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MODULAR-TYPE TRANSFORMATIONS

AND INTEGRALS INVOLVING THE
RIEMANN Ξ-FUNCTION

ATUL DIXIT

In memory of the great mathematician Hansraj Gupta

Abstract. A survey of various developments in the area of modular-type

transformations (along with their generalizations of different types) and in-

tegrals involving the Riemann Ξ-function associated to them is given. We

discuss their applications in Analytic Number Theory, Special Functions and

Asymptotic Analysis.

1. Introduction

The Jacobi theta function θ(z) :=
∑∞

n=−∞
e2πin2z is one of the most impor-

tant special functions of Mathematics. At the beginning of the last chapter on

theta functions in his book [26, p. 314], Rainville remarks ‘It seems safe to say

that no topic in Mathematics is more replete with beautiful formulas than that on

which we now embark’. In Mathematics theta functions are encountered in Spe-

cial Functions, Partial Differential Equations, Number Theory, and, in general, in

Science in Heat Conduction, Electrical Engineering, Physics etc.

For z ∈ H (upper half plane), the famous theta transformation formula is

given by [5, p. 12]
θ (−1/4z) =

√
−2iz θ(z),

or, equivalently,∑∞

n=−∞
exp

(
πn2/2iz

)
=
√
−2iz

∑∞

n=−∞
exp

(
2πin2z

)
. (1.1)

This implies [5, p. 12]

θ (z/(4z + 1)) =
√

4z + 1 θ(z).

Along with the obvious fact θ(z + 1) = θ(z), this implies that for any γ ∈ Γ0(4),

θ2(γz) = χ−1(d)(cz + d)θ2(z),
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where χ−1 is the Dirichlet character modulo 4 defined by χ−1(n) =
(−1
n

)
=

(−1)(n−1)/2. Thus θ ∈ M1/2(Γ0(4), χ−1), that is, the theta function is a weight

1/2 modular form on Γ0(4) twisted by the Dirichlet character χ−1. Even though

Eisenstein, and later Hardy, anticipated the theory of modular forms of half inte-

gral weight k/2, where k is an odd positive integer, a systematic study of such a

theory commenced with a seminal paper by Shimura [30].

Letting z = iα2/2 and β = 1/α, one can easily write (1.1) in a symmetric

form, namely, for Re(α2) > 0, Re(β2) > 0,

√
α

(
1

2α
−
∑∞

n=1
e−πα

2n2

)
=
√
β

(
1

2β
−
∑∞

n=1
e−πβ

2n2

)
. (1.2)

Hardy [20] obtained an integral representation for the left-hand side of (1.2),

namely for Re(α2) > 0,

√
α

(
1

2α
−
∑∞

n=1
e−πα

2n2

)
=

2

π

∫ ∞
0

Ξ(t/2)

1 + t2
cos

(
1

2
t logα

)
dt, (1.3)

and used (1.2) and (1.3) to prove that infinitely many zeros of the Riemann zeta

function ζ(s) lie on the critical line. Note that the integral in (1.3) is invariant if

we replace α by β for αβ = 1. Hence, (1.3) also gives (1.2).

Even though the transformation (1.2) is associated with the modularity of the

theta function θ(z), not all transformations of such type are known to be associated

with modular forms. We begin with the following beautiful example from page

220 of Ramanujan’s Lost Notebook [28].

Theorem 1.1. Define λ(x) := ψ(x) + 1
2x − log x, where ψ(x) is the logarithmic

derivative of the gamma function. Let the Riemann ξ-function be defined by

ξ(s) = (1/2)s(s− 1)π−
1
2 sΓ( 1

2s)ζ(s),

and let
Ξ(t) := ξ(1/2 + it)

be the Riemann Ξ-function. If α and β are positive numbers such that αβ = 1,

then

√
α

{
γ − log(2πα)

2α
+
∞∑
n=1

λ(nα)

}
=
√
β

{
γ − log(2πβ)

2β
+
∞∑
n=1

λ(nβ)

}

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(

1
2 t logα

)
1 + t2

dt, (1.4)

where γ denotes Euler’s constant.

Note that [1, p. 259, formula 6.3.18] for | arg z| < π, as z →∞,

ψ(z) ∼ log z − 1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · · .

This implies that λ(x) = O(x−2), and hence the series
∑∞
n=1 λ(nα) and∑∞

n=1 λ(nβ) converge.

This formula was first proved in [2] where the authors gave two proofs. Later

in [7], [8], it was obtained as a special case of a more general result which we will
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soon discuss. A yet another proof was given in [6].

A transformation of the form F(z) = F(−1/z), z ∈ H, can be equivalently

written in the form F (α) = F (β), where Re(α) > 0, Re(β) > 0, and αβ = 1.

Indeed, if Im(z) > 0, then letting α = −iz gives Re(α) > 0. Thus, if α, β ∈ C
such that Re(α) > 0 and αβ = 1, then −1/z = iβ, so that Re(β) > 0. Now let

g(w) = h(e2πiw) so that g(−1/z) = g(z) is equivalent to h(e−2πβ) = h(e−2πα).

Now for x > 0, let F (x) = h(e−2πx), so that F (α) = F (β). The process can also be

reversed so that the transformation F(z) = F(−1/z), z ∈ H, is actually equivalent

to F (α) = F (β), where Re(α) > 0, Re(β) > 0 and αβ = 1.

By a modular-type transformation, we mean a relation of the form F (α) =

F (β), αβ = 1. The word ‘modular-type’ is used to indicate that there may be

some such transformations which cannot be made ‘modular’ in the sense that they

may not be associated to a modular form on SL2(Z) or its congruence subgroups.

There are umpteen examples of modular-type transformations in Ramanujan’s

Notebooks [29] as well as in his Lost Notebook [28]. He preferred writing them in

the form F (α) = F (β) over F(z) = F(−1/z), such as the one in (1.4), and even

though he always considered α, β to be positive real numbers, by analytic contin-

uation, one can almost always extend his identities for Re(α) > 0 and Re(β) > 0.

In this survey, we will also discuss more general modular-type transformations

of the form F (z, α) = F (z, β), F (w,α) = F (iw, β), and F (z, w, α) = F (z, iw, β),

where αβ = 1 and i =
√
−1.

Using the theory of Mellin transforms and residue calculus, or some ad-hoc

techniques from special functions, the integrals involving the Riemann Ξ-function

such as the ones in (1.3) and (1.4) can be respectively evaluated to one of the

two expressions in a modular-type transformation such as the ones in (1.2) and

(1.4) and then the corresponding modular-type transformations can be established

through the invariance of the integrals upon replacing α by β. For the results

obtained through this approach, see [2], [3], [6], [7], [8], [9] and [13]. Alternatively,

one might first establish a modular-type transformation and then link it to an

integral involving the Riemann Ξ-function. An indispensable part of this latter

approach is the theory of reciprocal functions, and of self-reciprocal functions.

Since the results obtained through the former approach are already surveyed in

[10], we concentrate on the latter in this survey.

2. Modular-type transformations and integrals of Ξ(t) through

the theory of reciprocal functions
We first begin with a generalization of integrals of the type∫∞

0
f
(
t
2

)
Ξ
(
t
2

)
cos( 1

2 t logα) dt. where f(t) is of the form f(t) = g(it)g(−it) with

g analytic in t, in which the cosine is replaced by a more general class of functions

[14].

Let φ(x) and ψ(x) be two integrable functions on the real line. The functions
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φ and ψ are said to be reciprocal in the Fourier cosine transform if

φ(x) =
2√
π

∫ ∞
0

ψ(u) cos(2ux)du and ψ(x) =
2√
π

∫ ∞
0

φ(u) cos(2ux)du.

Define Z1(s) and Z2(s) by

Γ

(
s

2

)
Z1(s) :=

∫ ∞
0

xs−1φ(x)dx, Γ

(
s

2

)
Z2(s) :=

∫ ∞
0

xs−1ψ(x)dx,

each valid in a specific vertical strip in the complex s-plane. Note that in case

of a non-empty intersection of the two corresponding vertical strips, the Mellin

inversion theorem gives

φ(x) =
1

2πi

∫
(c)

Γ

(
s

2

)
Z1(s)x−sds, ψ(x) =

1

2πi

∫
(c)

Γ

(
s

2

)
Z2(s)x−sds,

where Re(s) = c lies in the intersection. Here and throughout this paper, by
∫

(c)

we mean
∫ c+i∞
c−i∞ . Let

Θ(x) := φ(x) + ψ(x) and Z(s) := Z1(s) + Z2(s) (2.1)

so that

Γ

(
s

2

)
Z(s) =

∫ ∞
0

xs−1Θ(x)dx

for values of s in the intersection of the two strips.

Let 0 < ω ≤ π and λ < 1
2 . If f(z) is such that

i) f(z) is analytic with z = reiθ, regular in the angle defined by r > 0,

|θ| < ω,

ii) f(z) satisfies the bounds

f(z) =

O(|z|−λ−ε) if |z| is small,

O(|z|−b−ε) if |z| is large,

for every ε > 0 and b > λ, and uniformly in any angle θ < ω, then we say

that f belongs to the class K and write f(z) ∈ K(ω, λ, b).

With this set-up, the following result was proved in [14, Theorem 1.2].

Theorem 2.1. Let b > 1 and φ, ψ ∈ K(ω, 0, b) and let Θ and Z be defined in

(2.1). Then we have∫ ∞
0

Ξ(t)

t2 + 1/4
Z(1/2 + it)dt = (π/2)Z(1)− (π/2)

∑∞

n=1
Θ(n
√
π).

This not only gives (1.3) as a special case but also the following general theta

transformation along with a general integral involving Ξ(t) [14, Corollary 1.2].

For αβ = 1, Re(α2) > 0, Re(β2) > 0, and w ∈ C,
√
α

(
(e−

w2

8 /2α)−ew
2

8

∑∞

n=1
e−πα

2n2

cos(
√
παnw)

)
=
√
β

(
(e

w2

8 /2β)− e−w
2

8

∑∞

n=1
e−πβ

2n2

cosh(
√
πβnw)

)
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=
1

π

∫ ∞
0

Ξ(t/2)

1 + t2
∇ (α,w, (1 + it)/2) dt, (2.2)

where

∇(x,w, s) := ρ(x,w, s) + ρ(x,w, 1− s),

ρ(x,w, s) := x
1
2−se−

w2

8 1F1

(
(1− s)/2; 1/2;w2/4

)
,

with 1F1(a; c; z) being the confluent hypergeometric function.

Though the first equality in (2.2) is known since Jacobi, the integral involving

Ξ(t) in (2.2) was first found in [9]. In fact the first equality in (2.2) was obtained

by first evaluating this integral to the expression on far left and then utilizing the

fact that the integral is invariant under the simultaneous replacement of α by β

and w by iw. This is one among the three examples of the generalized modular-

type transformation of the form F (w,α) = F (iw, β) studied in [9], the other two

being generalizations of some results of Ferrar [18] and Hardy [21].

In the last section of his paper [27], Ramanujan considered the integral

I1(z, x)=

∫ ∞
0

Γ

(
z − 1 + it

4

)
Γ

(
z − 1− it

4

)
Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos( t2 log x)dt

(z + 1)2 + t2
,

(2.3)

x > 0, and obtained alternate integral representations for it in the regions1 Re(s) >

1, −1 < Re(s) < 1, −3 < Re(s) < −1. In [7, Theorem 1.4], [8, Theorem 1.5], it

was shown that this integral generalizes Ramanujan’s result (1.4), thereby giving

a generalized modular-type transformation of the type F (z, α) = F (z, β), αβ = 1.

This result is given below.

Theorem 2.2. Let −1 < Re(z) < 1. Let λ(z, x) = ζ(z + 1, x) − 1
2x
−z−1 + x−z

−z ,

where ζ(z, x) is the Hurwitz zeta function. Let I1(z, x) be defined in (2.3). Then

for α, β > 0, αβ = 1,

8(4π)
z−3
2

Γ(z + 1)
I1(z, α) = α

z+1
2

(∑∞

n=1
λ(z, nα)− ζ(z + 1)

2αz+1
− ζ(z)

αz

)
= β

z+1
2

(∑∞

n=1
λ(z, nβ)− ζ(z + 1)

2βz+1
− ζ(z)

βz

)
.

The integral I1(z, α) involves a product of the Riemann Ξ-function at two

different arguments, namely Ξ( t+iz2 )Ξ( t−iz2 ). An integral of a similar type, namely,

I2(z, x) :=

∫ ∞
0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
cos
(

1
2 t log x

)
(t2 + (z + 1)2)(t2 + (z − 1)2)

dt (2.4)

was studied first in [8]. It is associated to the famous Ramanujan-Guinand formula

that will be discussed in the next section.

These examples motivate us, and indeed as will be seen in the next sec-

tion, it is extremely fruitful to consider a more general integral where the co-

sine is replaced by a general class of functions. This was done in [15]. We

1Each of the representations for Re(s) > 1 and −3 < Re(s) < −1 involves an extra expression

which should not be present. See [7, Theorem 1.2] for the corrected version.
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provide below the set-up given in [15], albeit with one extra parameter w, for

reasons to be clear soon. However, we first note that while the appropriate kernel

with respect to which we study the reciprocal functions for studying integrals of

the form
∫∞

0
f
(
t
2

)
Ξ
(
t
2

)
Z
(

1+it
2

)
dt is the cosine function, the one while study-

ing integrals of the form
∫∞

0
f
(
t
2

)
Ξ
(
t+iz

2

)
Ξ
(
t−iz

2

)
Z
(

1+it
2

)
dt turns out to be

cos (πz)M2z(4
√
tx)− sin (πz) J2z(4

√
tx), where Mz(x) := 2

πKz(x) − Yz(x), with

Jz(x), Yz(x) being the Bessel functions of the first and second kinds respectively

and Kz(x) being the modified Bessel function of the second kind.

Let the functions ϕ and ψ be related by

ϕ(x, z, w) = 2

∫ ∞
0

ψ(t, z, w)
(

cos (πz)M2z(4
√
tx)− sin (πz) J2z(4

√
tx)
)
dt,

ψ(x, z, w) = 2

∫ ∞
0

ϕ(t, z, w)
(

cos (πz)M2z(4
√
tx)− sin (πz) J2z(4

√
tx)
)
dt.

Let the normalized Mellin transforms Z1(s, z, w) and Z2(s, z, w) of the func-

tions ϕ(x, z, w) and ψ(x, z, w) be defined by

Γ ((s− z)/2) Γ ((s+ z)/2)Z1(s, z, w) =

∫ ∞
0

xs−1ϕ(x, z, w) dx,

Γ ((s− z)/2) Γ ((s+ z)/2)Z2(s, z, w) =

∫ ∞
0

xs−1ψ(x, z, w) dx,

where each equation is valid in a specific vertical strip in the complex s-plane. Set

Z(s, z, w)=Z1(s, z, w)+Z2(s, z, w) and Θ(x, z, w)=ϕ(x, z, w)+ψ(x, z, w), (2.5)

so that

Γ ((s− z)/2) Γ ((s+ z)/2)Z(s, z, w) =

∫ ∞
0

xs−1Θ(x, z, w) dx

for values of s which lie in the intersection of the two vertical strips.

We now define a class of functions which will be used in the theorem below.

Let 0 < ω ≤ π and η > 0. For fixed z and w, let u(s, z, w) be such that

(i) u(s, z, w) is an analytic function of s = reiθ regular in the angle defined

by r > 0, |θ| < ω,

(ii) u(s, z, w) satisfies the bounds

u(s, z, w) =

Oz,w(|s|−δ) if |s| ≤ 1,

Oz,w(|s|−η−1−|Re(z)|) if |s| > 1,

for every positive δ and uniformly in any angle |θ| < ω. Then we say that u

belongs to the class ♦η,ω and write u(s, z, w) ∈ ♦η,ω.

With this set-up, the following result was obtained in [15, Theorem 1.2] (see

also [11, Equation (1.18)].

Theorem 2.3. Let η > 1/4 and 0 < ω ≤ π. Suppose that ϕ,ψ ∈ ♦η,ω, are

reciprocal in the Koshliakov kernel, and that −1/2 < Re(z) < 1/2. Let Z(s, z, w)

and Θ(x, z, w) be defined in (2.5). Let σ−z(n) =
∑
d|n d

−z. Then,
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32

π

∫ ∞
0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

)
Z

(
1 + it

2
,
z

2
, w

)
dt

(t2 + (z + 1)2)(t2 + (z − 1)2)

=
∑∞

n=1
σ−z(n)nz/2Θ (πn, z/2, w)−R(z, w),

where

R(z, w)=πz/2Γ

(
−z
2

)
ζ(−z)Z

(
1+
z

2
,
z

2
, w
)
+π−z/2Γ

(z
2

)
ζ(z)Z

(
1−z

2
,
z

2
, w
)
.

This results in the following corollary.

Corollary 2.4. Let −1 < Re(z) < 1. Let I2(z, x) be defined in (2.4). Then

I2(z, α) = −(π
√
α/32)

(
α
z
2−1π

−z
2 Γ

(
z
2

)
ζ(z) + α−

z
2−1π

z
2 Γ
(−z

2

)
ζ(−z)

−4
∑∞

n=1
σ−z(n)nz/2K z

2
(2nπα)

)
. (2.6)

Further integrals of the type I1(z, x), I2(z, x) are studied in [13] and

[3, Theorem 15.6]. A companion to Theorem 2.3, which evaluates a generalization

of I1(z, x), is also studied in [15, Theorem 1.4].

3. Applications of modular-type transformations and

the integrals of Ξ(t) linked to them

Here we discuss three different applications of modular-type transformations

and the integrals of Ξ(t) associated to them.

3.1. Theory of the generalized modified Bessel function Kz,w(x) and the

generalized modular-type transformations F (z, w, α) = F (z, iw, β), where

αβ = 1. The theta transformation (1.2) can be simply derived by invoking the

Poisson summation formula and the Laplace integral evaluation

e−α
2x2

=
2

α
√
π

∫ ∞
0

e−u
2/α2

cos(2ux) du. (3.1)

In the similar vein, using a generalization of (3.1), namely

e−α
2x2

cos(wx) =
2e−w

2/(4α2)

α
√
π

∫ ∞
0

e−u
2/α2

cosh(wu/α2) cos(2ux) du (w ∈ C),

(3.2)

one gets the general theta transformation in (2.2). Since the inverse Mellin trans-

form of Γ(s) is essentially e−x
2

, one may want to ask if one can obtain an integral

identity similar to (3.1), which renders K0(x) as a self-reciprocal function in a

kernel, since K0(x) is essentially the inverse Mellin transform of Γ2(s). More

generally one may ask the same question for Kz(x). This was already solved by

Koshliakov [23, Equation (8)] who obtained the following remarkable identity for

−1/2 < z < 1/2 2,

2

∫ ∞
0

Kz(2t)
(

cos(πz)M2z(4
√
xt)− sin(πz)J2z(4

√
xt)
)
dt = Kz(2x). (3.3)

2It is easy to see that this identity actually holds for −1/2 < Re(z) < 1/2.
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For this reason, the kernel cos(πz)M2z(4
√
xt) − sin(πz)J2z(4

√
xt) is called the

Koshliakov kernel in [3] and [15].

Now it is natural to ask if there exists a pair of functions reciprocal in the

Koshliakov kernel, and which gives (3.3) as a special case, similar to how (3.2)

subsumes (3.1). This question was answered in [11]. The interesting thing here

is, while generalizing (3.1) to (3.2) still involves elementary functions, namely

e−α
2x2

cos(wx) and e−α
2x2

cosh(wx), generalizing (3.3) involves a new special func-

tion Kz,w(x), which we call the generalized modified Bessel function. It is defined

for z, w ∈ C, x ∈ C\{x ∈ R : x ≤ 0} and c=Re(s) > ± Re(z) by an inverse Mellin

transform [11], namely,

Kz,w(x) =
1

2πi

∫
(c)

Γ((s− z)/2) Γ((s+ z)/2)

1F1

(
(s− z)/2; 1/2;−w2/4

)
1F1

(
(s+ z)/2; 1/2;w2/4

)
2s−2x−sds. (3.4)

Note that if we let w = 0, the generalized modified Bessel function reduces to the

modified Bessel function Kz(x). It is shown in [11] that Kz,w(x) satisfies a rich

and a beautiful theory like its special case Kz(x). The generalization of (3.3) is

then given in the following theorem [11, Theorem 1.1].

Theorem 3.1. Let − 1
2 < Re(z) < 1

2 . Let w ∈ C and x > 0. Let α and β

be two positive numbers such that αβ = 1. The functions e−
w2

2 Kz,iw(2αx) and

β Kz,w(2βx) form a pair of reciprocal functions in the Koshliakov kernel, that is,

e−
w2

2 Kz,iw(2αx) = 2

∫ ∞
0

β Kz,w(2βt)
(

cos(πz)M2z(4
√
xt)− sin(πz)J2z(4

√
xt)
)
dt,

β Kz,w(2βx) = 2

∫ ∞
0

e−
w2

2 Kz,iw(2αt)
(

cos(πz)M2z(4
√
xt)− sin(πz)J2z(4

√
xt)
)
dt.

However, we emphasize here that we stumbled upon this interesting general-

ization of the modified Bessel function while seeking a generalization of a formula

of Ramanujan [28, p. 253] rediscovered by Guinand [19]. For αβ = π2, this formula

is given by
√
α
∑∞

n=1
σ−z(n)nz/2Kz/2(2nα)−

√
β
∑∞

n=1
σ−z(n)nz/2Kz/2(2nβ)

=
1

4
Γ
(z

2

)
ζ(z){β(1−z)/2−α(1−z)/2}+1

4
Γ
(
−z

2

)
ζ(−z){β(1+z)/2−α(1+z)/2}. (3.5)

This formula can be written symmetrically in α and β [8, Theorem 1.4], and is,

in this latter form, an example of the generalized modular-type transformation of

the type F (z, α) = F (z, β). As discussed in [4, p. 23], this identity is equivalent

to the functional equation of the non-holomorphic Eisenstein series on SL2(Z). In

[8], (3.5) was derived from (2.6) whereas in [15], Theorem 2.3 and (3.5) are used

to obtain (2.6).

The elegant generalization of the Ramanujan-Guinand formula, symmetric in

α and β, that was established in [11, Theorem 1.5] is now given.
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Theorem 3.2. Let w ∈ C, z ∈ C\{−1, 1}. For α, β > 0 such that αβ = 1,

√
α

(
4

∞∑
n=1

σ−z(n)n
z
2 e−

w2

4 K z
2 ,iw

(2nπα)−Γ
(z

2

)
ζ(z)π−

z
2α

z
2−1

1F1

(
1− z

2
;

1

2
;
w2

4

)

− Γ
(
−z

2

)
ζ(−z)π z2α− z2−1

1F1

(
1 + z

2
;

1

2
;
w2

4

))

=
√
β

(
4

∞∑
n=1

σ−z(n)n
z
2 e

w2

4 K z
2 ,w

(2nπβ)− Γ
(z

2

)
ζ(z)π−

z
2 β

z
2−1

1F1

(
1− z

2
;

1

2
;−w

2

4

)
−Γ
(
−z

2

)
ζ(−z)π z2 β− z2−1

1F1

(
1 + z

2
;

1

2
;−w

2

4

))
. (3.6)

This is an example of a generalized modular-type transformation of the form

F (z, w, α) = F (z, iw, β), where αβ = 1. Indeed, (3.5) follows at once from (3.6)

by letting w = 0.

Let ∇2(x, z, w, s) be defined by

∇2(x, z, w, s) := ρ(x, z, w, s) + ρ(x, z, w, 1− s), (3.7)

where

ρ(x, z, w, s) := x
1
2−s1F1

(
1− s− z

2
;

1

2
;−w

2

4

)
1F1

(
1− s+ z

2
;

1

2
;−w

2

4

)
.

Using the reciprocal pair (e−w
2/2Kz,iw(2αx), β Kz,w(2βx)), αβ = 1, in Theorem

2.3 along with (3.6), the integral involving Ξ(t) corresponding to the expressions

in (3.6) was obtained [11, Theorem 1.3] as shown below.

Theorem 3.3. Let w ∈ C and −1 < Re(z) < 1. Let Kz,w(x) and ∇2(x, z, w, s) be

defined in (3.4) and (3.7) respectively. If α and β are positive integers satisfying

αβ = 1, then
16

π

∫ ∞
0

Ξ

(
t+ iz

2

)
Ξ

(
t− iz

2

) ∇2

(
α, z2 , w,

1+it
2

)
dt

(t2 + (z + 1)2) (t2 + (z − 1)2)

= e−
w2

4
√
α

{
4
∑∞

n=1
σ−z(n)n

z
2 e−

w2

4 K z
2 ,iw

(2nπα)

− Γ(z/2)ζ(z)π−
z
2α

z
2−1

1F1((1− z)/2; 1/2;w2/4)

− Γ(−z/2)ζ(−z)π z2α− z2−1
1F1((1 + z)/2; 1/2;w2/4)

}
.

3.2. A far-reaching generalization of Hardy’s theorem on infinitude of

zeros of ζ(s) on the critical line. This sub-section illustrates an application

of a modular-type transformation associated with an integral involving Ξ(t), this

time the general theta transformation (2.2), in analytic number theory.

As mentioned in the introduction, Hardy [20] proved in 1914 that infinitely

many zeros of ζ(s) lie on the critical line using (1.2) and (1.3). Let

η(s) = π−s/2Γ(s/2)ζ(s) and ρ(t) := η(1/2 + it).

In [14], we generalized Hardy’s result by showing that infinitely many zeros of

an infinite series whose summands involve the completed zeta function ρ(t) on
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bounded vertical shifts lie on the critical line too. The precise theorem is now

given.

Theorem 3.4. Let {cj} be a sequence of non-zero real numbers so that
∑∞
j=1 |cj | <

∞. Let {λj} be a bounded sequence of distinct real numbers that attains its bounds.

Then the function F (s) =
∑∞
j=1 cjη(s + iλj) has infinitely many zeros on the

critical line Re(s) = 1/2.

The above theorem also uses (1.2) and (1.3). Hardy’s result is simply its

special case when all but one c′js are zero and the remaining non-zero cj is 1.

Now a natural question arises - can one generalize the above theorem where one

uses the general theta transformation (2.2) rather than (1.2) and (1.3)? Indeed,

this can be done. It led to the following result that appeared in [12, Theorem 2].

Theorem 3.5. Let {cj} be a sequence of non-zero real numbers so that
∑∞
j=1 |cj | <

∞. Let {λj} be a bounded sequence of distinct real numbers such that it attains

its bounds. Let D denote the region |Re(w)− Im(w)| <
√

π
2 −

√
2
π Re(w)Im(w) in

the w-complex plane. Then for any w ∈ D, the function

Fw(s)=

∞∑
j=1

cjη(s+ iλj)

{
1F1

(
1− (s+ iλj)

2
;

1

2
;
w2

4

)
+1F1

(
1− (s̄− iλj)

2
;

1

2
;
w̄2

4

)}
has infinitely many zeros on the critical line Re(s) = 1/2.

3.3. Asymptotic expansion of an integral involving Ξ(t). The advantage

of having an alternate representation for an expression, that is, an identity, is

that it may give more information about the expression thereby enhancing our

understanding of it. This sub-section bears a testimony to an instance of such a

phenomenon.

In [13, Theorem 6.3], the integral I1(z, x), defined in (2.3), was expressed as

a Laplace transform:

Theorem 3.6. Assume −1 < Re(z) < 1. Define Ω(x, z) by

Ω(x, z) = 2

∞∑
n=1

σ−z(n)nz/2
(
eπiz/4Kz(4πe

πi/4
√
nx) + e−πiz/4Kz(4πe

−πi/4√nx)
)
,

where σ−z(n) =
∑
d|n d

−z. Then for α, β > 0, αβ = 1,

1

2π(z+5)/2
I1(z, α) = α(z+1)/2

∫ ∞
0

e−2παxxz/2
(

Ω(x, z)− 1

2π
ζ(z)xz/2−1

)
dx

= β(z+1)/2

∫ ∞
0

e−2πβxxz/2
(

Ω(x, z)− 1

2π
ζ(z)xz/2−1

)
dx.

Applying Watson’s lemma to the first expression for I1(z, α) involving α led

us to its following asymptotic expansion [17, Theorem 1.10]:

Theorem 3.7. Fix z such that −1 < Re z < 1. As α→∞,

1

π(z+3)/2
I1(z, α) ∼ −Γ(z)ζ(z)α

z−1
2

(2π)z
− Γ(z + 1)ζ(z + 1)

2α
z+1
2 (2π)z
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+ 2α
z+1
2

∞∑
m=0

(−1)m

(2πα)2m+z+2
Γ(2m+ 2 + z)ζ(2m+ 2)ζ(2m+ z + 2).

Oloa’s asymptotic expansion3 [24, Equation 1.5] of I1(0, α), namely,

as α→∞,
1

π3/2
I1(0, α) ∼ 1

2

logα√
α

+
1

2
√
α

(log 2π − γ) +
π2

72α3/2
− π4

10800α7/2
+ · · · ,

can be readily obtained by letting z → 0 in (3.7).

4. Concluding remarks and further questions

We hope to have demonstrated the usefulness of modular-type transformations

along with the associated integrals involving Ξ(t). It would be remarkable if one

is able to associate at least some of them to modular forms.

While it may seem from the variety of examples considered here that one

can always associate an integral involving Ξ(t) to a modular-type transformation,

there are some conjectured modular-type transformations for which there are no

such integral representations. For example, consider the following remarkable

conjecture of Hardy and Littlewood [22, p. 158, Equation (2.516)] suggested to

them by work of Ramanujan.

Conjecture 4.1. Let µ(n) denote the Möbius function. Let α and β be two positive

numbers such that αβ = 1. Assume that the series
∑
ρ

(
Γ((1− ρ)/2)/ζ

′
(ρ)
)
aρ

converges, where ρ runs through the non-trivial zeros of ζ(s) and a denotes a

positive real number, and that the non-trivial zeros of ζ(s) are simple. Then
√
α
∑∞

n=1
(µ(n)/n)e−πα

2/n2

− 1

4
√
π
√
α

∑
ρ

Γ((1− ρ)/2)

ζ ′(ρ)
π
ρ
2αρ

=
√
β
∑∞

n=1
(µ(n)/n)e−πβ

2/n2

− 1

4
√
π
√
β

∑
ρ

Γ((1− ρ)/2)

ζ ′(ρ)
π
ρ
2 βρ.

A generalization of this conjecture was obtained in [9, Theorem 1.6] which led

to a Riesz-type criterion for the Riemann Hypothesis in [16, Theorem 1.1].

Let erf(w) and erfi(w) denote the error function and the complementary error

function respectively. In view of the remark made before the conjecture (4.1), we

do like to point out that there is a modular-type transformation obtained in [17,

Equation (1.18)], namely

√
αe

w2

8

(
erf
(w

2

)
+ 4

∫ 0

−∞

e−πα
2x2

sin(
√
παxw)

e2πx − 1
dx

)

=
√
βe
−w2

8

(
erfi
(w

2

)
+ 4

∫ 0

−∞

e−πβ
2x2

sinh(
√
πβxw)

e2πx − 1
dx

)
, (4.1)

3There is a slight misprint in this asymptotic expansion given in Oloa’s paper. The minus

sign in front of the second expression on the right-hand side there should be a plus. This has

been corrected here.
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whose expressions, we believe, are equal to an integral involving Ξ(t). However,

we are unable to find this integral. If it exists, it would be significant, as it would

enable us to find an integral involving Ξ(t) for the modular-type transformation

corresponding to an integral analogue of the Jacobi theta function. See [17, p. 32]

for a discussion on this topic.

In [17, Section 7], two questions were posed regarding the exact evaluation of∫ ∞
0

xe−πx
2

e2πx − 1
1F1(−2k; 3

2 ; 2πx2) dx

for k ∈ Z+ ∪ {0}, and an exact evaluation of, or at least an approximation to∫ ∞
0

xe−αx
2

e2πx − 1
1F1

(
−2k − 1;

3

2
; 2αx2

)
dx

when α 6= π is a positive real number and k ∈ Z+ ∪ {0}. These integrals resulted

from differentiating some modular type transformations of the form F (w,α) =

F (iw, β), αβ = 1, involving the error functions. These questions were recently

solved partially by Paris [25] who obtained approximations of the integrals to

within exponentially small accuracy when k is large and α = O(1).
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