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Dedicated to Srinivasa Ramanujan on the occasion of his 125th birth anniversary

Abstract. We discuss an ingenious method of Ramanujan for generating modular-
type transformations of the form F (α) = F (β), αβ = 1, having its origins in one of
his published papers and in his Lost Notebook. We also review the developments that
have occured since then and list examples of these and more general modular-type
transformations.

1. introduction

One of Ramanujan’s earlier published papers after his arrival in England, namely [41],
is devoted to obtaining new expressions for the Riemann zeta function ζ(s) and Ξ(t),
the Riemann Ξ-function (see (1.3) below), in which he studies two definite integrals
containing Ξ(t) under the sign of integration and obtains alternative representations for
them. In this paper, Ramanujan gives an elegant method for generating modular-type
transformation formulas. By a modular-type transformation, we mean a relation gov-
erned by the transformation z → −1/z. By a change of variable, one can recast such a
relation into an equivalent one governed by the transformation α→ 1/α. Ramanujan’s
method, given in a slightly different but an equivalent form in [41], is as follows.

Suppose we have an integral or a series involving a positive parameter α, denoted
by F (α), and further suppose that F (α) can be represented by an integral of the form

F (α) =

∫ ∞
0

h(t) cos

(
1

2
t logα

)
dt. (1.1)

Now suppose that β is another positive parameter such that αβ = 1. Replacing α
by β in (1.1) leaves the integral on the right-hand side invariant, and we thus get
the modular-type transformation F (α) = F (β). Thus, Ramanujan’s clever idea was
to obtain an integral representation of the type in (1.1) to obtain the transformation
F (α) = F (β). We can even start with any h (without knowing F ) as long as the
integral converges, evaluate it by some means, and then use it to obtain a modular-
type transformation.

The following beautiful example illustrating this method can be found on page 220
of Ramanujan’s Lost Notebook [42].
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Theorem 1.1. Define

λ(x) := ψ(x) +
1

2x
− log x, (1.2)

where

ψ(x) :=
Γ′(x)

Γ(x)
= −γ −

∞∑
m=0

(
1

m+ x
− 1

m+ 1

)
is the logarithmic derivative of the Gamma function and γ is Euler’s constant. Let the
Riemann ξ-function be defined by

ξ(s) := (s− 1)π−
1
2
sΓ(1 + 1

2
s)ζ(s),

and let

Ξ(t) := ξ(1
2

+ it) (1.3)

be the Riemann Ξ-function. If α and β are positive numbers such that αβ = 1, then

√
α

{
γ − log(2πα)

2α
+
∞∑
n=1

λ(nα)

}
=
√
β

{
γ − log(2πβ)

2β
+
∞∑
n=1

λ(nβ)

}

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(

1
2
t logα

)
1 + t2

dt. (1.4)

Ramanujan notes this identity to be ‘curious’. Observe that the only place in the
integral on the extreme right of (1.4) where α appears in the cosine term. Thus showing
that this integral equals either of the two expressions in the first equality in (1.4) is
sufficient for deriving the first equality.

Throughout this paper, α and β denote two positive numbers such that αβ = 1.
The region of validity of a modular-type transformation can be easily extended from
R+ to some region in the complex plane (including R+) by analytic continuation, so
we only concentrate on positive values of α (and hence of β).

Traditionally, one may obtain a transformation formula of the type F (α) = F (β)
via the Poisson summation formula, one version [8, p. 39], [43, p. 194] of which tells us
that if f is a non-negative, continuous, decreasing, and Riemann integrable function

on [0,∞) and if g(y) :=
√

2
π

∫∞
0
f(x) cos(xy) dx, then

√
α

(
1

2
f(0) +

∞∑
n=1

f
(√

2πnα
))

=
√
β

(
1

2
g(0) +

∞∑
n=1

g
(√

2πnβ
))

. (1.5)

However, as we shall see in this survey, Ramanujan’s above method is much more
general and applicable in many different situations. For example, one cannot use (1.5)
to prove the first equality in (1.4) because the function λ has a singularity at x = 0.
Thus, one has to appeal to a more general version of Poisson summation. We note here
one such version given by A.P. Guinand [20].
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Theorem 1.2. If f(x) can be represented as a Fourier integral, f(x) tends to zero as
x→∞, and xf

′
(x) belongs to Lp(0,∞), for some p, 1 < p ≤ 2, then

lim
N→∞

(
N∑
n=1

f(n)−
∫ N

0

f(t) dt

)
= lim

N→∞

(
N∑
n=1

g(n)−
∫ N

0

g(t) dt

)
,

where

g(x) = 2

∫ →∞
0

f(t) cos(2πxt) dt.

Guinand [21, 22] rediscovered Ramanujan’s transformation formula in (1.4) and men-
tioned in [21] that it can be proved using Theorem 1.2. However, it does not lead one to
the integral involving the Riemann Ξ-function in (1.4). Another advantage of Ramanu-
jan’s method is that, using Fourier’s integral theorem, one can obtain new expressions
for ζ(s) and Ξ(t) (this is discussed in [41]). For more on the history of Theorem 1.1,
the reader is referred to [2], [5]. Its proofs can be found in [2, 5, 10, 11].

Only recently we were able to find that N.S. Koshlyakov (also spelled N.S. Koshli-
akov) [33, Equation (6)], [34, Equations (21), (27)] had also rediscovered Ramanujan’s
transformation formula, albeit in a different form involving a function Ω(x) defined by

Ω(x) := 2
∞∑
n=1

d(n)
(
K0

(
4πe

iπ
4
√
nx
)

+K0

(
4πe−

iπ
4
√
nx
))

,

where Kz(x) denotes the modified Bessel function of order z. The function Ω(x) obeys
the identity [33, Equation (4)], [34, Equation (22)] 1

Ω(x) = −γ − 1

2
log x− 1

4πx
+
x

π

∞∑
n=1

d(n)

x2 + n2
, (1.6)

where d(n) denotes the number of divisors of n. This can be easily proved using the
following identity 2 from Ramanujan’s Lost Notebook [42, p. 254] (see also [6, Equation
(4.1)]):

2
∞∑
n=1

d(n)K0(4π
√
an) =

a

π2

∞∑
n=1

d(n) log(a/n)

a2 − n2
− γ

2
−
(

1

4
+

1

4π2a

)
log a− log 2π

2π2a
.

To see this, replace a by ae
iπ
2 and ae−

iπ
2 in the above identity, and then add the

resulting two identities. Koshlyakov extensively studied the function Ω(x) [28], [32]
and its generalization [29]. We now state Koshlyakov’s version of (1.4).

√
α

∫ ∞
0

e−2παx

(
Ω(x) +

1

4πx

)
dx =

√
β

∫ ∞
0

e−2πβx

(
Ω(x) +

1

4πx

)
dx

=
1

4π

∫ ∞
0

∣∣∣∣ζ (1

2
+
it

2

)∣∣∣∣2 cos
(

1
2
t logα

)
cosh 1

2
πt

dt. (1.7)

1In both these references, the term − 1
2 log x is incorrectly given as log x.

2G.Voronoi [45, Equations (5), (6)] was the first mathematician to discover this identity though he
did not use the notation K0(x) but instead, an equivalent integral representation.
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To see the equivalence of (1.7) and (1.4), observe first that the integrand on the extreme
right of (1.7) is − 1

2π
times the integrand on the extreme right of (1.4). This can be

seen from the fact [10, Equation 5.3] that

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Γ

(
1 + it

4

)
Γ

(
1− it

4

)
=

32π2

(1 + t2) cosh 1
2
πt
,

and by writing ζ
(

1+it
2

)
in terms of Ξ

(
t
2

)
. Next we show that∫ ∞

0

e−2παx

(
Ω(x) +

1

4πx

)
dx = − 1

2π

{
γ − log(2πα)

2α
+
∞∑
n=1

λ(nα)

}
, (1.8)

where λ(x) is defined in (1.2). We use for this purpose the representation for Ω(x)
given in (1.6). Note that [19, p. 571, Formula 4.331.1], for Re µ > 0,∫ ∞

0

e−µx log x dx = − 1

µ
(γ + log µ).

This gives ∫ ∞
0

e−2παx

(
−γ − 1

2
log x

)
dx = − 1

2π

(
γ − log 2πα

2α

)
. (1.9)

Now ∫ ∞
0

e−2παxx

π

∞∑
n=1

d(n)

x2 + n2
dx =

∞∑
m=1

∫ ∞
0

x

π
e−2παx

∞∑
k=1

1

x2 +m2k2
dx, (1.10)

where the interchange of the order of summation and integration is justified by absolute
convergence. Since [9, p. 191] for t 6= 0,

2t
∞∑
k=1

1

t2 + 4k2π2
=

1

et − 1
− 1

t
+

1

2
,

we can rewrite the integral in (1.10) as∫ ∞
0

e−2παxx

π

∞∑
n=1

d(n)

x2 + n2
dx =

∞∑
m=1

∫ ∞
0

e−2παx

(
1

m(e2πx/m − 1)
− 1

2πx
+

1

2m

)
dx

=
∞∑
m=1

∫ ∞
0

e−2παmt

(
1

e2πt − 1
− 1

2πt
+

1

2

)
dt, (1.11)

where in the last step, we made a change of variable x = mt. Now using the fact [42,
p. 219], [2, p. 286] that∫ ∞

0

e−2πnx

(
1

e2πx − 1
− 1

2πx

)
dx =

1

2π
(log n− ψ(1 + n)) ,

we obtain∫ ∞
0

e−2παmt

(
1

e2πt − 1
− 1

2πt
+

1

2

)
dt =

1

2π
(logmα− ψ(1 +mα)) +

1

4πmα
.
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This, along with (1.11) and the fact that ψ(x+ 1) = ψ(x) + 1/x, gives∫ ∞
0

e−2παxx

π

∞∑
n=1

d(n)

x2 + n2
dx = − 1

2π

∞∑
m=1

(
ψ(mα) +

1

2mα
− logmα

)
. (1.12)

Finally, (1.6), (1.9) and (1.12) give (1.8). This shows the equivalence of (1.4) and (1.7).
If we now consider a general integral invariant under α → β, of which the integral

on the extreme right of (1.4) is a special case, we can obtain in general a modular-
type transformation F (α) = F (β). This is done in Section 2. The representation of
the latter integral in terms of another integral, obtained in [41, Equation (22)], is as
follows: For α > 0,∫ ∞

0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)(
Ξ

(
1

2
t

))2 cos
(

1
2
t logα

)
1 + t2

dt

= π3/2

∫ ∞
0

(
1

ex
√
α − 1

− 1

x
√
α

)(
1

ex/
√
α − 1

− 1

x/
√
α

)
dx. (1.13)

Compared to Ramanujan’s other papers, the paper [41] has certainly not received the
attention that it deserves. However, G.H. Hardy definitely understood the importance
of this paper so as to include it in the list of Ramanujan’s most important papers in an
article that he wrote for the Journal of Indian Mathematical Society [26]. Hardy says,

“It is difficult at present to estimate the importance of these results. The unsolved
problems concerning the zeros of ζ(s) or of Ξ(t) are among the most obscure and dif-
ficult in the whole range of Pure Mathematics. Any new formulae involving ζ(s) or
Ξ(t) are of very great interest, because of the possibility that they may throw light on
some of these outstanding questions. It is, as I have shown in a short note attached to
Mr. Ramanujan’s paper, certainly possible to apply his formulae in this direction; but
the results which can be deduced from them do not at present go beyond those obtained
already by Mr. Littlewood and myself in other ways. But I should not be at all surprised
if still more important applications were to be made of Mr. Ramanujan’s formulae in
the future”.

The short note which Hardy alludes to in the quoted paragraph is [25]. In it, he says,

“The properties of this integral resemble those of one which Mr. Littlewood and I
have used, in a paper to be published shortly in the Acta Mathematica, to prove that 3∫ T

−T

∣∣∣∣ζ (1

2
+ ti

)∣∣∣∣2 dt ∼ 2

π
T log T (1.14)

(as T →∞)” .
The integral in the above quote of Hardy is the one on the left-hand side of (1.13).
In this survey, we discuss the two integrals involving the Riemann Ξ-function that

Ramanujan evaluates in his paper [41]. This will lead us to consider two different types
of general integrals which yield modular-type transformation formulas.

3Note that in (1.14), there should not be π in the denominator on the right-hand side.
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The first of the two integrals discussed in Section 2 gives transformation formulas of
the type F (α) = F (β). The second one discussed in Section 3 gives those of the type
F (z, α) = F (z, β). There is a third type, first found in [14], that gives transformations
of the type F (z, α) = F (iz, β), where i =

√
−1. This is discussed in Section 4.

Section 5 is devoted to briefly discussing some extensions of these ideas to Dirichlet L-
functions and L-functions associated to primitive Hecke forms. In Section 6, we discuss
conjectured modular-type transformation formulas which do not seem to result from
integrals involving the Riemann Ξ-function or their other analogues. We conclude the
paper with some questions and other possible developments mentioned in Section 7.

2. Integral yielding the transformation F (α) = F (β)

In [41], Ramanujan evaluates

1

4π3/2

∫ ∞
0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2

)
cos

(
1

2
t logα

)
dt (2.1)

in terms of another integral. The resulting modular-type transformation that is ob-
tained is

α−
1
2 − 4πα−

3
2

∫ ∞
0

xe−
πx2

α2

e2πx − 1
dx = β−

1
2 − 4πβ−

3
2

∫ ∞
0

xe
−πx

2

β2

e2πx − 1
dx. (2.2)

Now the general integral that gives rise to transformation formulas of the type F (α) =
F (β) (for some F ) can be easily conceived from the above example. Let f(t) =
φ(it)φ(−it), where φ(t) is analytic for real values of t. Then the integral∫ ∞

0

f

(
t

2

)
Ξ

(
t

2

)
cos

(
1

2
t logα

)
dt (2.3)

generates the transformation F (α) = F (β), provided it converges. (We take f
(
t
2

)
instead of f(t) just to simplify the appearance of the formulas). We also want the
evaluation F (α) of the above integral to be “sufficiently interesting”. The idea is very
simple. Since f and Ξ are even functions of t (of which, the latter follows from the
functional equation of ζ(s)), we can convert the integral in (2.3) into an equivalent
complex integral over the line Re s = 1/2. See for example [44, p. 35]. This integral
can then be evaluated by appropriately shifting the line of integration, and then using
Cauchy’s residue theorem and the theory of Mellin transforms. As will be listed at the
end, a number of well-known transformations that fall into the category F (α) = F (β)
can be derived by evaluating the integral in (2.3) for some specific choices of f(t).

In conjunction with these transformation formulas, the works of Hardy, Koshlyakov,
and W.L. Ferrar must be mentioned. At the end of his short note [25], Hardy gave the
following example without proof:

√
α

∫ ∞
0

(ψ(x+ 1)− log x) e−πα
2x2 dx =

√
β

∫ ∞
0

(ψ(x+ 1)− log x) e−πβ
2x2 dx

= 2

∫ ∞
0

Ξ(t/2)

1 + t2
cos
(

1
2
t logα

)
cosh 1

2
πt

dt.
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This compact form of Hardy’s identity was in fact given by Koshlyakov [34, Equations
(14), (20)], who worked extensively in this area. Koshlyakov is best known for his
formula [28] involving the divisor function d(n) and the modified Bessel function K0(x)
given below:

√
α

(
γ − log(4πα)

α
− 4

∞∑
n=1

d(n)K0(2πnα)

)
=
√
β

(
γ − log(4πβ)

β
− 4

∞∑
n=1

d(n)K0(2πnβ)

)

= −32

π

∫ ∞
0

(
Ξ
(
t
2

))2
cos
(

1
2
t logα

)
dt

(1 + t2)2
.

However, a lot of his work has not received the recognition it deserves, partly be-
cause some of his articles are difficult to obtain. For example, his long manuscript
[35] (written while he was in a Siberian labor camp, and under the patronymic name
‘N.S. Sergeev’) is not known to many. The history of how this manuscript came into
light is very interesting [7]. The last chapter of this manuscript contains beautiful
generalizations of some of Ramanujan’s formulas in [41], in particular, of (2.1). Un-
fortunately, the second manuscript that he wrote from the labor camp [7], namely,
‘Issledovanie nekotorykh voprosov analyticheskoi teorii rational’nogo i kvadratichnogo
polya (A study of some questions in the analytic theory of rational and quadratic fields)’,
was lost in transit (see [38]).

Several of Koshlyakov’s papers [30, 34, 35] give examples of transformations of the
type F (α) = F (β). He seems to be the only mathematician who generalized Ramanu-
jan’s method from the first three sections in [41] to obtain new transformation formulas
and expressions for the Riemann zeta function [34]. For more details on Koshlyakov’s
work, see [7, 13].

W.L. Ferrar [18] gave a general method for obtaining solutions of F (α) = F (β), and
mentioned that it will always work as long as we are working with a Dirichlet series
having a functional equation, and then explicitly worked out an example involving the
modified Bessel function K0(x) which is given below:

√
α

(
−γ + log 16π + 2 logα

α
− 2

∞∑
n=1

(
e
πα2n2

2 K0

(
πα2n2

2

)
− 1

nα

))

=
√
β

(
−γ + log 16π + 2 log β

β
− 2

∞∑
n=1

(
e
πβ2n2

2 K0

(
πβ2n2

2

)
− 1

nβ

))

= 4π−
3
2

∫ ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ

(
t

2

)
cos
(

1
2
t logα

)
1 + t2

dt.

His method is similar to the one discussed above (in the lines following (2.3)), i.e., it
uses the functional equation of ζ(s) and the residue theorem. See [10] for more on the
formulas of Hardy, Koshlyakov and Ferrar.

3. Integral yielding the transformation F (z, α) = F (z, β)

To the best of our knowledge, the last two sections in [41], namely Sections 4 and 5,
have never been carefully examined. As we have seen, analogues of the results in the
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first three sections from [41] that we have addressed so far have been found by Hardy,
Koshlyakov, Ferrar and possibly others. However, the following integral of Ramanujan
from [41] has not attracted the attention of researchers. He considered, for n real, the
integral∫ ∞

0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cosnt

(z + 1)2 + t2
dt, (3.1)

which contains a new variable z. He then evaluated this integral, in terms of another
integral, in various regions of the complex plane, namely, in Re z > 1, in −1 < Re
z < 1 and in −3 < Re z < −1, and further said ‘and so on’, indicating that one can
always evaluate it in the strip −(2m+ 1) < Re z < −(2m− 1) for m ≥ 0. The integral
on the left-hand side of (1.13) is a special case, when z = 0, of the above integral.
Note that instead of using Theorem 1.2 to obtain the transformation in (1.4), as was
done by Guinand, we can simply use (1.13) to show that the integral on the right-hand
side is equal to each of the expressions in the first equality of (1.4) (see [5]). But with
Ramanujan’s evaluations of (3.1), we can do the same for a general z. This leads to
modular-type transformations involving the Hurwitz zeta function, out of which the
following one4 generalizes (1.4) (see [11]).

Theorem 3.1. Let −1 < Re z < 1. Define ϕ(z, x) by

ϕ(z, x) := ζ(z + 1, x)− x−z

z
− 1

2
x−z−1,

where ζ(z, x) denotes the Hurwitz zeta function. Then if α and β are any positive
numbers such that αβ = 1,

α
z+1
2

(
∞∑
n=1

ϕ(z, nα)− ζ(z + 1)

2αz+1
− ζ(z)

αz

)
= β

z+1
2

(
∞∑
n=1

ϕ(z, nβ)− ζ(z + 1)

2βz+1
− ζ(z)

βz

)

=
8(4π)

z−3
2

Γ(z + 1)

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos
(

1
2
t logα

)
(z + 1)2 + t2

dt.

(3.2)

It is now clear that the general integral∫ ∞
0

f

(
z,
t

2

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos

(
1

2
t logα

)
dt, (3.3)

where f(z, t) = φ(z, it)φ(z,−it), φ is analytic in z in some complex domain and analytic
in t as a function of a real variable, gives transformation of the type F (z, α) = F (z, β).
We can again convert the above integral into a complex integral over the line Re
s = 1

2
, this time using the fact that Ξ

(
−t± iz

2

)
= Ξ

(
t∓ iz

2

)
(which follows from the

functional equation of ζ(s)), shifting the line of integration appropriately and then

4Ramanujan’s identity [41, Equation (20)] would give a modular-type transformation between two
integrals, equivalent to (3.2), after letting n = 1

2 logα. Same is the case with Equations (19) and (21)
in [41] which would lead to entries 1 and 2 in Table 2 below. However, there are errors in each of the
Equations (19) and (21). See [11] for the corrected versions.
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using the residue theorem and theory of Mellin transforms. See [12]. Thus, provided
the integral converges, we can evaluate (3.3) for specific choices of f .

Besides the one in (3.1), a new integral of the type in (3.3) is treated in [12]. It gives
the Ramanujan-Guinand formula [42, p. 253]5, [23], [12], given below, as a consequence
of its invariance under α→ β.

Theorem 3.2. Let Kν(s), γ be defined as before and let σk(n) =
∑

d|n d
k. Let −1 <

Re z < 1. Then if α and β are positive numbers such that αβ = 1, we have

√
α

(
α
z
2
−1π

−z
2 Γ
(z

2

)
ζ(z) + α−

z
2
−1π

z
2 Γ

(
−z
2

)
ζ(−z)− 4

∞∑
n=1

σ−z(n)nz/2K z
2

(2nπα)

)

=
√
β

(
β
z
2
−1π

−z
2 Γ
(z

2

)
ζ(z) + β−

z
2
−1π

z
2 Γ

(
−z
2

)
ζ(−z)− 4

∞∑
n=1

σ−z(n)nz/2K z
2

(2nπβ)

)

= −32

π

∫ ∞
0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos
(

1
2
t logα

)
(t2 + (z + 1)2)(t2 + (z − 1)2)

dt.

Some more integrals of this type and new modular-type transformations are obtained
in [17]. For example, below is one such integral along with the resulting transformation,
which generalizes another formula of Koshlyakov involving d(n) and K0(x) (see Entry
2 in Table 1).

Theorem 3.3. Let −1 < Re z < 1. Let γ,Kν(z) be defined as before. Define the
function Φ(x, z) by

Φ(x, z) := x
z
2 Γ(1 + z)

{
x−z

−z
ζ(1− z) + (2γ + log x+ ψ(1 + z))ζ(1 + z) + ζ ′(1 + z)

+
∞∑
n=1

σ−z(n)

(
nz

(n+ x)z+1
− 1

n

)}
, (3.4)

Then for α, β > 0 such that αβ = 1,

√
α

∫ ∞
0

K z
2
(2παx)Φ(x, z) dx =

√
β

∫ ∞
0

K z
2
(2πβx)Φ(x, z) dx

=
2z−2

π2

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Γ

(
z + 1 + it

4

)
× Γ

(
z + 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos
(

1
2
t logα

)
(z + 1)2 + t2

dt. (3.5)

5The versions of Ramanujan as well as Guinand give only the modular-type transformation. They
do not give the integral involving product of two Ξ-functions.
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4. Integral yielding the transformation F (z, α) = F (iz, β)

The general theta transformation formula [40], [46, p. 475], [4, Theorem 1.1] is given
by

√
α

(
e−

z2

8

2α
− e

z2

8

∞∑
n=1

e−πα
2n2

cos(
√
παnz)

)
=
√
β

(
e
z2

8

2β
− e−

z2

8

∞∑
n=1

e−πβ
2n2

cos(i
√
πβnz)

)
.

(4.1)

It is of the form F (z, α) = F (iz, β). When z = 0, it gives the famous theta transfor-
mation [39, p. 420], [44, Equation (2.16.2)]

√
α

(
1

2α
−
∞∑
n=1

e−πα
2n2

)
=
√
β

(
1

2β
−
∞∑
n=1

e−πβ
2n2

)
.

Since the latter can be obtained as a consequence of the integral evaluation [24, Equa-
tion (2)], [44, p. 36]∫ ∞

0

Ξ(t)

t2 + 1
4

cosxt dt =
π

2

(
e
x
2 − 2e−

x
2

∞∑
n=1

e−πn
2e−2x

)
, (4.2)

the natural question that comes to our mind is whether there exists an integral gener-
alizing the one in (4.2), and which gives rise to (4.1). Such an integral was found in
[14] and is given by

1

π

∫ ∞
0

Ξ(t/2)

1 + t2
∇
(
α, z,

1 + it

2

)
dt,

where

∇(x, z, s) := ρ(x, z, s) + ρ(x, z, 1− s),
with

ρ(x, z, s) := x
1
2
−se−

z2

8 1F1

(
1− s

2
;
1

2
;
z2

4

)
,

where 1F1 denotes Kummer’s confluent hypergeometric function. The general form of
an integral that generates the transformation F (z, α) = F (iz, β) is∫ ∞

0

f

(
t

2

)
Ξ

(
t

2

)
∇
(
α, z,

1 + it

2

)
dt, (4.3)

where f(t) is of the form f(t) = φ(it)φ(−it) and φ is analytic in t as a function of
a real variable. The reason this integral is invariant under α → β and z → iz is
because ∇

(
β, iz, 1+it

2

)
= ∇

(
α, z, 1+it

2

)
, which is a simple consequence of Kummer’s

first transformation for the hypergeometric function [1, p. 191, Equation (4.1.11)]

1F1(a; c; z) = ez1F1(c− a; c;−z).

Note that ∇
(
α, 0, 1+it

2

)
= 2 cos

(
1
2
t logα

)
. Evaluating this integral with f

(
t
2

)
=

((1 + t2) cosh 1
2
πt)−1 and f

(
t
2

)
= Γ

(
1+it

4

)
Γ
(

1−it
4

)
, respectively, results in one-variable
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generalizations of the formulas of Hardy and Ferrar [14] mentioned in Section 2 (see
Entries 1 and 2 in Table 3). A companion integral∫ ∞

0

f

(
t

2

)
Ξ

(
t

2

)
∆

(
α, z,

1 + it

2

)
dt, (4.4)

where

∆(x, z, s) := ω(x, z, s) + ω(x, z, 1− s),
with

ω(x, z, s) := x
1
2
−se−

z2

8 1F1

(
1− s

2
;
3

2
;
z2

4

)
,

also gives the transformation F (z, α) = F (iz, β). The same idea based on representing
the general integral in terms of a complex integral followed by residue calculus and
Mellin transforms can be used to evaluate both the integrals here. See [14].

A one-variable generalization of (2.1), and hence of (2.2), is given in [15, Theorem
1.6], which uses (4.4) with f(t) = Γ

(−1
4

+ it
2

)
Γ
(−1

4
− it

2

)
. It gives the following inter-

esting modular-type transformation involving the error function erf(z) := 2√
π

∫ z
0
e−t

2
dt

and the imaginary error function erfi(z) := 2√
π

∫ z
0
et

2
dt.

√
αe

z2

8

(
erf
(z

2

)
− 4

∫ ∞
0

e−πα
2x2 sin(

√
παxz)

e2πx − 1
dx

)

=
√
βe
−z2
8

(
erfi
(z

2

)
− 4

∫ ∞
0

e−πβ
2x2 sinh(

√
πβxz)

e2πx − 1
dx

)

=
z

8π2

∫ ∞
0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)
Ξ

(
t

2

)
∆

(
α, z,

1 + it

2

)
dt. (4.5)

However, another generalization of (2.1) derived in [14, Theorem 1.5] fails to give
a modular-type transformation, as it is not invariant under α → β and z → iz.
In view of Hardy’s comment [25] that (2.1) has properties similar to those of one
that he used to show that there are infinitely many zeros of ζ(s) on the critical line,
it may be interesting to see what information its generalizations, namely (4.3) with
f(t) = Γ

(−1
4

+ it
2

)
Γ
(−1

4
− it

2

)
and the one on the extreme right of (4.5), can provide.

5. Extensions to Dirichlet L-functions and L-functions associated
with primitive Hecke forms

In all of the transformations we have discussed so far, we focused on ζ(s), Ξ(t)
and the functional equation of ζ(s). However, we can proceed similarly with Dirichlet
L-functions and L-functions associated with primitive Hecke forms. In the case of
primitive Dirichlet characters, the natural analogue of (3.3) is∫ ∞

0

f

(
z,
t

2

)
Ξ

(
t+ iz

2
, χ

)
Ξ

(
t− iz

2
, χ

)
cos
(

1
2
t logα

)
dt,
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where

f(z, t) =
φ(z, it)φ(z,−it) + φ(−z, it)φ(−z,−it)

2
,

φ is analytic in t as a function of a real variable and analytic in z in some complex
domain, and Ξ(t, χ) is the Ξ-function associated to a primitive Dirichlet characters
defined as follows. Let

b =

{
0, χ(−1) = 1,

1, χ(−1) = −1.

Then

Ξ(t, χ) := ξ

(
1

2
+ it, χ

)
,

where

ξ(s, χ) :=

(
π

q

)−(s+b)/2

Γ

(
s+ b

2

)
L(s, χ).

Here L(s, χ) is the Dirichlet L-function associated to primitive Dirichlet character χ.
Note that simultaneously changing z to −z and χ to χ leaves the integral invariant. It
is also invariant if we replace α by β. So it generates transformations of the type

F (z, α, χ) = F (−z, β, χ) = F (−z, α, χ) = F (z, β, χ).

The character analogues of (3.2), and of the Ramanujan-Guinand formula are obtained
in [13]. The generalizations of some of the formulas of the type F (α) = F (β) to rational
and number fields have been found by Koshlyakov [36, Equation (30.4)], [37, Equation
(34.1)].

6. Conjectured modular-type transformation formulas

While in India, Ramanujan found an interesting identity, a modular-type trans-
formation, involving infinite series of the Möbius function µ(n) [3, p. 470]. Hardy
and Littlewood found a correct version of this identity in [27], actually a conjecture,
rephrased below in an equivalent form.

Assume that the series
∑

ρ

(
Γ
(

1−ρ
2

)
/ζ
′
(ρ)
)
aρ converges, where ρ runs through the

non-trivial zeros of ζ(s) and a denotes a positive real number, and that the non-trivial
zeros of ζ(s) are simple. Then

√
α
∞∑
n=1

µ(n)

n
e−πα

2/n2 − 1

4
√
πα

∑
ρ

Γ
(

1−ρ
2

)
ζ ′(ρ)

π
ρ
2αρ

=
√
β
∞∑
n=1

µ(n)

n
e−πβ

2/n2 − 1

4
√
πβ

∑
ρ

Γ
(

1−ρ
2

)
ζ ′(ρ)

π
ρ
2βρ. (6.1)

This conjectured identity is of the type F (α) = F (β). An integral generating the
above transformation, similar to (2.3), does not exist, for if it did, it would have to
necessarily contain Ξ(t) in the denominator (owing to the Dirichlet series associated
to µ(n) being

∑∞
n=1 µ(n)n−s = 1/ζ(s) for Re s > 1), which is not possible since the
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integral is then divergent. Recently, a generalization of (6.1) of the form F (z, α) =
F (iz, β) was obtained in [14]. Further, character analogues of this generalization [15]
as well as a generalization for L-functions associated to primitive Hecke forms [16] were
recently obtained.

7. Questions and future possible developments

The integral in (2.3) contains one Riemann Ξ-function where as the one in (3.3)
contains a product of two Riemann Ξ-functions. Regarding the special case of the latter
when z = 0 and f(t) = Γ

(−1
4

+ it
2

)
Γ
(−1

4
− it

2

)
, we have seen Hardy’s remark in (1.14)

about it being possibly useful in proving an asymptotic formula for the second moment
of ζ

(
1
2

+ it
)
. It might be interesting to then consider an integral consisting of a product

of more than two Riemann Ξ-functions, possibly involving more variables (other than
t and z) in order to study higher moments, in the special case when the variables are
all 0. Plus, one could possibly get more general modular-type transformations, and via
Fourier’s integral theorem, new expressions for Ξ(t), and hence for ζ(s).

We now conclude this paper with 3 tables listing some further modular-type transfor-
mations of the form F (α) = F (β), F (z, α) = F (z, β) and F (z, α) = F (iz, β). In each
table, only one of the two expressions in a modular-type transformation is given along
with the specific f in the general form of the integral generating this transformation.
See (2.3), (3.3), (4.3) and (4.4). Apart from the definitions

X(x) :=
π2

6
+ γ2 − 2γ1 +

∞∑
n=1

d(n)

(
1

x+ n
− 1

n

)
,

Λ(z, x) := ζ(z + 1, x)− x−z

z
− 1

2
x−z−1 − (z + 1)x−z−2

12
,

the notations employed are either previously given or are standard enough so as to not
have them stated here again.
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Table 1. Formulas of the type F (α) = F (β) =
∫∞

0
f
(
t
2

)
Ξ
(
t
2

)
cos
(

1
2
t logα

)
dt.

No. f
(
t
2

)
F (α) Mathematician

1.
1

64π5

∣∣Γ2
(−1+it

4

)∣∣2
×Ξ

(
t
2

)
cosh 1

2
πt

√
α3
∫∞

0
xJ0(2παx)

(
Ω(x) + 1

4πx

)
dx Koshlyakov [31]1

2. 8
(1+t2)2 cosh 1

2
πt

Ξ
(
t
2

) √
α
∫∞

0
K0(2παx)

×
(
X(x) + 2γ log x+ 1

2
log2 x

)
dx

Koshlyakov [34]

1The transformation formula in this identity is correct. See [32] for a proof. However, the integral
involving the Riemann Ξ-function appears to be incorrect.
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Table 2. Formulas of the type
F (z, α) = F (z, β) =

∫∞
0
f
(
z, t

2

)
Ξ
(
t+iz

2

)
Ξ
(
t−iz

2

)
cos
(

1
2
t logα

)
dt.

No. f
(
z, t

2

)
F (z, α) Valid for Mathematician

1.
8(4π)

z−3
2 ((z+1)2+t2)−1

Γ(z+1)

×Γ
(
z−1+it

4

)
Γ
(
z−1−it

4

) α−
(z+1)

2

∑∞
k=1 ζ

(
z + 1, 1 + k

α

)
Re z > 1

Ramanujan [41],
Dixit [11]

2.
8(4π)

z−3
2 ((z+1)2+t2)−1

Γ(z+1)

×Γ
(
z−1+it

4

)
Γ
(
z−1−it

4

) α
z+1
2

(∑∞
n=1 Λ(z, nα)

− ζ(z)
αz

+ ζ(z+1)
2

+ (z+1)ζ(z+2)
12αz+2

) −3 < Re z < −1
Ramanujan [41],
Dixit [12]

Table 3. Formulas of the type
F (z, α) = F (iz, β) =

∫∞
0
f
(
t
2

)
Ξ
(
t
2

)
g
(
α, z, 1+it

2

)
dt; g = ∇ or ∆.

No. f
(
t
2

)
g F (z, α) Mathematician

1. 1
(1+t2) cosh 1

2
πt

∇
√
αe

z2

8

∫∞
0

(ψ(x+ 1)− log x)

×e−πα2x2 cos (
√
παxz) dx

Dixit [14]

2. −1
2
√
π(1+t2)

∣∣Γ (1+it
4

)∣∣2 ∇ √
αe

z2

8

∫∞
0
e−

α2t2

4π cos
(
αtz
2
√
π

)
×
(∑∞

n=1K0(nt)− π
2t

)
dt

Dixit [14]
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