THE LAPLACE TRANSFORM OF THE PSI FUNCTION

ATUL DIXIT

ABSTRACT. An expression for the Laplace transform of the Psi function

L(a) := /000 e (t+1)dt

is derived using two different methods. It is then applied to evaluate the definite
integral
4 [ 2 dx
M(a) == 7/ 5 2 — )
T Jo 2+ 1n"(2e?coszx)
for a > In2 and resolve a conjecture posed by Olivier Oloa.

1. INTRODUCTION

Let ¢ (x) denote the logarithmic derivative of the Gamma function I'(x), i.e.,
INED)
= ) 1.1
¥(z) = Fos (11)
The Psi function has been studied extensively and still continues to receive attention

from many mathematicians. Many of its properties are listed in [6, pp. 952-955].
Surprisingly, an explicit formula for the Laplace transform of the Psi function, i.e.,

L(a) := /000 e "t +1)dt, (1.2)

is absent from the literature. Recently in [5], the nature of the Laplace transform was
studied by demonstrating the relationship between L(a) and the Glasser-Manna-Oloa
integral

4 [ 2% dw
M(a) = — , 1.3
(a) T /0 22 + In*(2e~ cos 1) (13)

namely that, for a > In 2,
M(a) = L{a) + . (1.4)

where 7 is the Euler’s constant. In [1], T. Amdeberhan, O. Espinosa and V. H. Moll
obtained certain analytic expressions for M (a) in the complementary range 0 < a <
In2. Our goal here is to derive an explicit expression of L(a) for a > 0, in terms of
elementary functions and a certain simple infinite series which cannot be evaluated in
terms of elementary functions. We give two different proofs, the second of which is
shorter. However, it makes use of a formula (Equation 2.31) in [1], viz., Equation (3.1)
in our paper, which requires considerable work for its derivation. Also, our first proof
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is self-contained and elementary. We then use our expression for the Laplace transform
of the Psi function to evaluate M (a) for a > In 2 and thereby resolve a conjecture posed
by Olivier Oloa in [8]. Our main theorem can be stated as follows:

Theorem 1.1. Let a > 0. If ¢(x) is defined as in (1.1), then

o0 1 1 s > Inn
L(a) = it +1)dt = —— — = +1)In [ = 2 i
(a) /0 e Yt +1) <€a_1 a+>n(a)+ aza2_{_4n27r2

n=1

)2 o

2. LAPLACE TRANSFORM OF PSI FUNCTION: FIRST PROOF

First, from [2, p. 259, formula 6.3.18] for |arg z| < 7, as z — oo,

1 1 1 1
~lnz— — — _ . 2.1
V) Iz = on = ot o0 T amaae T (2.1)

We now state a lemma! which will be subsequently used in the proof. The integral
involved in the lemma exists because of (2.1). This integral gives the motivation for
decomposing L(a) into the two integrals mentioned in Equation (2.9) below. This
integral evaluation is implicit in the work of A.P. Guinand on a certain transformation
formula involving the Psi function (see the footnote on the last page in [7]), but he
neither proves it nor explicitly states it in [7].

Lemma 2.1.

/OOO (¢<t+1)—2(t1+1)—1nt) dt:%InZW. (2.2)

Proof. Let I denote the integral on the left-hand side. Then,

*d etF(t—I—l))
I = — | ln———2 | dt
/0 di (n NS
¢ ¢
= lim lnw—limlner(t—i_l)

tmoo I+ 1 =0 /1

. eT(t+1) . , 1
—In (}EEO W) T Qgr(l)e D(t+ 1)) —lim¢In¢ — lim = In(t + 1)
e'T(t+1)
=In lim ————.
t—co /T + 1
Now Stirling’s formula [6, p. 945, formula 8.327] tells us that,
[(2) ~ 2272 *V/2m, (2.4)

as |z| — oo and |arg z| < m — §, where 0 < 0 < 7. Hence, employing (2.4), we find
that .

eT(t+1) (1+ 1> V2

't +1 e

t
IThe author is indebted to M. L. Glasser for the proof of this lemma. The author’s original proof
is significantly longer than that given by Glasser.

(2.3)

) (2.5)
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so that ' )
e'l'(t+1
lim ———— = V2. 2.6
tirono i/t + 1 T ( )
Thus from (2.3) and (2.6), we conclude that
I = %m o7, (2.7)
U

Now we begin with the proof. Without mentioning explicitly, throughout in this paper,
we make use of the fact that

mx+m_¢@y+% (2.8)

Using (2.1), we can decompose the Laplace transform of the Psi function into two
integrals
e} [e.e] 1
“y(t 1dt:/ et +1) - —Int | dt
| e na= et (v - s =

o 1
U —— +1Int | dt
“f e (M+U+n>
= [1 + IQ, say, (29)

where (2.1) ensures that [; exists. The integral 5 is easy to evaluate. Using the
definition of the incomplete gamma function

oo —t
F(O,a)—/ ert, (2.10)

and the fact [6, p. 602, formula 4.331, no. 1] that,

o 1
/ e_“xlnxdm:—7+ na, for a > 0, (2.11)
0 a
we obtain
@ 1
I = %F(O,a) _xxme (2.12)
a

Now let I; = I1(a). Differentiating under the integral sign, we have
I(a) = /OOO —te™ (zp(t+ 1) — 2(t11) —lnt) dt
— /Oooe—at (tlnt+ 2(15:1) —t¢(t+1)> dt
:/Oooe“t (tlnt—l—%— 2(titl) —t (WH%)) dt

oo gat o0 1
= — dt — te~ )+ — —1Int ) dt
AT A (w<>+2t “>

a

- —%r(o, a) — I, say. (2.13)
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Now using a well-known formula [9, p. 248] in a slightly simplified form, we have for
Re z > 0,

1 o 1 1 1

o0 o0 1 1 1
I3 =— / te~ ( - =+ —) e dx dt
0 0 e =1 a2

> 1 1 1 >
:_/ ( ——+—>/ te” T gt dx
T
0 e =1 ax 2/ /)
1
oz

" 1) e (2.15)

Thus,

2) (x+a)?

The inversion of the order of integration above is easily justifiable. Next from [3,
p. 191], we have for x # 0,

= 1 1 1 11
—_——— = — —— 4+ . 2.16
Zx2+4n27r2 2z (ex—l z 2> (2.16)

n=1

Hence,

o0

* 2xdx 1
Iy = —
3 /0 (x+a)2nz:1x2+4n27r2
1 [ 2ax J
__az (x + a)?(2? + 4n?n2) v
2 2 2
:__Z/ a:+ax—|—a) (x +a)dx

(x + a)?(x? + 4n’7?)

1« / /°° 2?4 a? 4
2 e T
a4 x? + 4n27r2 o (74 a)?(z?+ 4n2m?) ’

n=

(2.17)

where the inversion of integration and summation can be easily seen via absolute
convergence. Now using Mathematica, we find that

/°° r°+a Jr
o (x+a)?(x?+4n2n?)
a* — 8a’n*m? + 32an*r? + 16n*n* 4+ 8a®n(1 + In(2)) + 32an’7? In(a/2nw) + 8a*nIn(nw/a)
4n(a® + 4n?n?)?
(a® + 4n*7?)? — 16a*n>7? + 8a®n(1 + In(27n/a)) + 32an37%(1 — In(27n/a))
4n(a? 4 4n?m?)? '

(2.18)
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Hence from (2.17) and (2.18), we deduce after some simplification that

1 o= 32an®7%(1 — In(27n/a)) + 8a®n(1 + In(27n/a)) — 16a*n7>
Is = 4a Z 2 2.2)2
a ‘= n(a? + 4n?n?)
=51+ 8+ S5+ 54— S5, (2.19)
where
2\ n?
S =38 s 2.20
1= om ; (a2 + 4n272)2’ (2.20)
In(27/a) <= 8a*n — 32an’r>
Sy = 2.21
? 4a ; n(a? 4 4n?m?)?’ (221)
1 <= (8a*n — 32an37?) Inn
Sy = — 2.22
7 da nz_:l n(a? + 4n?n2)2 (222)
S 1
Sp=20") ———— 2.23
4= <a ; (a2 + 4n2n2)2’ (2.23)
and
- n
S5 =dar® Yy s 2.24
Y 224)
Decomposing S; into partial fractions,
! — a® + dn>7? “— (a® + 4n>m?)?
- 1 — d 1
9Ny~ L
;::1 a? + 4dn’m? i a;::l da <a2 + 4n27r2)
- 1 d [ 1
=2 —_— — —_— 2.25
; a? + 4n?n? T (; a’ + 4n27r2> ’ (2.25)
and then using (2.16), we find after some simplification that
S — 2 coth(a/2) — a/ sinhZ(a/2)' (2.26)

8a

Similarly, breaking S, into partial fractions and then employing (2.16) and (2.26), we
find upon simplification that

_ In(27/a) a 4
52 = 4a (sinhz(a/Z) a 5) ‘ (227)

The sum Sj is similarly evaluated as
_ 44 a*+asinh(a) — 4 cosh(a)
B 8a? sinh?(a/2) ‘

S (2.28)
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Hence from (2.26), (2.27) and (2.28), and using the identities
sinh(2x) = 2sinh(z) cosh(x),
cosh(2z) = 1 + 2sinh?(z),
we find upon simplification that
—4 + 2acoth(a/2) + (=4 + a®/sinh?(a/2)) In(27 /a)

Si+Sa+Si= o

Thus, from (2.19), (2.22), (2.24) and (2.29),
—4 + 2acoth(a/2) + (—4 + a?/sinh*(a/2)) In(27 /a)
4a?
N i 2(a* + 4n*7?) Inn — dant?® — 16n*7%Inn
(a? 4 4n?n2)?
—4 + 2acoth(a/2) + (—4 + a?/sinh*(a/2)) In(27 /a)

4a?
o0

e Inn n?lnn
2 Y ol L — ) 2.30
- ; @2+ dnzrz " ; (@ + 4n27r2 g Z (a2 + 4n?n2)2 (2.30)

Thus from (2.13) and (2.30), we have
—4 + 2acoth(a/2) + (=4 + a®/sinh®(a/2)) In(27 /a)
4a?

(2.29)

I3 =

n=1

’

m@:—gmq@—

> Inn > an > n?lnn
-2 — 4 4x? S —— —— (2.31
; a? + 4n?n2 A ; (a® + 4n?m?)? +om ; (a® + 4n?m?)? ( )

Now using the fact [6, p. 953, formula 8.363, no. §]

V' (z) = ZO m (2.32)

to integrate the second to last series in (2.31), we deduce that

@ 1 -2 th(a/2))In(2
Ii(a) = — e_F(()’a) — ZIn(a) + (=2 + acoth(a/2)) In(27/a)
2 2 2a
_lilnntanl(a/er)_F 47r22 <¢ (1 )‘1‘1/1( ia))
T3 n 167 It
> n?lnn (tanfl (L) + %)
167° o 2.33
+ " n=1 16n37r3 +C’ ( )
where ¢ is a constant of integration. Thus after simplification, we obtain
@ 1 —2 th(a/2))In(2
Ii(a) = - %F(O,a) - éln(a) + (=2+aco (2a/ ))In(27/a)
a

1 ia Inn
+Z<w<1+%>+w(1__)>+2aza2—|—4n7r2 “ (2:34)
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Let a — 0 in (2.34). Taking the limit under the integral sign on the left-hand side of
(2.34), using Lebesgue’s dominated convergence theorem, and then using Lemma 2.1
and the fact that ¥ (1) = —,
1 I T . ((=2+acoth(a/2))In(27/a) 0l
§ln27r——§£1£r(1)(e F(O,a)+ln(a))+}b1ir(1)( o —5—1—0.
(2.35)

From [6, p. 951, formula 8.359, no. 1], we find that
['0,z) = —Ei(—x). (2.36)
Also, from [6, p. 935, formula 8.214, no. 1], for x < 0,

Ik

Bi(z) =y +In(—z) + ) _ 0 (2.37)

From (2.36) and (2.37), we readily get the asymptotic expansion for the incomplete
gamma function as

r | 2 2
— —~—1n S 2.
(0, z) ¥ T+ 1 + 12 , (2.38)
as r — 07. Hence,
lim (e*T'(0, a) 4 In(a)) = —7. (2.39)

a—0

Next, using the series expansion of cothz [6, p. 42, formula 1.411, no. 8],

x xd 2P

1
he= -+ -4+ ... f 2 2 2.4
cothz x—|—3 45+945 , for 0 < z® < 77, (2.40)

we deduce that
I (=2 + acoth(a/2)) In(27/a)
im

a—0 2a

= lim L —2+a g—l—g—a—:s—i- In n
=0 | 2a a 6 360 a

T S (AN

oo [\12 7 720 1T \12 T 720 na

0. (2.41)
Thus from (2.35), (2.39) and (2.41), we obtain

1
c=3 In 27. (2.42)
Now substituting (2.42) in (2.34), we have
e” 1 (=2 + acoth(a/2))In(27/a) s Inn
L(a) = — S1(0,0) — =1 ) P
1(&) 9 (07 a) 9 n(a) + 2a +2a ; a? 4 An272
1 1 1 1
— 1+ — 1—— —In 27. 2.4
ri(o(1rgs)ro(1-52)) +gmer (.13
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From (2.9), (2.12) and (2.43), we have
> —2 h(a/2))In(2 =~ 1
/ e-atp(t + 1)dt:< + acoth(a/2))In(27/a) +2az nn
0

2a — a? + 4n2m?

1 ia ia 1 2w
(e(rg) o (-5)) o (7)

1
_ythmae (2.44)
a
Finally (2.44) simplifies to (1.5). This completes the proof of Theorem 1.1.
3. SECOND PRrROOF
In [1, Cor. 2.2], Amdeberhan, Espinosa and Moll showed that
< +Ina  Ala—c) 1 a = Iny
Ty = -2 ERDYEA WIS LY R
/0 e Inl(t) ace® + a’c 2a  \2m * jzla2+47r2j2’ (3:1)

where a >0, ¢c=1—e"% A=1In27 + v and

A(z) = nh_)rgo (Z e In n> (3.2)

a generalization of Euler’s constant. Now

/ eatlnF(t+1)dt:/ e~ InT(t dt+/ e Intdt. (3.3)
0 0

0

and

oo o0 d o0
/ e "(t+1)dt = / p (e"InT(t+1)) dt + a/ e InT(t+1)dt
0 0 0

t—o00

= lim e~ “tlnf‘(t+1)—llme “tlnf(t+1)+a/ U InT(t + 1) dt. (3.4)
0
Now using (2.1), we find that

t+1
lim e~ InT(t + 1) = lim pE+l)

t—00 t—o00 aett

1 1 1 1
=—lim — [In(t+1) — —
atf?oet(n<+) 2 +1) 120412 )
1 In(t+1
1'mM

at—oo  edt

1, 1
T 2 it et(t+1)
— 0. (3.5)

Also,
%in(l) e Inl(t+1)=0. (3.6)
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Thus using (3.4), (3.5), (3.6), (3.3), (3.1) and (2.11), we find that

/ e‘“%(t%—l)dtza/ e “InT(t) dt+a/ e Intdt
0 0 0

y+Ina Ala—c) 1 a - Inj
—a |- — oA (o) +2 Y |~ (]
“ ( ace® * a?c 20 \27 + Z a? + 47?52 (v +1na)

Jj=1

[e.e]

v+lna Ala—c) 1 a Inj
_ __A(_) 2 e Ina). 3.7
e — 1 * ac 2 * a;(ﬁ—l—ébr?j? (v+1na) (3.7)

Now we show that
a - 47%j —1 ia ia
MY =i (0 ) T () e (L)) s
o) T nine (; @2 + dn2j? n") 2 (w (%)“D( 27r>) (38)
A series representation for the ¢ function [6, p. 952, formula 8.632, no. 1] gives
= 1 1
N § ’ S 3.9
v(z) ! = (erj j+1) (39)

Thus, using (3.9), we find that

ia ia - 1 1 - 1 1
¢<%)+¢<_%> :_27_;(j+m/27r_j+1> & <j—z'a/27r_j+1>

Jj=

— 9~ _9 _
! ; (j2+a2/47r2 j+ 1)

j=1
o Y
. ~ 47%j

where in the antepenultimate line, we have made use of the limit definition of ~,
v = lim il—lnn : (3.11)
n—oo \ & j

This proves (3.8). Finally using (3.8), we see that after a routine simplification, (3.7)
is equivalent to (1.5). This finishes the second proof.



10 ATUL DIXIT

4. OLOA’S CONJECTURE

In [8], Olivier Oloa conjectured the following:

Let a > 0 and

I(a) = /M2 A df (4.1)
Jo 02+1n’(2acosh) '

If < 1/2, then

4 v ~y 1 In

2 o) = / WD (42)

T "lna l-a 1-a 1—a ),

and if « > 1/2, then

4 1 1 1 !
il O p— v In (O‘ n“>+ no‘l/ atlnl(t)dt.  (4.3)
a 0

T "lna l—-a 1-— a—1 o —

The second part of the conjecture, namely (4.3), was proved in [1]. Here, using the
expression for the Laplace transform of the Psi function that we have obtained, we are
able to prove (4.2), namely the first part of the conjecture as well. First, we explicitly
evaluate M (a) when a > In 2, which is then subsequently used to prove (4.2). To that
end, from (1.4) and (1.5), we readily obtain

1 1 2 > Inn
M(a) = —Z4+1)In(= 2 b
(a) (ea_l a+ )n(a>+ aza2+4n27r2

n=1

SEEeCE)E

In [1], the following evaluation for M (a) was given for 0 < a < In2:

a+In(l—e*) —vy—Ina a
+
l1—e@ l1—e@

M(a) = g + /1 e “InT(t)dt. (4.5)

Also Lemma 2.3 in [1] states that for a > 0, c=1—¢"* and A = In 27 + , we have

L Ala—c) ¢ a = Inj
where a, ¢ and A are defined as in (3.1) and A(z) is defined in (3.2).
Thus from (4.5) and (4.6), M (a) can be evaluated for 0 < a < In2, which combined
with (4.4) implies that the integral M (a) can be evaluated for all positive values of a.
Next we proceed to prove (4.2). First of all, letting o = e~* in (4.1), we see that
(4.2) is equivalent to showing

1 1
M(a)= 1 _2tme, ¢ /0 e InT'(t) dt. (4.7)

a 1—e@ 1—e@
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From and (4.7), it suffices to show that

(4.4)

1 ia ia > Inn 1 1

- — _ 2 ~Z41)In2

4(w<2w)+w< 2w>>+ a;a2+4n2ﬂ2+<ea—l st ) nen
o

1
T4 ° /eaflnr(t)dt. (4.8)
0

T4 l—e@ l—ea

Simplifying (4.8) leads to

! 1—e™|1 ia a s Inn
"I l(t)dt = —— | = — —— 2 —-—
/Oe nl'(t) a {4 <¢ (27r>+w( 2#))+ aza2+4n27r2
¥ vy a 1 1
a+1—6_a+1—e_“+(ea—1 a—i—l)anW}. (4.9)

Finally using (3.8), after a routine simplification, we find that (4.9) is equivalent to
(4.6). This finishes the proof of (4.2).
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