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Abstract

We prove that for fixed u and v, u, v ∈ [0, 1/2], the quotients θi(u|iπt)/θi(v|iπt), i = 1, 2, 3, 4, of
the theta functions are monotone on 0 < t < ∞. The case v = 0 had been used by the second
author to study a generalization of Gonchar’s problem on harmonic measure of radial slits.
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1. Introduction

The classical, but still flourishing theory of theta functions has incredibly many ram-
ifications and applications in modern mathematics. The modest goal of this work is to
contribute a small piece to this theory by proving new monotonicity properties of the
quotients of theta functions defined for rectangular lattices. In our notation we follow
the classical book [4]. So for z ∈ C and q = eiπτ with =τ > 0, the four theta functions
are defined by
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θ1(z|τ) = 2

∞∑
n=0

(−1)nq(n+
1
2 )

2

sin(2n+ 1)πz, (1.1)

θ2(z|τ) =2

∞∑
n=0

q(n+
1
2 )

2

cos(2n+ 1)πz, (1.2)

θ3(z|τ) =1 + 2

∞∑
n=1

qn
2

cos 2nπz, (1.3)

θ4(z|τ) =1 + 2

∞∑
n=1

(−1)nqn
2

cos 2nπz. (1.4)

For a fixed |q| < 1 (that is if =τ > 0), each of these series converges for every z ∈ C and
therefore θi := θi(z|τ) is an entire function of z = x+ iy.

In this paper we deal with the quotients

Si(u, v; t) :=
θi(u/2|iπt)
θi(v/2|iπt)

, i = 1, 2, 3, 4, (1.5)

defined for u, v ∈ C and q = eiπτ = e−π
2t with < t > 0. Our main result is the following

monotonicity property.
Theorem 1 For fixed u and v such that 0 ≤ u < v < 1, the functions S1(u, v; t) and
S4(u, v; t) are positive and strictly increasing on 0 < t <∞, while the functions S2(u, v; t)
and S3(u, v; t) are positive and strictly decreasing on 0 < t <∞.

We remind the reader that each of the functions θi(x/2|iπt), i = 1, 2, 3, 4, satisfies the
heat equation

∂θ

∂t
=
∂2θ

∂x2
, (1.6)

see [4, Section 13.19], which explains their frequent appearance in problems on the heat
flow in planar domains.

It is worth mentioning that for v = 0 and fixed u, the question about monotonicity of
S2(u, v; t) on 0 < t < ∞ was explored in the work of the second author [7] where it is
related to the steady-state distribution of heat. More precisely, the paper [7] deals with
the following problem on harmonic measure originally posed by A. A. Gonchar, see [3].

Let D be a Dirichlet domain on C and let E be a Borel set on ∂D. The harmonic
measure ω(z) := ω(z, E,D) of E with respect to D is the Perron solution ω(z) of the
Dirichlet problem in D with boundary values 1 on E and 0 on ∂D \ E. In particular,
ω(z) is a bounded harmonic function in D.

Let K be a compact subset of the half-open interval (0, 1]. For a fixed integer n ≥ 1,
let En(K) = {E} denote the family of all compact sets E ⊂ D having the form E =
∪nj=1{eiαjK}, where αj ∈ R.

A generalized A. A. Gonchar’s problem on harmonic measure is to find all configura-
tions E∗ ∈ En(K) realizing the maximum

maxω(0, E,D \ E), E ∈ En(K). (1.7)

To give a physical interpretation to the problem (1.7), we may think that D represents
a round stove with cooling circular boundary, where we keep constant temperature 0.
Then the question is how to place n identical heating elements with temperature 1, each
of which is of the form eiαK, to get the maximal temperature at the center of the stove.

An engineering intuition immediately suggests that the most symmetric configuration
En = ∪nk=1{e2πik/nK} and its rotations around the origin should provide the maximal
temperature at the center. But for a general compact set K, a rigorous proof of this guess
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remains elusive. Figure 1 displays admissible non-symmetric and symmetric configura-
tions for Gonchar’s problem with four heating elements.
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Fig. 1. Admissible configurations for Gonchar’s problem with four heaters

Originally in the early 1980’s, A. A. Gonchar asked this question for the case when
K = [ρ, 1], 0 < ρ < 1. In [3], V. N. Dubinin solved Gonchar’s problem by introducing a
new geometric transformation now known as dissymmetrization. The case of a general K
was studied by A. Baernstein II [2] who proved a more general inequality for the integral
means of ω(reiθ, E,D \ E) but only for n = 2 and n = 3.

For the case K = [r1, r2], 0 < r1 < r2 < 1, and any n ≥ 1, Gonchar’s problem was
studied by the second author in [7], where he first reduced the original problem to the
question about the monotonicity of the function m(r, ω) + 2σω. Here σ = −(1/2π) log r
and m(r, ω) denotes the reduced module of the slit semidisk T (r, θ) = {z : 0 < |z| <
1, 0 < arg z < π} \ {z : |z| = r, 0 ≤ arg z ≤ θ} considered as a topological triangle with
vertices z1 = 0, z2 = 1, and z3 = −1. For the definition and properties of the reduced
module of a triangle the reader may consult [8].

For a fixed r in 0 < r < 1, the angle θ = θ(ω) is an increasing function of the harmonic
measure ω. It was shown in [7] that the function m(r, ω)+2σω can be explicitly expressed
as

m(r, ω) + 2σω = − 2

π
logS2(ω, 0;

1

2π|τ |
),

where S2 is defined by (1.5). Therefore for studying monotonicity properties of the func-
tion m(r, ω) + 2σω, we may work with the quotient of the theta functions (1.5). The
proof of monotonicity of S2(u, 0; t) outlined in Lemma 5 in [7] contains an error since the
constant term c0 is missing in formula (4.20) in [7]. Thus, by proving Theorem 1, this
particular case corrects this error.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1 for
functions S1 and S2 and in Section 3, we prove this theorem for functions S3 and S4.

In Section 4, we collect series expansions and inequalities necessary for our proofs in
Sections 2 and 3. It is worth mentioning that some proofs in Section 4 rest on certain
convolution formulas and inequalities for the divisor function, which occurs frequently in
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Number Theory. Some of the relations used in our proofs may be known. To make this
paper self-contained we provide the proofs of the relations which we could not locate in
major texts.

2. Proof of Theorem 1 for S1(u, v; t) and S2(u, v; t)

(a) First we prove the monotonicity property of S1(u, v; t). It follows from (1.1) that
for 0 < x < 1 and 0 < t < ∞ the function θ1(x/2|iπt) takes real values only. Since
the zeros of θ1(z|τ) are at the points z = m + nτ , m,n ∈ Z, the latter implies that the
quotient S1(u, v; t) is positive for the considered values of u, v, and t. Since θ1(x/2|iπt)
satisfies the heat equation (1.6), we have

∂

∂t
logS1(u, v; t) =

θ′′1 (u/2|iπt)
θ1(u/2|iπt)

− θ′′1 (v/2|iπt)
θ1(v/2|iπt)

. (2.1)

Henceforth in this paper the prime will denote differentiation with respect to z in θi(z|τ).
Now equation (2.1) implies that ∂

∂tS1(u, v; t) > 0 for 0 ≤ u < v < 1 and 0 < t < ∞ if
and only if for every fixed 0 < t <∞ the function θ′′1 (x|iπt)/θ1(x|iπt) strictly decreases
in 0 < x < 1/2.

For the rest of this proof, we fix t, 0 < t <∞. Accordingly, we will abbreviate θ1(z|iπt)
as θ1(z).

So, we claim that θ′′1 (x)/θ1(x) strictly decreases for 0 < x < 1/2. The function
θ′1(z)/θ1(z) has real period 1 and imaginary quasi-period τ , see [4, Section 13.19]; i.e.,

θ′1(z + 1)

θ1(z + 1)
=
θ′1(z)

θ1(z)
and

θ′1(z + τ)

θ1(z + τ)
= −2πi+

θ′1(z)

θ1(z)
.

Differentiating these equations with respect to z, we get

θ′′1 (z + 1)θ1(z + 1)− θ′1
2
(z + 1)

θ21(z + 1)
=
θ′′1 (z + τ)θ1(z + τ)− θ′1

2
(z + τ)

θ21(z + τ)

=
θ′′1 (z)θ1(z)− θ′1

2
(z)

θ21(z)
.

This shows that P1(z) := (θ′′1 (z)θ1(z) − (θ′1)2(z))/θ21(z) is an elliptic function with
periods 1 and τ , which has a single pole of order 2 at z = 0 in the period rectangle.

Now it follows from the basic theory of elliptic functions that P1(z) can be expressed
in the form P1(z) = a℘(z) + b, where ℘ is the Weierstrass ℘-function with periods 1
and τ and a, b ∈ C. To find the coefficients a and b, we will use the well-known series
expansions at z = 0:

θ′1(z)

θ1(z)
= π cot(πz) + 4π

∞∑
n=1

q2n

1− q2n
sin(2πnz) =

1

z
+ positive powers of z (2.2)

and

℘(z) =
1

z2
+
g2z

2

22 · 5
+
g3z

4

22 · 7
+

g22z
6

24 · 3 · 52
+ . . . (2.3)

Differentiating (2.2), we find

P1(z) =−π2 csc2(πz) + 8π2
∞∑
n=1

nq2n

1− q2n
cos(2πnz) (2.4)

=− 1

z2
+ c0 + positive powers of z,
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where

c0 = c0(q) = lim
z→0

(P1(z) + z−2) = −π
2

3
+ 8π2

∞∑
n=1

nq2n

1− q2n
. (2.5)

Comparing (2.3) and (2.4), we obtain

P1(z) =
d

dz

θ′1(z)

θ1(z)
= −℘(z) + c0. (2.6)

Using (2.6), we find

θ′′1 (z)

θ1(z)
=

(
θ′1(z)

θ1(z)

)2

− (℘(z)− c0). (2.7)

Differentiating (2.7) once more and taking into account (2.6), we obtain

d

dz

θ′′1 (z)

θ1(z)
= −2

θ′1(z)

θ1(z)
(℘(z)− c0)− ℘′(z). (2.8)

Now we will explore some mapping properties of the ℘-function. It is well known, see
[4, p. 376] that ℘(z) maps the parallelogram R (which is a rectangle in our case) with
vertices 0, ω = 1/2, ω + ω′ = 1/2 + τ/2, and ω′ = τ/2 conformally and one-to-one
onto the lower half-plane {w : =w < 0}. In addition, ℘(z) is real and decreases from
∞ to −∞ as z describes the boundary of R in the counter clock-wise direction starting
from 0. In particular, using the standard notation e1 = ℘(1/2), e2 = ℘(1/2 + τ/2), and
e3 = ℘(τ/2) for the images of the vertices of R, we have the inequalities e3 < e2 < e1.
This monotonicity property and inequality (4.15) of Lemma 1 in Section 4 imply that

℘(x)− c0 > ℘(1/2)− c0 = e1 − c0 > 0 for 0 < x < 1/2.

This together with (2.8) shows that the inequality d
dz

θ′′1 (z)
θ1(z)

< 0 for z = x, 0 < x < 1/2,

is equivalent to the following inequality:

F1(x) := 2
θ′1(x)

θ1(x)
+

℘′(x)

℘(x)− c0
> 0 for 0 < x < 1/2. (2.9)

Let us show that F1 vanishes at z = 0 and z = 1/2. Since ℘(z) has a stationary point
at z = 1/2, we have ℘′(1/2) = 0. Since θ′1(z + 1/2) = θ′2(z) is an odd analytic function,
we also have θ′1(1/2) = 0. Therefore, F1(1/2) = 0.

To find F1(0), we use the series expansions (2.2) and (2.3). From (2.3) one can easily
find

℘′(z)

℘(z)− c0
= −2

z
+ positive powers of z. (2.10)

Substituting (2.2) and (2.10) into (2.9) and letting z = x→ 0+, we obtain: F1(0) = 0.
Differentiating (2.9), we find

F ′1(x) =
−2(℘(x)− c0)3 + ℘′′(x)(℘(x)− c0)− ℘′2(x)

(℘(x)− c0)2
.

Using the following well-known differential equations for the ℘-function (see [4, p.
332]):

℘′
2
(z) = 4℘3(z)− g2℘(z)− g3 and ℘′′(z) = 6℘2(z)− 1

2
g2, (2.11)

where g2 and g3 are the coefficients in (2.3), we can express F ′1(z) as

F ′1(z) =
( g22 − 6c20)℘(z) + (g3 + 2c30 + g2c0

2 )

(℘(z)− c0)2
. (2.12)
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Therefore F ′1(x) = 0 for some 0 < x < 1/2 if and only if

℘(x) = −
g3 + 2c30 + g2c0

2
g2
2 − 6c20

. (2.13)

Since ℘(x) is monotone in 0 < x < 1/2, the latter shows that the equation F ′1(x) = 0 has
at most one solution for 0 < x < 1/2.

Since ℘(x)→ +∞ as x→ 0+, (2.12) implies

F ′1(x) =
g2
2 − 6c20
℘(x)

+ o(1/℘(x)) as x→ 0+. (2.14)

By Lemma 2 of Section 4, we have g2
2 − 6c20 > 0. Hence, (2.14) implies that F ′1(x) > 0

for all sufficiently small x > 0. Since F1(0) = 0 the latter implies that F1(x) > 0 for
sufficiently small x > 0.

Finally, since F1(x) has at most one critical point on 0 < x < 1/2 and F1(1/2) = 0,
it follows that F1(x) > 0 for 0 < x < 1/2. Therefore the function θ′′1 (x)/θ1(x) strictly
decreases on 0 < x < 1/2. Hence, the logarithmic derivative in (2.1) is positive and
therefore the function S1(u, v; t) strictly increases on 0 < t <∞. 2

(b) The monotonicity property of the function S2(u, v; t) easily follows from the mono-
tonicity property of S1(u, v; t). Indeed, since θ2(z|τ) = θ1(1/2− z|τ) we have

S2(u, v; t) = S1(1− u, 1− v; t) = S−11 (1− v, 1− u; t),

which is positive and decreasing by part (a) since 1− v < 1− u. 2

Remark 1. Since F1(0) = F1(1/2) = 0, it follows from our proof above that the equation
F ′1(x) = 0 has precisely one solution on 0 < x < 1/2. This together with (2.12) and (2.13)
implies the inequality

−(g3 + 2c30 + g2c0
2 )

g2
2 − 6c20

> e1, (2.15)

where e1 = ℘(1/2), which will be used in the proof of the monotonicity property of
function S4(u, v; t) in Section 3.

3. Proof of Theorem 1 for S3(u, v; t) and S4(u, v; t)

(a) The first part of this proof follows the same lines as in Section 2. First we work
with S4(u, v; t). One can easily see that S4(u, v; t) is real and positive for 0 ≤ u < v < 1
and 0 < t <∞. Since θ4(x/2|iπt) satisfies the heat equation (1.6), we have

∂

∂t
logS4(u, v; t) =

θ′′4 (u/2|iπt)
θ4(u/2|iπt)

− θ′′4 (v/2|iπt)
θ4(v/2|iπt)

. (3.1)

As in Section 2, our goal now is to prove that for a fixed 0 < t < ∞, the function
θ′′4 (x)/θ4(x) := θ′′4 (x|iπt)/θ4(x|iπt) strictly decreases on 0 < x < 1/2.

Differentiating the well-known periodicity relations

θ′4(z + 1)

θ4(z + 1)
=
θ′4(z)

θ4(z)
and

θ′4(z + τ)

θ4(z + τ)
= −2πi+

θ′4(z)

θ4(z)
,

we obtain

θ′′4 (z + 1)θ4(z + 1)− θ′4
2
(z + 1)

θ24(z + 1)
=
θ′′4 (z + τ)θ4(z + τ)− θ′4

2
(z + τ)

θ24(z + τ)

=
θ′′4 (z)θ4(z)− θ′4

2
(z)

θ24(z)
.
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Therefore the function

P4(z) :=
θ′′4 (z)θ4(z)− θ′4

2
(z)

θ24(z)
(3.2)

is an elliptic function with periods 1 and τ having a single pole of order 2 at z = τ/2
in the period rectangle. Taking the logarithm of both sides of the identity θ1(z + τ/2) =
iq−1/4e−iπzθ4(z) and then differentiating twice, we obtain

P4(z) :=
θ′′1 (z + τ/2)θ1(z + τ/2)− θ′1

2
(z + τ/2)

θ21(z + τ/2)
= −(℘(z + τ/2)− c0), (3.3)

where the second equality follows from equation (2.6).
From (3.2) and (3.3), we find

θ′′4 (z)

θ4(z)
=

(
θ′4(z)

θ4(z)

)2

− (℘(z + τ/2)− c0).

Differentiating this once more and using (3.3), we obtain

d

dz

θ′′4 (z)

θ4(z)
= −2

θ′4(z)

θ4(z)
(℘(z + τ/2)− c0)− ℘′(z + τ/2). (3.4)

Now we consider the function

F4(z) := 2
θ′4(z)

θ4(z)
+

℘′(z + τ/2)

℘(z + τ/2)− c0
. (3.5)

Equations (3.4) and (3.5) are counterparts of the equations (2.8) and (2.9) in Section 2.
But now, as it follows from inequalities (4.4) of Lemma 1 in Section 4, the function
℘(x + τ/2) − c0 (which increases from e3 − c0 to e2 − c0 when x runs from 0 to 1/2)
has a zero at some point s, 0 < s < 1/2. In addition, we have ℘′(x + τ/2) > 0 for
0 < x < 1/2. This inequality follows, for instance, from the mapping properties of the
℘-function, which we discussed in the previous section. The latter shows that

d

dz

θ′′4 (x)

θ4(x)

∣∣∣∣
z=s

= −℘′(s+ τ/2) < 0.

Thus, to prove that the derivative in (3.4) is negative for 0 < x < 1/2, we have to
show that

F4(x) < 0 for 0 < x < s and F4(x) > 0 for s < x < 1/2. (3.6)

Differentiating (3.5) and using differential equations (2.11), we find for x 6= s,

F ′4(x) =
( g22 − 6c20)℘(x+ τ/2) + (g3 + 2c30 + g2c0

2 )

(℘(x+ τ/2)− c0)2
. (3.7)

We note that ℘(x+ τ/2) strictly increases from e3 = ℘(τ/2) to e2 = ℘(1/2 + τ/2) when
x runs from 0 to 1/2. Since e2 < e1 and g2

2 − 6c20 > 0 by inequality (4.15) of Lemma 2 in
Section 4, the latter observation together with (3.7) and inequality (2.15) of Remark 1
implies that

F ′4(x) < 0 for all 0 < x < 1/2, x 6= s. (3.8)

Now we find the values F4(0) and F4(1/2). Using the Fourier expansion

θ′4(z)

θ4(z)
= 4π

∞∑
m=1

qm

1− q2m
sin 2πmz, (3.9)

we have
θ′4(0)

θ4(0)
=
θ′4(1/2)

θ4(1/2)
= 0. (3.10)
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Since z = τ/2 and z = 1/2 + τ/2 are stationary points of the Weierstrass ℘-function, we
have

℘′(τ/2) = ℘′(1/2 + τ/2) = 0. (3.11)

In addition, by Lemma 1 we have

℘(τ/2)− c0 < 0 < ℘(1/2 + τ/2)− c0. (3.12)

Substituting (3.10) and (3.11) into (3.5) and taking into account (3.12), we find

F4(0) = F4(1/2) = 0,

which together with (3.8) proves (3.6).
Therefore the derivative in (3.4) is negative for 0 < x < 1/2. Hence, the function

θ′′4 (x)/θ4(x) strictly decreases on 0 < x < 1/2. Thus, the logarithmic derivative in (3.1)
is positive and therefore the proof of the monotonicity property of S4(u, v; t) is complete.
2

(b) To prove the monotonicity property of S3(u, v; t), we write

S3(u, v; t) = S4(1− u, 1− v; t) = S−14 (1− v, 1− u; t),

which is positive and decreasing by part (a). 2

4. Some series expansions and inequalities

Lemma 1 Let e1 = e1(q) = ℘(1/2), e2 = e2(q) = ℘(1/2 + τ/2), e3 = e3(q) = ℘(τ/2)
and let c0 = c0(q) be defined by (2.5). Then for |q| < 1,

e1 − c0 = π2 + 8π2
∞∑
k=1

q2k

(1 + q2k)2
, (4.1)

e2 − c0 = 8π2
∞∑
k=0

q2k+1

(1 + q2k+1)2
, (4.2)

e3 − c0 = −8π2
∞∑
k=1

kqk

1− q2k
. (4.3)

In particular, for 0 < q < 1, we have

e3(q) < c0(q) < e2(q). (4.4)

Proof. (a) By (2.4) and (2.6), we have

e1 − c0 = −P1(1/2) = π2 − 8π2
∞∑
k=1

(−1)kkq2k

1− q2k
. (4.5)

For |q| < 1, the series under consideration converge absolutely, so after some algebra we
find

∞∑
k=1

(−1)kkq2k

1− q2k
=

∞∑
k=1

(−1)kkq2k

( ∞∑
m=0

q2mk

)
=

∞∑
k=1

∞∑
m=0

(−1)kkq(2m+2)k = (4.6)

=

∞∑
m=0

∞∑
k=1

(−1)kkq(2m+2)k = −
∞∑
m=1

q2m

(1 + q2m)2
,

where on the last step we used the binomial expansion for (1− x)−2.
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Combining equations (4.5) and (4.6), we obtain (4.1).
(b) By (2.6), we have

e2 − c0 = ℘(1/2 + τ/2)− c0 = − d

dz

θ′1(z)

θ1(z)

∣∣∣∣
z=1/2+τ/2

= − d

dz

θ′4(z)

θ4(z)

∣∣∣∣
z=1/2

. (4.7)

Differentiating (3.9), we find

d

dz

θ′4(z)

θ4(z)

∣∣∣∣
z=1/2

= 8π2
∞∑
k=1

(−1)kkqk

1− q2k
. (4.8)

Next, we calculate as in part (a):

∞∑
k=1

(−1)kkqk

1− q2k
=

∞∑
k=1

(−1)kkqk

( ∞∑
m=0

q2mk

)
=

∞∑
k=1

∞∑
m=0

(−1)kkq(2m+1)k = (4.9)

=

∞∑
m=0

∞∑
k=1

(−1)kkq(2m+1)k = −
∞∑
m=0

q2m+1

(1 + q2m+1)2
.

Combining (4.7), (4.8), and (4.9), we obtain (4.2), which is clearly positive for 0 < q < 1.

(c) Calculating as in parts (a) and (b), we obtain

c0 − e3 = −℘(τ/2) + c0 =
d

dz

θ′4(z)

θ4(z)

∣∣∣∣
z=0

. (4.10)

Differentiating (3.9), we find

d

dz

θ′4(z)

θ4(z)

∣∣∣∣
z=0

= 8π2
∞∑
k=1

kqk

1− q2k
. (4.11)

Combining (4.10) and (4.11), we obtain (4.3), which is negative for 0 < q < 1. Therefore
all assertions of the lemma, including inequalities (4.4), are proved. 2

It follows from (4.4) that for a fixed τ = iπt, t > 0, the equation ℘(x+ τ/2) = c0 has
precisely one solution, say s, on 0 < x < 1/2. The latter equation contains a complex
variable τ . Using the addition formula for the ℘-function, one can find the following
equivalent equation

℘(x) =
2c0e3 + e1e2 + π4θ42(0)θ43(0)

2(c0 − e3)
, (4.12)

which is more convenient since it includes only real variables.
In the proof of Lemma 2 below we will use the divisor function σx(n) that is important

in Number Theory. For x ≥ 1, this function is defined by

σx(n) =
∑
d|n

dx,

where the sum is taken over all divisors d of n, see [1, p. 38]. For x = 1, we write
σ(n) := σx(n). The divisor function satisfies a variety of nice identities. In particular,
the following Liouville’s convolution formula is important for us, see [5, equation 3.10]:

k−1∑
m=1

σ(m)σ(k −m) =
5

12
σ3(k) +

1− 6k

12
σ(k). (4.13)
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Lemma 2 Let g2 = g2(q) be the invariant in the expansion (2.3) of the Weierstrass
℘-function and let c0 = c0(q) be defined by (2.5). Then for |q| < 1,

1

2
g2 − 6c20 = 192π2

∞∑
k=1

kσ(k)q2k. (4.14)

In particular, for 0 < q < 1, we have

1

2
g2(q)− 6c0(q)2 > 0. (4.15)

Proof. The invariant g2 = g2(q) of the Weierstrass ℘-function can be represented as

g2 =
4π4

3
+ 320π4

∞∑
k=1

σ3(k)q2k, (4.16)

see [1, p. 20].
Next we show that c20 = c20(q) and therefore the function g2(q)/2 − 6c20(q) itself also

can be represented as a power series in q with the coefficients expressed in terms of the
divisor function.

We want to emphasize here that for |q| < 1, all series under consideration converge
absolutely which justifies our algebraic calculations.

For |q| < 1, we have

∞∑
n=1

nq2n

1− q2n
=

∞∑
n=1

(
n

∞∑
k=1

q2(k+1)n

)
=

∞∑
n=1

σ(n)q2n. (4.17)

Squaring both sides of (4.17), we obtain( ∞∑
n=1

nq2n

1− q2n

)2

=

∞∑
n=1

∞∑
m=1

σ(n)σ(m)q2(m+n) =

∞∑
k=2

(
k−1∑
m=1

σ(m)σ(k −m)

)
q2k (4.18)

=
1

12

∞∑
k=2

(5σ3(k) + (1− 6k)σ(k)q2k,

where in the last step we used Liouville’s formula (4.13).
Now, combining formulas (2.5), (4.16), (4.17), and (4.18) and using Liouville’s formula

(4.13), we obtain (4.14):

1

2
g2 − 6c20 = 160π4

∞∑
k=1

σ3(k)q2k + 32π4

 ∞∑
n=1

nq2n

1− q2n
− 12

( ∞∑
n=1

nq2n

1− q2n

)2


=π4

(
160

∞∑
k=1

σ3(k)q2k + 32

∞∑
k=1

σ(k)q2k − 32

∞∑
k=1

(5σ3(k) + (1− 6k)σ(k)) q2k

)

= 192π4
∞∑
k=1

kσ(k)q2k,

which is clearly positive for 0 < q < 1. Thus, (4.15) is also proved. 2

Remark 2. Numerical evidence suggests that the odd and even partial derivatives in
t of the quotients Si(u, v; t) have alternating signs. In modern literature such functions
are called completely monotonic. It would be interesting to prove that for fixed u and v,
0 ≤ u < v < 1, the quotients Si(u, v; t), i = 1, 2, 3, 4, are completely monotonic on t > 0.
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