listed. However, the
middle expression

2 f:l (5) o). (3.39)

21 &= n+25
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as we indicated above, converges very slowly. To illustrate, the correct value for 49
million terms of (3.39) is 2.59028733--- x 1075, while the correct value of (3.39) for
50 million terms is 2.4317244512 - - x 1075, Thus, the convergence of (3.39) is slow to
stabilize, and the partial sums oscillate about the correct value.

4. CHARACTER ANALOGUES OF THEOREMS OF RAMANUJAN, KOSHLIAKOV AND
GUINAND FOR ODD, PRIMITIVE CHARACTERS

In this section, we consider the case when y(n) is a primitive odd character modulo
k.

Theorem 4.1. If o and (3 are positive numbers such that a3 = 7% and s is any complex
number, then

ava i x(n)o_s(n) <%) S/QHKS/Q(Qna/k:)

KOVE G~ AR
e ;X<n>as<n> () Ke2n/k).

(4.1)

Proof. Invoking (2.10) in the third equality, we find that

Oz\/_ZX n)o_s <k>8/2+1 K, 2(2na/k)

:a\/aZX S d <)S/Q+1 K, a(2na/k)

din

:a\/ai (d)d S/ZHZX (" )5/2“ K, jo(2dma k)
d=1

= a\/ak—sﬂ—l Z X(d)d_s/2+1
’ <22(2l:a_> (kjf>8/2+2 ( )i di%) )s+3>/2>

m=1

Zkﬁ\/_ s+3)/2F s+3 — X(d)X(m)md (4 2)
T 26" 2 ) = £ (mPr? 4 d2a?) I :

By symmetry,

NG Zx mo-i(n) ()" Kepa(2np /i)

B anr\/_ (543)/ s+3 m)md
“ 50" () 2 s e
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_amyT Q52T (5 + 3) i i X(d)x(m)md

2G( ) 2 bt Lo (m2a2 + d2n2)(+3)/2°
Thus,
s /241 L o0 s/241
ava Yy xmo- ) (T) " Kopa(2na/k)+ Gﬁ(%f S xtmoam) (5)" Kopslono/h)
n=1 n=1
it 282L (543
T 26 ( 2 )

d
(ZZ m27r2+d2a2 (s+3)/ ZZ m2a2+d27r2;r(15+3 )

=0,
by interchanging the roles of m and d in the second sum, and so the proof is complete.
O
For example, let x(n) = y4(n), where
1, if n =1 (mod4)
xa(n) =4¢ -1, if n=3(mod4) (4.3)

0, if n is even,

which is an odd primitive character modulo 4. Now let s =1 in (4.1). Using (2.1), we
deduce the following result since G(x4) = 2i.

Corollary 4.2. If a and (3 are positive numbers such that a8 = 72 and if x4(n) is
defined by (4.3), then

o Z xa(n)o_1(n)ne "2 = Z xa(n)o_i(n)ne "2, (4.4)

Since G((%)) = iy/p, when p is a prime such that p = 3 (mod4), we also have the

following result.

Corollary 4.3. If o and 3 are positive numbers, o3 = w2 and (E) 15 the Legendre
p
symbol, where p is a prime such that p = 3 (mod4), then

o3 (@) st 05 (st s

Next we state and prove a character analogue of Koshliakov’s formula for odd char-
acters.

Theorem 4.4. If o and 3 are positive numbers, a3 = 72 and s is any complex number,
then

a\/_z x(n)d(n)nKo(2na/k) =

kﬁ \/_ Z n)nko(2n3/k). (4.6)
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Proof. Setting s = 0 in (4.1) and noting that o¢(n) = d(n), we arrive at (4.6). 0
Theorem 4.5. If a > 0, then

/ X(m) 727rm:c - Y(TL) 6*27”1@/1 @

o\ G(x ) —~ G(X) z
SEax(s)e e (S wwe i da

Y 2 \/() < _Qﬁkx > ( 1— 6—27rak/a7 ) ?

= G 2 X o)
G()?
_ % 3 X(")diﬁ)ﬁlﬁf/ ak?) (4.7)

Proof. Writingm =kr+s,0<r<o0,0<s<k—1,andn=ku+v, 0 <u < oo,
0 <wv < k-1, we find that, since x has period k,

M —omma - X(n) 6—27rna/:v d_x
| (Z ) (Z: ) ) :

G(X)

1 00 oo k—1 oo k—1 dx

- X(kr + 3)6—2(kr+s)m X(ku + 7_,)6—2(ku+v)7ra/x -
G(X>2 /0 ; s=0 § v=0 v
-~ k-1

:G 1_ - / Z 6727Tk‘1“$ Zy(s)e%rsx) (Z e —2mraku/z ZX 27ray/g;> dx

(X> 0 r=0 s=0 v

1 0o Ek—l —( —2msx k-1 — —2mav/z\ 4
B o X(s)e 2o X(v)e ax (4.8)
- G(X)? Jo 1 — e=2mhe 1 — e—2mak/z x’ '

which proves the first equality.
Interchanging the order of summation and integration by absolute convergence, we

obtain
> = Y( —27rma: = YTL —27ma/m d_l‘
[ (S (i)

n=1

0o 0o 0o de
— Y(mn e—27r(mx+an/x)_
G 2 2 X /0
1

Q

X

S ee du
— Y(mn e—27r(u+amn/u) e
g 2o o) |

u

:G( E Z Zy(mn)Ko(Zhr\/m)



Z X(n)d(n) Ko(4m/an), (4.9)

which proves the second equahty.

Now letting o = wa and = 7/a for a > 0 in (4.6) and simplifying, we deduce that

a Z x(n)d(n)nKy(2nma/k) = Z X(n)d(n)nKo(2nm/ak). (4.10)

a2G
Multiplying both sides by Ky(2rayk) and integrating with respect to a from 0 to oo,
we find that

[e. 9]

/OOO a Z x(n)d(n)nKy(2nma/k)Ko(2rayk)da

n=1
)

k <1 _
=— W/o = X(n)d(n)nKo(2nr/ak) Ky(2mayk)da.

n=1

Interchanging the order of summation and integration and using (2.2) and (2.6), we
find that

1 < x(n)d(n)nlog(n/yk®) _ —
_PZ R ZX n)Ko(47/ny). (4.11)
n=1 n=1
This proves the last equality upon replacmg Y by a. O

Theorem 4.6. Ifa > 0, then

\/_7T —47r an 0_1/2 n
Zx n)o_1j(n)e” TV = Z n+ak2 (\//_(+)k\/_) (4.12)

Proof. Let s =1/21in (4.1) and set « = z and 3 = 7?/x. Then

x\/_ZX o_1/2(n )(%)5/4.?(1/4(27%/16)

n\ 5/4
- I3/2G ZX o_ 1/2 <%) K1/4(2717T2/13k’). (413)

Now multiplying both sides by K; /4(2ak:x), integrating with respect to x from 0 to oo,
and interchanging the order of summation and integration by absolute convergence, we
find that

5/4ZX o_1/2(n /4/ v Ky 4(2na k) Ky 4 (202k)dx
0

k= 1/47'('3 e _ 5/4 > 1 9

(4.14)
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Now using (2.1), (2.2) and (2.5) and simplifying, we conclude that

ir & I o0 x(n)o_i/2(n)n
B =

i

Remark. The series on the right-hand side of (4.12) converges very slowly. Due to
the presence of the expression o_1/5(n), it is very difficult to compute. Hence, even for
a simple case like a = 1 and x(n) = (%), we are unable to numerically verify (4.12).
However, if we termwise differentiate (4.12) with respect to a, say three times, then, in
particular, the series on the right-hand side converges more rapidly, so that numerical
verifications are more feasible.
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