MONOTONICITY RESULTS FOR DIRICHLET L-FUNCTIONS

ATUL DIXIT, ARINDAM ROY, AND ALEXANDRU ZAHARESCU

Abstract

We present some monotonicity results for Dirichlet L-functions associated to real primitive characters. We show in particular that these Dirichlet L functions are far from being logarithmically completely monotonic. Also, we show that, unlike in the case of the Riemann zeta function, the problem of comparing the signs of $\frac{d^{k}}{d s^{k}} \log L(s, \chi)$ at any two points $s_{1}, s_{2}>1$ is more subtle.

1. Introduction

A function f is said to be completely monotonic on $[0, \infty)$ if $f \in C[0, \infty), f \in$ $C^{\infty}(0, \infty)$ and $(-1)^{k} f^{(k)}(t) \geq 0$ for $t>0$ and $k=0,1,2 \cdots$, i.e., the successive derivatives alternate in sign. The following theorem due to S.N. Bernstein and D. Widder gives a complete characterization of completely monotonic functions [10, p. 95]:

A function $f:[0, \infty) \rightarrow[0, \infty)$ is completely monotonic if and only if there exists a non-decreasing bounded function γ such that $f(t)=\int_{0}^{\infty} e^{-s t} d \gamma(s)$.

Lately, the class of completely monotonic functions have been greatly expanded to include several special functions, for example, functions associated to gamma and psi functions by Chen [9], Guo, Guo and Qi [15] and quotients of K-Bessel functions by Ismail [16]. A conjecture that certain quotients of Jacobi theta functions are completely monotonic was formulated by the first author and Solynin in [12], and slightly corrected later by the present authors in [13]. Certain other classes of such functions were introduced by Alzer and Berg [1], Qi and Chen [22]. Completely monotonic functions have applications in diverse fields such as probability theory [17], physics [4], potential theory [6], combinatorics [3] and numerical and asymptotic analysis [14], to name a few.

A close companion to the class of completely monotonic functions is the class of logarithmically completely monotonic functions. This was first studied, although implicitly, by Alzer and Berg [2]. A function $f:(0, \infty) \rightarrow(0, \infty)$ is said to be logarithmically completely monotonic [5] if it is C^{∞} and $(-1)^{k}[\log f(x)]^{(k)} \geq 0$, for $k=0,1,2,3, \cdots$. Moreover, a function is said to be strictly logarithmically completely monotonic if $(-1)^{k}[\log f(x)]^{(k)}>0$. The following is true:

[^0]
Every logarithmic completely monotonic function is completely monotonic.

The reader is referred to Alzer and Berg [2], Qi and Guo [20], and Qi, Guo and Chen [21] for proofs of this statement.

One goal of this paper is to study the Dirichlet L-functions from the point of view of logarithmically complete monotonicity. For $\operatorname{Re} s>1$, the Riemann zeta function is defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Consider $s>1$. Since $\log \zeta(s)>0$ and

$$
(-1)^{k} \frac{d^{k}}{d s^{k}} \log \zeta(s)=(-1)^{k} \frac{d^{k-1}}{d s^{k-1}}\left(\frac{\zeta^{\prime}(s)}{\zeta(s)}\right)=\sum_{n=1}^{\infty} \frac{\Lambda(n)(\log n)^{k-1}}{n^{s}}
$$

where $\Lambda(n) \geq 0$ is the von Mangoldt function, $(-1)^{k} \frac{d^{k}}{d s^{k}} \log \zeta(s)>0$ for all $s>1$. This implies that $\zeta(s)$ is a logarithmically completely monotonic function for $s>1$ (in fact, strictly logarithmically completely monotonic). But this approach fails in the case of $L(s, \chi)$ with $s>1$ and χ, a real primitive Dirichlet character modulo q, since

$$
(-1)^{k} \frac{d^{k}}{d s^{k}} \log L(s, \chi)=(-1)^{k} \frac{d^{k-1}}{d s^{k-1}}\left(\frac{L^{\prime}(s, \chi)}{L(s, \chi)}\right)=\sum_{n=1}^{\infty} \frac{\chi(n) \Lambda(n)(\log n)^{k-1}}{n^{s}}
$$

may change sign for different values of s as $\chi(n)$ takes the values $-1,0$ or 1 . Hence, we need to consider a different approach for studying $L(s, \chi)$ in the context of logarithmically complete monotonicity. This naturally involves studying the zeros of derivatives of $\log L(s, \chi)$.

There have been several studies made on the number of zeros of $\zeta^{(k)}(s)$ and $L^{(k)}(s, \chi)$, one of which dates back to Spieser [23], who showed that the Riemann Hypothesis is equivalent to the fact that $\zeta^{\prime}(s)$ has no zeros in $0<\operatorname{Re} s<1 / 2$. Spira [24] conjectured that

$$
N(T)=N_{k}(T)+\left[\frac{T \log 2}{2 \pi}\right] \pm 1
$$

where $N_{k}(T)$ denotes the number of zeros of $\zeta^{(k)}(s)$ with positive imaginary parts up to height T, and $N(T)=N_{0}(T)$. Berndt [7] showed that for any $k \geq 1$, as $T \rightarrow \infty$,

$$
N_{k}(T)=\frac{T \log T}{2 \pi}-\left(\frac{1+\log 4 \pi}{2 \pi}\right) T+O(\log T)
$$

Levinson and Montgomery [18] proved a quantitative result implying that most of the zeros of $\zeta^{(k)}(s)$ are clustered about the line $\operatorname{Re} s=1 / 2$ and also showed that the Riemann Hypothesis implies that $\zeta^{(k)}(s)$ has at most finitely many non-real zeros in Re $s<1 / 2$. Their results were further improved by Conrey and Ghosh [8]. Analogues of several of the above-mentioned results for Dirichlet L-functions were given by Yildirim [30]. Our results in this paper are related to the zeros of $\log L(s, \chi)$ and its derivatives.

Throughout the paper, we assume that s is a real number and χ is a real primitive Dirichlet character modulo q. Let $F(s, \chi):=\log L(s, \chi)$, and for $s>1$, define

$$
\begin{equation*}
A_{\chi, k}:=\left\{s: F^{(k)}(s, \chi)=0\right\} \tag{1.1}
\end{equation*}
$$

Then we obtain the following result:
Theorem 1.1. Let χ be a real primitive character modulo q and $L(s, \chi) \neq 0$ for $0<s<1$. Then there exists a constant c_{χ} such that $\left[c_{\chi}, \infty\right) \cap\left(\cup_{k=1}^{\infty} A_{\chi, k}\right)$ is dense in $\left[c_{\chi}, \infty\right)$.

Let us note that Theorem 1.1 shows in particular that $L(s, \chi)$ is not logarithmically completely monotonic on any subinterval of $\left[c_{\chi}, \infty\right)$. A stronger assertion is as follows:

For any subinterval of $\left[c_{\chi}, \infty\right)$, however small it may be, infinitely many derivatives $F^{(k)}(s, \chi)$ change sign in this subinterval.

Now consider any two points s_{1}, s_{2} with $1<s_{1}<s_{2}$. In the case of the Riemann zeta function, if we compare the signs of the values of $\frac{d^{k}}{d s^{k}} \log \zeta(s)$ at s_{1} and s_{2} for all values of k, we see that they are always the same. Then a natural question arises - what can we say if we make the same comparison in the case of a Dirichlet L-function? We will see below that the answer is completely different (actually it is as different as it could be). We first define a function ψ_{χ} for a real primitive Dirichlet character modulo q as follows:

Let $\mathcal{B}:=\{g: \mathbb{N} \rightarrow\{-1,0,1\}\}$. Define an equivalence relation \sim on \mathcal{B} by $g \sim h$ if and only if $g(n)=h(n)$ for all n large enough. Let $\hat{\mathcal{B}}=\mathcal{B} / \sim$. By abuse of notation, we define $\psi_{\chi}:(1, \infty) \rightarrow \hat{\mathcal{B}}$ to be a function whose image is a sequence given by $\left\{\operatorname{sgn}\left(F^{(k)}(s, \chi)\right)\right\}$, i.e.,

$$
\begin{equation*}
\psi_{\chi}(s)(k):=\operatorname{sgn}\left(F^{(k)}(s, \chi)\right) \tag{1.2}
\end{equation*}
$$

With this definition, we answer the above question in the form of the following theorem.
Theorem 1.2. Let χ be a real primitive character modulo q and let ψ_{χ} be defined as above. Then there exists a constant C_{χ} with the following property:
(a) The Riemann hypothesis for $L(s, \chi)$ implies that ψ_{χ} is injective on $\left[C_{\chi}, \infty\right)$.
(b) Let ψ_{χ} be injective on $\left[C_{\chi}, \infty\right)$. Then there exists an effectively computable constant D_{χ} such that if all the nontrivial zeros ρ of $L(s, \chi)$ up to the height D_{χ} lie on the critical line Re $s=1 / 2$, then the Riemann Hypothesis for $L(s, \chi)$ is true.

2. Proof of theorem 1.1

First we will compute $F^{(k)}(s, \chi)$ in terms of the zeros of $L(s, \chi)$. The logarithmic derivative of $L(s, \chi)$ satisfies [11, page. 83]

$$
\begin{equation*}
F^{\prime}(s, \chi)=\frac{L^{\prime}(s, \chi)}{L(s, \chi)}=-\frac{1}{2} \log \frac{q}{\pi}-\frac{1}{2} \frac{\Gamma^{\prime}(s / 2+b / 2)}{\Gamma(s / 2+b / 2)}+B(\chi)+\sum_{\rho}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right) \tag{2.1}
\end{equation*}
$$

where $B(\chi)$ is a constant depending on χ,

$$
b= \begin{cases}1 & \text { if } \chi(-1)=-1 \tag{2.2}\\ 0 & \text { if } \chi(-1)=1\end{cases}
$$

and $\rho=\beta+i \gamma$ are the non trivial zeros of $L(s, \chi)$. Since $B(\bar{\chi})=\overline{B(\chi)}$ and χ is real, $B(\chi)$ is given by

$$
B(\chi)=-\sum_{\rho} \frac{1}{\rho}=-2 \sum_{\gamma>0} \frac{\beta}{\beta^{2}+\gamma^{2}}<\infty
$$

see [11, page. 83]. Note that $B(\chi)$ is negative. The Weierstrass infinite product for $\Gamma(s)$ is [11, p. 73]

$$
\begin{equation*}
\Gamma(s)=\frac{e^{-\gamma s}}{s} \prod_{n=1}^{\infty}(1+s / n)^{-1} e^{s / n} \tag{2.3}
\end{equation*}
$$

with $s=0,-1,-2, \ldots$ being its simple poles. The functional equation for $\Gamma(s)$ is

$$
\begin{equation*}
\Gamma(s+1)=s \Gamma(s) \tag{2.4}
\end{equation*}
$$

where as the duplication formula for $\Gamma(s)$ is

$$
\begin{equation*}
\Gamma(s) \Gamma(s+1 / 2)=2^{(1-2 s)} \pi^{1 / 2} \Gamma(2 s) \tag{2.6}
\end{equation*}
$$

see [11, p. 73]. The following can be easily derived from (2.4), (2.6) and the logarithmic derivative of (2.3):

$$
\begin{align*}
& \frac{1}{2} \frac{\Gamma^{\prime}(s / 2)}{\Gamma(s / 2)}=-\frac{\gamma}{2}-\frac{1}{s}-\sum_{n=1}^{\infty}\left(\frac{1}{s+2 n}-\frac{1}{2 n}\right) \tag{2.7}\\
& \frac{1}{2} \frac{\Gamma^{\prime}(s / 2+1 / 2)}{\Gamma(s / 2+1 / 2)}=-\log (2)-\frac{\gamma}{2}-\sum_{n=0}^{\infty}\left(\frac{1}{s+2 n+1}-\frac{1}{2 n+1}\right) \tag{2.8}
\end{align*}
$$

From (2.1), (2.2), (2.7) and (2.8), we have

$$
\begin{equation*}
F^{\prime}(s, \chi)=-\frac{1}{2} \log \frac{q}{\pi}+b \log 2+\frac{\gamma}{2}+B(\chi)+\frac{1-b}{s}+\sum_{\rho \neq 0}\left(\frac{1}{s-\rho}+\frac{1}{\rho}\right) \tag{2.9}
\end{equation*}
$$

where ρ runs through all the zeros of $L(s, \chi)$. The successive differentiation of (2.9) gives for $k \geq 2$,

$$
\begin{align*}
F^{(k)}(s, \chi) & =(-1)^{k-1}(k-1)!\left(\frac{1-b}{s^{k}}+\sum_{\substack{\rho \neq 0 \\
L(\rho, \chi)=0}} \frac{1}{(s-\rho)^{k}}\right) \\
& =(-1)^{k-1}(k-1)!\left(\sum_{L(\rho, \chi)=0} \frac{1}{(s-\rho)^{k}}\right) . \tag{2.10}
\end{align*}
$$

Figure 1. Construction for identifying the unique ρ_{0} at which $l(s)$ is attained for $s \in\left(s_{0}-\epsilon, s_{0}+\epsilon\right)$.

Let $s>1 / 2$ and define

$$
\begin{equation*}
l(s):=\min \{|s-\rho|: L(\rho, \chi)=0\} \tag{2.11}
\end{equation*}
$$

If the minimum $l(s)$ is attained for a non-trivial zero ρ of $L(s, \chi)$, then since the nontrivial zeros are symmetric with respect to the line $\sigma=1 / 2$, we have $\operatorname{Re} \rho \geq 1 / 2$. Let $\tilde{\rho}_{0}$ be the non-trivial zero of $L(s, \chi)$ with minimum but positive imaginary part, i.e., $\operatorname{Im} \tilde{\rho}_{0}=\min \{\operatorname{Im} \rho>0: L(\rho, \chi)=0, \operatorname{Re} \rho \geq 1 / 2\}$. Write $\tilde{\rho}_{0}=\tilde{\beta}_{0}+i \tilde{\gamma}_{0}$. Then for all $s>\tilde{\gamma}_{0}^{2}+1 / 4$, we have $s^{2}>(s-1 / 2)^{2}+\tilde{\gamma}_{0}^{2} \geq\left|s-\tilde{\rho}_{0}\right|^{2} \geq(l(s))^{2}$. Define

$$
\begin{equation*}
c_{\chi}:=\operatorname{Inf}\{c>1: s>c \Rightarrow|s|>l(s)\} . \tag{2.12}
\end{equation*}
$$

The constant c_{χ} is defined in this way since we want $l(s)$ to be attained at a non-trivial zero of $L(s, \chi)$, as this will allow us to separate the two terms of the series in (2.10) corresponding to this zero and its conjugate, which together will give a dominating term essential in the proof. Note that if $\tilde{\gamma}_{0} \leq \sqrt{3} / 2, c_{\chi}=1$, otherwise $1 \leq c_{\chi} \leq \tilde{\gamma}_{0}^{2}+1 / 4$.

Next we show that for any $s \geq c_{\chi}$, there is an $s^{\prime} \in(s-\epsilon, s+\epsilon), \epsilon>0$, so that $l\left(s^{\prime}\right)$ is attained at a unique non-trivial zero ρ^{\prime} of $L(s, \chi)$ with $\operatorname{Im} \rho^{\prime}>0$.

For any real number $s_{0}>c_{\chi}$, consider the interval $\left(s_{0}-\epsilon, s_{0}+\epsilon\right) \subset\left[c_{\chi}, \infty\right)$ for some $\epsilon>0$. Let

$$
\begin{equation*}
A:=\left\{\rho^{\prime}: \operatorname{Im} \rho^{\prime} \geq 0 \text { and }\left|s_{0}-\rho^{\prime}\right|=l\left(s_{0}\right), L\left(\rho^{\prime}, \chi\right)=0\right\} \tag{2.13}
\end{equation*}
$$

that is, A is comprised of all non-trivial zeros on the circle with center s_{0} and radius $l\left(s_{0}\right)$. Clearly A is a finite set since $|A| \leq \mathrm{N}\left(l\left(s_{0}\right), \chi\right)$, where $N(T, \chi)$ denotes the number of zeros of $L(s, \chi)$ up to height T. As shown in Figure 1, let $\rho_{0} \in A$ with $\operatorname{Re} \rho_{0}=\max \{\operatorname{Re} \rho: \rho \in A\}$. Then for any $s \in\left(s_{0}, s_{0}+\epsilon\right),\left|s-\rho_{0}\right|<|s-\rho|$, for all $\rho \in A, \rho \neq \rho_{0}$. Fix one such s, say s_{1}, so that $s_{0}<s_{1}<s_{0}+\epsilon$. Now more than one zeros may lie on the circle with center s_{1} and radius $\left|s_{1}-\rho_{0}\right|$. If there aren't any (apart from $\left.\rho_{0}\right)$, then we have constructed $s^{\prime}\left(=s_{1}\right)$ that we sought. If there are more than one, we select the one among them, say ρ_{1}, which has the minimum real part, i.e.,
$\operatorname{Re} \rho_{1}=\min \left\{\operatorname{Re} \rho:\left|s_{1}-\rho_{0}\right|=\left|s_{1}-\rho\right|, \rho \neq \rho_{0}, L(\rho, \chi)=0\right\}$. Note that $\operatorname{Im} \rho_{1}>\operatorname{Im} \rho_{0}$, otherwise it will contradict the fact that the minimum $l\left(s_{0}\right)$ is attained at ρ_{0}.

For any $s \in\left(s_{0}, s_{1}\right),\left|s-\rho_{0}\right|<\left|s-\rho_{1}\right|$. Now fix one such s, say $s_{2} \in\left(s_{0}, s_{1}\right)$, and find a ρ_{2} so that $\operatorname{Re} \rho_{2}=\min \left\{\operatorname{Re} \rho:\left|s_{2}-\rho_{0}\right|=\left|s_{2}-\rho\right|, \rho \neq \rho_{0}, L(\rho, \chi)=0\right\}$. Since there are only finite may zeros in the rectangle $[0,1] \times\left[\operatorname{Im} \rho_{0}, \operatorname{Im} \rho_{1}\right]$, repeating the argument allows us to find an $s^{\prime} \in \mathbb{R}$ and $s_{0}<s^{\prime}<s_{1}<s_{0}+\epsilon$, so that ρ_{0} is the only non-trivial zero of $L(s, \chi)$ with $\operatorname{Im} \rho_{0} \geq 0$ and $\left|s^{\prime}-\rho_{0}\right|=\min \left\{\left|s^{\prime}-\rho\right|, \operatorname{Im} \rho \geq 0\right.$ and $\left.L(\rho, \chi)=0\right\}$, i.e., the circle with center s^{\prime} and radius $\left|s-\rho_{0}\right|$ does not contain any zero other than ρ_{0} itself. Note that for any $s \in\left(s_{0}, s^{\prime}\right), \rho_{0}$ is the only zero at which $l(s)$ is attained.

Next, let $B=\left\{\rho^{\prime}: \rho^{\prime} \neq \rho_{0},\left|s_{0}-\rho^{\prime}\right|<\left|s_{0}-\rho\right|\right\}$, where ρ, ρ^{\prime} are zeros of $L(s, \chi)$. Note that B is also a finite set. Arguing in a similar way as above, we can find a $\tilde{\rho} \in B$ and $s^{\prime \prime} \in\left(s_{0}, s_{0}+\epsilon\right)$ so that for all $s \in\left(s_{0}, s^{\prime \prime}\right),|s-\tilde{\rho}| \leq|s-\rho|$ for $\rho \neq \rho_{0}$.

Therefore we can find a closed interval $[c, d] \subset\left(s_{0}-\epsilon, s_{0}+\epsilon\right)$ so that for all $s \in[c, d]$, we have

$$
\begin{align*}
& l(s)=\left|s-\rho_{0}\right|=\left|s-\bar{\rho}_{0}\right|<|s-\rho|, \rho \neq \rho_{0}, \overline{\rho_{0}} \tag{2.14}\\
& \quad|s-\tilde{\rho}|=|s-\overline{\tilde{\rho}}| \leq|s-\rho|, \rho \neq \rho_{0}, \overline{\rho_{0}}, \tilde{\rho}, \overline{\tilde{\rho}} . \tag{2.15}
\end{align*}
$$

Now let $s-\rho_{0}=r_{s} e^{i \theta_{s}}$ for all $c \leq s \leq d$. Then from (2.10) and the fact that the zeros of $L(s, \chi)$ are symmetric with respect to the real axis, we have

$$
\begin{align*}
F^{(k)}(s, \chi) & =(-1)^{k-1}(k-1)!\left(\frac{1}{\left(s-\rho_{0}\right)^{k}}+\frac{1}{\left(s-\overline{\rho_{0}}\right)^{k}}+\sum_{\rho \neq \rho_{0}, \overline{\rho_{0}}} \frac{1}{(s-\rho)^{k}}\right) \\
& =(-1)^{k-1}(k-1)!\left(\frac{2}{r_{s}^{k}} \cos \left(k \theta_{s}\right)+\sum_{\rho \neq \rho_{0}, \overline{\rho_{0}}} \frac{1}{(s-\rho)^{k}}\right) \\
& =\frac{(-1)^{k-1}(k-1)!}{r_{s}^{k}}\left(2 \cos \left(k \theta_{s}\right)+f(s)\right), \tag{2.16}
\end{align*}
$$

where $f(s):=r_{s}^{k} \sum_{\rho \neq \rho_{0}, \overline{\rho_{0}}} \frac{1}{(s-\rho)^{k}}$ and $k \geq 2$. Since the series $\sum_{\rho \neq \rho_{0}, \overline{\rho_{0}}} \frac{1}{(s-\rho)^{k}}$ converges absolutely for $k \geq 1, f(s)$ is a differentiable function for $s>1$. Now,

$$
\begin{align*}
|f(s)| \leq 2 \sum_{\substack{\rho \neq \rho_{0}, \overline{\rho_{0}} \\
\operatorname{Im} \rho \geq 0}} \frac{r_{s}^{k}}{|s-\rho|^{k}} & =2 \sum_{\substack{\rho \neq \rho_{0}, \overline{\rho_{0}}, \operatorname{Im} \rho \geq 0}} \frac{\left|s-\rho_{0}\right|^{k}}{|s-\rho|^{k}} \\
& =2\left|s-\rho_{0}\right|^{2} \sum_{\substack{\rho \neq \rho_{0}, \overline{\rho_{0}}, \operatorname{Im} \rho \geq 0}} \frac{1}{|s-\rho|^{2}} \frac{\left|s-\rho_{0}\right|^{k-2}}{|s-\rho|^{k-2}} \\
& \leq 2\left|s-\rho_{0}\right|^{2} \sum_{\substack{\rho \neq \rho_{0}, \overline{\rho_{0}}, \operatorname{Im} \rho \geq 0}} \frac{1}{|s-\rho|^{2}} \frac{\left|s-\rho_{0}\right|^{k-2}}{|s-\tilde{\rho}|^{k-2}} \\
& \leq 2\left|s-\rho_{0}\right|^{2} \sum_{\substack{\rho \neq \rho_{0}, \overline{\rho_{0}}, \operatorname{Im} \rho \geq 0}} \frac{1}{|s-\rho|^{2}} \operatorname{Sup}_{c \leq s \leq d}\left\{\frac{\left|s-\rho_{0}\right|^{k-2}}{\left.|s-\tilde{\rho}|^{k-2}\right\}}\right. \tag{2.17}
\end{align*}
$$

where in the penultimate step we use (2.15). Let $h(s):=\frac{\left|s-\rho_{0}\right|}{|s-\tilde{\rho}|}$. Then $h(s)$ is a continuous function on $[c, d]$ and hence attains its supremum on $[c, d]$. Thus there exists an $x \in[c, d]$ such that

$$
\begin{equation*}
\eta:=\operatorname{Sup}_{c \leq s \leq d}\left\{\frac{\left|s-\rho_{0}\right|}{|s-\tilde{\rho}|}\right\}=\frac{\left|x-\rho_{0}\right|}{|x-\tilde{\rho}|} . \tag{2.18}
\end{equation*}
$$

Therefore by (2.14), $\eta<1$. Combining (2.17) and (2.18), we have

$$
\begin{equation*}
|f(s)| \leq 2 \eta^{k-2}\left|s-\rho_{0}\right|^{2} \sum_{\substack{\rho \neq \rho_{0}, \overline{\rho_{0}} \\ \operatorname{Im} \rho \geq 0}} \frac{1}{|s-\rho|^{2}} \leq 2 \eta^{k-2}\left|d-\rho_{0}\right|^{2} \sum_{\substack{\rho \neq \rho_{0}, \overline{\rho_{0}} \\ \operatorname{Im} \rho \geq 0}} \frac{1}{|c-\rho|^{2}} \leq C_{c, d, \chi} \eta^{k-2} . \tag{2.19}
\end{equation*}
$$

Note that the constant term depends only on c, d and χ. Hence for sufficiently large k, we have $|f(s)|<1$. Let $c-\rho_{0}=r_{c} e^{i \theta_{c}}$ and $d-\rho_{0}=r_{d} e^{i \theta_{d}}$. Then $\theta_{c}>\theta_{d}$. For k large enough, we can write $2 \pi<k\left(\theta_{c}-\theta_{d}\right)$. Since for $s \in[c, d]$, we have $\theta_{d} \leq \theta_{s} \leq \theta_{c}$, for a sufficiently large $k, \cos \left(k \theta_{s}\right)$ attends all the values of the interval $[-1,1]$. So from (2.17) and (2.19) we conclude that for each large enough k there will be an s in $[c, d] \subset\left(s_{0}-\epsilon, s_{0}+\epsilon\right)$ so that $F^{(k)}(s, \chi)=0$. This shows that $\cup_{k=1}^{\infty} A_{\chi, k}$ has a non-empty intersection with $\left(s_{0}-\epsilon, s_{0}+\epsilon\right)$ for any $s_{0}>c_{\chi}$. This completes the proof of the theorem.

Remark: Let χ be a real nonprincipal Dirichlet character. If $L(s, \chi)$ has a Siegel zero, call it β, and if every zero of $L(s, \chi)$ has real part $\leq \beta$, then for any $s>1$, (2.10) implies

$$
\begin{equation*}
F^{(k)}(s, \chi)=\frac{(-1)^{k-1}(k-1)!}{(s-\beta)^{k}}\left(1+\sum_{\substack{\rho \neq \beta \\ L(\rho, \chi)=0}}\left(\frac{s-\beta}{s-\rho}\right)^{k}\right) . \tag{2.20}
\end{equation*}
$$

Arguing as in the proof of Theorem 1.1, we see that there exists an integer M such that for all $k \geq M$, the series in (2.20) is less than 1 . This means that for those k, $F^{(k)}(s, \chi)$ maintains the same sign for all $s>1$. This is why we include the condition that $L(s, \chi) \neq 0$ for $0<s<1$ in the hypotheses of Theorem 1.1.

3. Proof of theorem 1.2

Assume that the Riemann hypothesis holds for $L(s, \chi)$. Let $\gamma_{0}:=\operatorname{Im} \rho_{0}=\min \{\operatorname{Im} \rho \geq$ $0: L(\rho, \chi)=0\}$, where ρ_{0}, ρ are non-trivial zeros of $L(s, \chi)$. Then $\rho_{0}=1 / 2+i \gamma_{0}$. We show that the function ψ_{χ} is injective on $\left[C_{\chi}, \infty\right)$, where the constant C_{χ} will be determined later.

Let $s>c_{\chi}$, where c_{χ} is defined in (2.12). Then $l(s)<|s|$ and $l(s)=\left|s-\rho_{0}\right|<|s-\rho|$ for $\rho \neq \rho_{0}, \overline{\rho_{0}}$. Let $s-\rho_{0}=r_{s} e^{i \theta_{s}}$. From (2.16), we have for $k \geq 2$,

$$
\begin{align*}
|f(s)| \leq \sum_{\rho \neq \rho_{0}, \overline{\rho_{0}}} \frac{r_{s}^{k}}{|s-\rho|^{k}} & =\left|s-\rho_{0}\right|^{2} \sum_{\rho \neq \rho_{0}, \overline{\rho_{0}}} \frac{1}{|s-\rho|^{2}} \cdot \frac{\left|s-\rho_{0}\right|^{k-2}}{|s-\rho|^{k-2}} \\
& \leq\left|s-\rho_{0}\right|^{2} \sum_{\rho \neq \rho_{0}, \overline{\rho_{0}}} \frac{1}{|s-\rho|^{2}} \cdot \operatorname{Sup}_{\rho}\left\{\frac{\left|s-\rho_{0}\right|^{k-2}}{|s-\rho|^{k-2}}\right\} \\
& =\left|s-\rho_{0}\right|^{2} \eta_{s}^{k-2} \sum_{\rho \neq \rho_{0}, \overline{\rho_{0}}} \frac{1}{|s-\rho|^{2}} \\
& =O_{s, \chi}\left(\eta_{s}^{k-2}\right) . \tag{3.1}
\end{align*}
$$

Here in the penultimate step,

$$
\eta_{s}=\operatorname{Sup}_{\rho}\left\{\frac{\left|s-\rho_{0}\right|}{|s-\rho|}\right\} \leq \frac{\left|s-\rho_{0}\right|}{|s-\tilde{\rho}|}<1
$$

and $\operatorname{Im} \rho_{0}<\operatorname{Im} \tilde{\rho} \leq \operatorname{Im} \rho$, resulting from (2.14) and (2.15). Combining (2.16) and (3.1), we obtain

$$
\begin{equation*}
F^{(k)}(s, \chi)=\frac{2(-1)^{k-1}(k-1)!}{r_{s}^{k}}\left(\cos \left(k \theta_{s}\right)+f(s)\right), \tag{3.2}
\end{equation*}
$$

where $f(s)=O_{s, \chi}\left(\eta_{s}^{k-2}\right)$.
Next, we show that there are infinitely many k for which $\cos \left(k \theta_{s}\right)$, which we view as the main term, dominate the error term. Since $\eta_{s}<1$, for a fixed $s>1$, we can bound the error term in $(-\epsilon, \epsilon)$ for all sufficiently large k and for all $0<\epsilon<1$. Write $\cos \left(k \theta_{s}\right)=\cos \left(\pi \frac{k \theta_{s}}{\pi}\right)=\cos \left(2 \pi \frac{k \theta_{s}}{2 \pi}\right)$ and consider the cases when $\frac{\theta_{s}}{\pi}$ is rational and $\frac{\theta_{s}}{2 \pi}$ is irrational.

If $\frac{\theta_{s}}{\pi}$ is a rational number, there are infinitely many $k \in \mathbb{N}$ so that $\frac{k \theta_{s}}{2 \pi}$ is an even integer and hence $\cos \left(k \theta_{s}\right)=1$.

If $\frac{\theta_{s}}{\pi}$ is a rational number with odd numerator, then there are infinitely many $k \in \mathbb{N}$, namely the odd multiples of the denominator, so that $\frac{k \theta_{s}}{2 \pi}$ is an odd integer and hence $\cos \left(k \theta_{s}\right)=-1$.

Let $\frac{\theta_{s}}{\pi}=\frac{2 m}{n}$ be a rational number with even numerator and odd denominator. Since $(2 m, n)^{\pi}=1$, there exists an integer $l \in[1, n]$ such that $2 m l \equiv 1(\bmod n)$. For all $k \equiv l(\bmod n), 2 m k \equiv 1(\bmod n)$. Therefore for all $k \equiv l \bmod n$, since $2 m k$ is even, we have $2 m k=(2 p+1) n+1$. Hence there are infinitely many integers k for which $\cos \left(k \theta_{s}\right)=\cos \left(\pi\left(2 p+1+\frac{1}{n}\right)\right)=-\cos \left(\frac{\pi}{n}\right)$.

If $\frac{\theta_{s}}{2 \pi}$ is irrational, then we know [28] that the sequence $\left\{\left\{\frac{k \theta_{s}}{2 \pi}\right\}\right\}$ is dense in $[0,1]$, where $\{x\}$ denotes the fractional part of x. Hence there are infinitely many $k \in \mathbb{N}$ with $\left\{\frac{k \theta_{s}}{2 \pi}\right\}$ close to 1 and hence $\cos \left(k \theta_{s}\right)>1-\epsilon$ for any given $\epsilon>0$. Likewise, there are infinitely many $k \in \mathbb{N}$ with $\left\{\frac{k \theta_{s}}{2 \pi}\right\}$ close to $\frac{1}{2}$ and hence $\cos \left(k \theta_{s}\right)<-1+\epsilon$.

Fix s_{1} and s_{2} such that $c_{\chi}<s_{1}<s_{2}$. Then $l\left(s_{1}\right)=\left|s_{1}-\rho_{0}\right|$ and $l\left(s_{2}\right)=\left|s_{2}-\rho_{0}\right|$. Let θ_{1} and θ_{2} be such that $s_{1}-\rho_{0}=r_{1} e^{i \theta_{1}}$ and $s_{2}-\rho_{0}=r_{2} e^{i \theta_{2}}$. Note that $0<\theta_{2}<\theta_{1}<\pi / 2$.

From (3.2), we have

$$
\begin{align*}
& F^{(k)}\left(s_{1}, \chi\right)=\frac{2(-1)^{k-1}(k-1)!}{r_{1}^{k}}\left(\cos \left(k \theta_{1}\right)+f\left(s_{1}\right)\right) \tag{3.3}\\
& F^{(k)}\left(s_{2}, \chi\right)=\frac{2(-1)^{k-1}(k-1)!}{r_{2}^{k}}\left(\cos \left(k \theta_{2}\right)+f\left(s_{2}\right)\right), \tag{3.4}
\end{align*}
$$

where $f\left(s_{1}\right)=O_{s_{1}, \chi}\left(\eta_{s_{1}}^{k-2}\right)$ and $f\left(s_{2}\right)=O_{s_{2}, \chi}\left(\eta_{s_{2}}^{k-2}\right)$. Write $\theta_{1}=\theta_{2}+\left(\theta_{1}-\theta_{2}\right)$.
We show that there exist infinitely many integers k such that the terminal rays of $k \theta_{1}$ and $k \theta_{2}$ stay away from the y-axis, that $\operatorname{sgn}\left(\cos k \theta_{1}\right)=-\operatorname{sgn}\left(\cos k \theta_{2}\right) \neq 0$, and that $\cos \left(k \theta_{1}\right)$ and $\cos \left(k \theta_{2}\right)$ dominate $f\left(s_{1}\right)$ and $f\left(s_{2}\right)$ in (3.3) and (3.4) respectively. We first determine the signs.

Case 1: If $\frac{\theta_{1}-\theta_{2}}{\pi}$ is rational with odd numerator then as we saw before, there are infinitely many positive integers k so that $k \frac{\left(\theta_{1}-\theta_{2}\right)}{\pi}$ is an odd integer and hence for those $k \in \mathbb{N}, \cos \left(k \theta_{1}\right)=\cos \left(k \theta_{2}+\pi\right)=-\cos \left(k \theta_{2}\right)$.

Case 2: If $\frac{\theta_{1}-\theta_{2}}{\pi}$ is rational with even numerator and odd denominator n, there are infinitely many positive integers k so that $k \frac{\left(\theta_{1}-\theta_{2}\right)}{\pi}=2 p+1+1 / n$ for some $p \in \mathbb{N}$ and so $\cos \left(k \theta_{1}\right)=\cos \left(k \theta_{2}+\pi+\pi / n\right)=-\cos \left(k \theta_{2}+\pi / n\right)$.

Case 3: If $\frac{\left(\theta_{1}-\theta_{2}\right)}{2 \pi}$ is irrational, there are infinitely many positive integers k so that $\left\{k \frac{\left(\theta_{1}-\theta_{2}\right)}{2 \pi}\right\} \in[1 / 2,1 / 2+\epsilon / 2 \pi)$, for any given $\epsilon>0$. So for any δ such that $0<\delta<\epsilon$, we have $\cos \left(k \theta_{1}\right)=\cos \left(k \theta_{2}+\pi+\delta\right)=-\cos \left(k \theta_{2}+\delta\right)$. We can choose ϵ as small as we want and hence $0<\delta<\epsilon<\pi / n$.

We first show that in Case 2, we have the terminal rays of the angles sufficiently away from the y-axis, with $\cos k \theta_{1}$ and $\cos k \theta_{2}$ dominating their corresponding terms $f\left(s_{1}\right)$ and $f\left(s_{2}\right)$. To that end, choose a constant $b_{\chi}>1 / 2$ such that $\tan \left(\frac{\pi}{100}\right)=\frac{\gamma_{0}}{b_{\chi}-\frac{1}{2}}$, say. If $s-\rho_{0}=r_{s} e^{i \theta_{s}}$ and $s>b_{\chi}$, then $0<\theta_{s}<\pi / 100$. So if we take $b_{\chi}<s_{1}<s_{2}$, then $0<\theta_{2}<\theta_{1}<\pi / 100$. Since $\eta_{s_{1}}, \eta_{s_{2}}<1$ there exists an integer K such that $\left|f\left(s_{1}\right)\right|,\left|f\left(s_{2}\right)\right|<\theta_{2} / 4$ for all $k>K$. As we saw before, for infinitely many integers $k>K+2$, we have $k \theta_{1}=k \theta_{2}+\pi+\pi / n$, where n depends on θ_{1} and θ_{2}. We first note that all angles below are considered $\bmod 2 \pi$. If $k \theta_{2} \in\left(\pi / 2+\theta_{2}, \pi\right)$ then $k \theta_{1} \in\left(-\pi / 2+\theta_{2}, \pi / 2-\theta_{2}\right)$. Thus $\cos \left(k \theta_{1}\right) \cos \left(k \theta_{2}\right)<0$. Also $\left|\cos \left(k \theta_{2}\right)\right|>\left|\sin \left(\theta_{2}\right)\right| \geq$ $\theta_{2} / 2>\left|f\left(s_{2}\right)\right|$ and $\left|\cos \left(k \theta_{1}\right)\right|=\left|\cos \left(k \theta_{2}+\pi / n\right)\right|>\left|\sin \left(\theta_{2}\right)\right| \geq \theta_{2} / 2>\left|f\left(s_{1}\right)\right|$.

Similarly we see that $\left|\cos \left(k \theta_{1}\right)\right|>\left|f\left(s_{1}\right)\right|$ and $\left|\cos \left(k \theta_{2}\right)\right|>\left|f\left(s_{2}\right)\right|$ when $k \theta_{2} \in$ $\left(-\pi / 2+\theta_{2}, 0\right)$. If $k \theta_{2} \in\left(0, \pi / 2-\theta_{2}\right)$ and $k \theta_{1} \in\left(-\pi,-\pi / 2-\theta_{2}\right)$ in this case also $\left|\cos \left(k \theta_{2}\right)\right|>\left|\sin \left(\theta_{2}\right)\right| \geq \theta_{2} / 2>\left|f\left(s_{2}\right)\right|$ and $\left|\cos \left(k \theta_{1}\right)\right|=\left|\cos \left(k \theta_{2}+\pi / n\right)\right|>\left|\sin \left(\theta_{2}\right)\right| \geq$ $\theta_{2} / 2>\left|f\left(s_{1}\right)\right|$. Now let $k \theta_{2} \in\left(0, \pi / 2+\theta_{2}\right)$ and $k \theta_{1} \in\left(-\pi / 2-\theta_{2}, 0\right)$. Then since $\pi / n<\theta_{1}<\pi / 100$, it is easy to check that $(k-2) \theta_{2} \in\left(0, \pi / 2-\theta_{2}\right)$ and $(k-2) \theta_{1}=k \theta_{2}+$ $\pi+\pi / n-2 \theta_{1} \in\left(-\pi,-\pi / 2-\theta_{2}\right)$. Hence $\left|\cos \left(k \theta_{1}\right)\right|>\left|f\left(s_{1}\right)\right|$ and $\left|\cos \left(k \theta_{2}\right)\right|>\left|f\left(s_{2}\right)\right|$. Similarly we have the same conclusion if $k \theta_{2} \in\left(-\pi,-\pi / 2+\theta_{2}\right)$ and $k \theta_{1} \in\left(\pi / 2-\theta_{2}, \pi\right)$.

Note that since $k \theta_{2}+\pi+\pi / n>k \theta_{2}+\pi+\delta$, for the values of θ_{1} and θ_{2} in Case 3 as well, one can similarly prove that $\left|\cos \left(k \theta_{2}\right)\right|>\left|f\left(s_{2}\right)\right|$ and $\left|\cos \left(k \theta_{1}\right)\right|>\left|f\left(s_{1}\right)\right|$. So is the case with the values of θ_{1} and θ_{2} in Case 1 .

Let

$$
\begin{equation*}
C_{\chi}=\max \left\{c_{\chi}, b_{\chi}\right\} \tag{3.5}
\end{equation*}
$$

Then for any given real numbers s_{1} and s_{2} such that $C_{\chi}<s_{1}<s_{2}$, we have shown that there exist infinitely many integers k such that $\cos \left(k \theta_{1}\right)$ and $\cos \left(k \theta_{2}\right)$ have opposite signs and $\left|\cos \left(k \theta_{1}\right)\right|>\left|f\left(s_{1}\right)\right|$ and $\cos \left(k \theta_{2}\right)>f\left(s_{2}\right)$. This implies that $F^{(k)}\left(s_{1}, \chi\right)$ and $F^{(k)}\left(s_{2}, \chi\right)$ have opposite signs and that in turn proves that the function ψ_{χ} is injective in $\left[C_{\chi}, \infty\right)$.

We now prove part (b) of Theorem 1.2.

Figure 2. Constructing the angle $\phi=2 \pi(a+b \sqrt{2})$.

Let ρ_{0} be the lowest zero of $L(s, \chi)$ above the real axis (so ρ_{0} is not a real number). Let L_{1} be the line passing through ρ_{0} and perpendicular to the line which passes through ρ_{0} and C_{χ}, where C_{χ} is defined in (3.5). Let $\left(1, D_{\chi}\right)$ be the point of intersection of the lines $\sigma=1$ and L_{1}. We first show that if there is only one zero ρ_{1} with $\operatorname{Im} \rho_{1} \geq D_{\chi}$ off the critical line $\sigma=1 / 2$, then this contradicts the injectivity of ψ_{χ} on $\left[C_{\chi}, \infty\right)$.

Without loss of generality, let $\operatorname{Re} \rho_{1}>1 / 2$. As shown in Figure 2, let L_{2} be the line passing through ρ_{0} and ρ_{1}. Let s_{0} and s_{1} be the points of intersection of the real axis with the lines perpendicular to L_{2} and passing through ρ_{0} and ρ_{1} respectively. Clearly $s_{1}>s_{0}>C_{\chi}$. Note that by our construction, $l\left(s_{0}\right)=\left|s_{0}-\rho_{0}\right|$ and $l\left(s_{1}\right)=\left|s_{1}-\rho_{1}\right|$, where $l(s)$ is defined in (2.11), and there exists a θ such that $\left(s_{0}-\rho_{0}\right)=r_{s_{0}} e^{i \theta}$ and $\left(s_{1}-\rho_{1}\right)=r_{s_{1}} e^{i \theta}$. From the proof of the Theorem 1.1, we know that there exists an $\epsilon>0$ so that $l(s)=\left|s-\rho_{0}\right|$ for all $s \in\left(s_{0}-\epsilon, s_{0}+\epsilon\right)$ and $l(s)=\left|s-\rho_{1}\right|$ for all $s \in\left(s_{1}-\epsilon, s_{1}+\epsilon\right)$. Without loss of generality, we can assume that $s_{0}+\epsilon<s_{1}-\epsilon$. Therefore, there exists a $\delta>0$ such that $\theta_{s} \in(\theta-\delta, \theta+\delta)$, where $s-\rho_{0}=r_{s} e^{i \theta_{s}}$ and $l(s)=\left|s-\rho_{0}\right|$ for all $s \in\left(s_{0}-\epsilon, s_{0}+\epsilon\right)$, and such that $\theta_{s} \in(\theta-\delta, \theta+\delta)$, where $s-\rho_{1}=r_{s} e^{i \theta_{s}}$ and $l(s)=\left|s-\rho_{1}\right|$ for all $s \in\left(s_{1}-\epsilon, s_{1}+\epsilon\right)$.

Since the sequence $\{\{n \sqrt{2}\}\}$ is dense in $[0,1)$, and $\{n \sqrt{2}\}=n \sqrt{2}-\lfloor n \sqrt{2}\rfloor$, there exists an integer a and an integer $b \neq 0$ such that $a+b \sqrt{2} \in\left(\frac{\theta-\delta}{2 \pi}, \frac{\theta+\delta}{2 \pi}\right)$. Let $\phi=$ $2 \pi(a+b \sqrt{2}), s^{\prime} \in\left(s_{0}-\epsilon, s_{0}+\epsilon\right)$ and $s^{\prime \prime} \in\left(s_{1}-\epsilon, s_{1}+\epsilon\right)$ be such that $s^{\prime}-\rho_{0}=r_{s^{\prime}} e^{i \phi}$
and $s^{\prime \prime}-\rho_{1}=r_{s^{\prime \prime}} e^{i \phi}$. Therefore,

$$
\begin{align*}
F^{(k)}\left(s^{\prime}, \chi\right) & =\frac{2(-1)^{k-1}(k-1)!}{r_{s^{\prime}}^{k}}\left(\cos (k \phi)+f\left(s^{\prime}\right)\right) \tag{3.6}\\
F^{(k)}\left(s^{\prime \prime}, \chi\right) & =\frac{2(-1)^{k-1}(k-1)!}{r_{s^{\prime \prime}}^{k}}\left(\cos (k \phi)+f\left(s^{\prime \prime}\right)\right) \tag{3.7}
\end{align*}
$$

where $\left|f\left(s^{\prime}\right)\right|=O\left(\eta_{s^{\prime}}^{k-2}\right)$ and $\left|f\left(s^{\prime \prime}\right)\right|=O\left(\eta_{s^{\prime \prime}}^{k-2}\right)$. Let $\eta=\min \left\{\eta_{s^{\prime}}, \eta_{s^{\prime \prime}}\right\}$. Then $\left|f\left(s^{\prime}\right)\right|,\left|f\left(s^{\prime \prime}\right)\right| \leq$ $C_{s^{\prime}, s^{\prime \prime}} \eta^{k-2}$ for some constant $C_{s^{\prime}, s^{\prime \prime}}$.

We next show that there exist positive constants $C_{a, b}$ and $K_{a, b}$ so that

$$
\begin{equation*}
|4 k(a+b \sqrt{2})+r|>\frac{C_{a, b}}{k} \tag{3.8}
\end{equation*}
$$

for any integers r and k, with $k>K_{a, b}$. Let $|4 k(a+b \sqrt{2})+r| \leq 1$. Then,

$$
\begin{equation*}
|4 k(a-b \sqrt{2})+r| \leq|4 k(a+b \sqrt{2})+r|+8 k|b| \sqrt{2} \leq 1+8 k|b| \sqrt{2}<\frac{k}{C_{a, b}} . \tag{3.9}
\end{equation*}
$$

Therefore for $k \geq 2$,
$|4 k(a+b \sqrt{2})+r| \frac{k}{C_{a, b}}>|4 k(a-b \sqrt{2})+r||4 k(a+b \sqrt{2})+r|=\left|(4 k a+r)^{2}-2(4 k b)^{2}\right| \geq 1$,
since $b \neq 0$. If $|4 k(a+b \sqrt{2})+r| \geq 1$, then of course, there exists a $K_{a, b}$, such that for $k>K_{a, b}$, we have $|4 k(a+b \sqrt{2})+r|>\frac{C_{a, b}}{k}$. Hence in conclusion, for a large positive integer N and for all $k>N$, if we choose m so that $|4 k(a+b \sqrt{2}) \pm 1 \pm 4 m|<1$, we have

$$
\begin{align*}
|\cos k \phi|=\left|\sin \frac{\pi}{2}(4 k(a+b \sqrt{2}) \pm 1 \pm 4 m)\right| & \geq \sin \left(\frac{\pi C_{a, b}}{2 k}\right) \\
& \geq \frac{\pi C_{a, b}}{4 k} \\
& >C_{s^{\prime}, s^{\prime \prime}} \eta^{k-2} \tag{3.11}
\end{align*}
$$

Therefore for the above mentioned s^{\prime} and $s^{\prime \prime}$ such that $s^{\prime} \neq s^{\prime \prime}$, and for all $k>N$, $F^{(k)}\left(s^{\prime}, \chi\right)$ and $F^{(k)}\left(s^{\prime \prime}, \chi\right)$ have the same sign. This contradicts the injectivity of ψ_{χ} on $\left[C_{\chi}, \infty\right)$. Now if there is more than one zero ρ with $\operatorname{Im} \rho \geq D_{\chi}$ off the critical line, then we can choose the zero ρ_{1} with the following properties:
i) The angle between the positive x-axis and the line L passing through the zeros ρ_{0} and ρ_{1} is smaller than the angle between the positive x-axis and the line passing through the zeros ρ_{0} and $\rho \neq \rho_{1}$ and,
ii) $\operatorname{Im} \rho_{1}=\min \left\{\operatorname{Im} \rho \geq D_{\chi}: \rho\right.$ lies on the line $\left.L\right\}$.

Then we can proceed similarly as above and again get a contradiction. Hence, all the zeros above the line $t=D_{\chi}$ lie on the critical line $\sigma=1 / 2$. This completes the proof.

Acknowledgements

The first author is funded in part by the grant NSF-DMS 1112656 of Professor Victor H. Moll of Tulane University and sincerely thanks him for the support.

References

[1] H. Alzer and C. Berg, Some classes of completely monotonic functions, Annales Acad. Sci. Fenn. Math. 27 (2) (2002), 445-460.
[2] H. Alzer and C. Berg, Some Classes of Completely Monotonic Functions, II, Ramanujan J. 11, No. 2 (2006), 225-248.
[3] K. Ball, Completely monotonic rational functions and Hall's marriage theorem, J. Combin. Theory Ser. B 61, No. 1 (1994), 118-124.
[4] C. Berg, A Pick function related to an inequality for the entropy function, J. Inequal. Pure Appl. Math. 2, Issue 2, Article 26 (2001).
[5] C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1, No. 4 (2004), 433-439.
[6] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Ergebnisse der Math. 87, Springer, Berlin, 1975.
[7] B.C. Berndt, The numbers of zeros for $\zeta^{k}(s)$, J. London Math. Soc. (2) 2 (1970), 577-580.
[8] J.B. Conrey and A. Ghosh, Zeros of derivatives of the Riemann Zeta-function near the critical line, Analytic Number Theory, (ed. Berndt et. al.), Progr. Math. 85, Birkhäuser Boston, 1990.
[9] C.-P. Chen, Complete monotonicity and logarithmically complete monotonicity properties for the gamma and psi functions, J. Math. Anal. Appl. 336, No. 2 (2007), 812-822.
[10] W. Cheney and W. Light, A course in Approximation Theory, Graduate Text in Mathematics, 101, American Mathematical Society, Providence, RI, 2009.
[11] H. Davenport, Multiplicative Number Theory, 3rd ed., Springer-Verlag, New York, 2000.
[12] A. Dixit and A.Yu. Solynin, Monotonicity of quotients of theta functions related to an extremal problem on harmonic measure, J. Math. Anal. Appl. 336, No. 2 (2007), 1042-1053.
[13] A. Dixit, A. Roy and A. Zaharescu, Convexity of quotients of theta functions, J. Math. Anal. Appl. 386, No. 1 (2012), 319-331.
[14] C.L. Frenzen, Error bounds for asymptotic expansions of the ratio of two gamma functions, SIAM J. Math. Anal. 18 (1987), 890-896.
[15] B.-N. Guo, S. Guo and F. Qi, Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math., 233, No. 9 (2010), 2149-2160.
[16] M.E.H. Ismail, Integral representations and complete monotonicity of various quotients of Bessel functions, Can. J. Math. 29, No. 6 (1977), 1198-1207.
[17] C.H. Kimberling, A probabilistic interpretation of complete monotonicity, Aequat. Math. 10 (1974), 152-164.
[18] N. Levinson and H.L. Montgomery, Zeros of derivatives of the Riemann Zeta-function, Acta Math. 133 (1974), 49-65.
[19] K.S. Miller and S.G. Samko, Completely monotonic functions, Integr. Transf. and Spec. Funct. 12, No. 4 (2001), 389-402.
[20] F. Qi and B.-N. Guo, Complete monotonicities of functions involving the Gamma and Digamma functions, RGMIA, Res. Rep. Coll. 7, No. 1 (2004), Art. 6. Available online at http://www.rgmia.org//papers/v7n1/minus-one.pdf
[21] F. Qi, B.-N. Guo and C.-P. Chen, Some completely monotonic functions involving the Gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), 81-88.
[22] F. Qi and S.-X. Chen, Complete monotonicity of the logarithmic mean, Math. Inequal. Appl. 10, No. 4 (2007), 799-804.
[23] A. Speiser, Geometrisches zur Riemannschen zetafunktion, Math. Ann. 110 (1934), 514-521.
[24] R. Spira, Zero-free regions of $\zeta^{(k)}(s)$, J. London Math. Soc. 40 (1965), 677-682.
[25] R. Spira, Another zero-free region for $\zeta^{(k)}(s)$, Proc. Amer. Math. Soc. 35 (1972), 489-497.
[26] R. Spira, Calculation of Dirichlet L-functions, Math. Comp. 23 (1969), 489-497.
[27] E.C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed. Oxford, 1986.
[28] W. Hermann, Über die Gleichverteilung von Zahlen mod. Eins., Math. Ann. 77, No. 3 (1916), 313-352.
[29] C.Y. Yildirim, A note on $\zeta^{\prime \prime}(s)$ and $\zeta^{\prime \prime \prime}(s)$, Proc. Amer. Math. Soc. 124, No. 8, (1996), 23112314.
[30] C.Y. Yildirim, Zeros of derivatives of Dirichlet L-functions, Turkish J. Math. 20, No. 4 (1996), 521-534.

Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
E-mail address: adixit@tulane.edu
Department of Mathematics, University of Illinois, 1409 West Green Street, UrBANA, IL 61801, USA

E-mail address: roy22@illinois.edu
Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1764, RO-014700 Bucharest, Romania and Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA

E-mail address: zaharesc@illinois.edu

[^0]: 2010 Mathematics Subject Classification. Primary 11M06, 11M26.
 Keywords and phrases. Dirichlet L-function, complete monotonicity, logarithmically complete monotonicity.

