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Abstract. We obtain a new proof of Hurwitz’s formula for the Hurwitz zeta function ζ(s, a)
beginning with Hermite’s formula. The aim is to reveal a nice connection between ζ(s, a)
and a special case of the Lommel function Sµ,ν(z). This connection is used to rephrase a
modular-type transformation involving infinite series of Hurwitz zeta function in terms of
those involving Lommel functions.

1. Introduction

The Hurwitz zeta function ζ(s, a) is defined for Re(s) > 1 and a ∈ C\{x ∈ R : x ≤ 0} by
[23, p. 36]

ζ(s, a) :=
∞∑
n=0

1

(n+ a)s
.

It is well-known that for ζ(s, a) can be analytically continued to the entire s-complex plane
except for a simple pole at s = 1 with residue 1, and that ζ(s, 1) = ζ(s).

One of the fundamental results in the theory of ζ(s, a) is the following formula of Hurwitz
[23, p. 37, Equation (2.17.3)].

Theorem 1.1. For 0 < a ≤ 1 and Re(s) < 0,

ζ(s, a) =
2Γ(1− s)
(2π)1−s

{
sin

(
1

2
πs

) ∞∑
n=1

cos(2πna)

n1−s
+ cos

(
1

2
πs

) ∞∑
n=1

sin(2πna)

n1−s

}
. (1.1)

The above result also holds1 for Re(s) < 1 if 0 < a < 1.

We note that when a = 1, the above formula reduces to the functional equation of ζ(s)
[23, p. 13, Equation (2.1.1)] for Re(s) < 0. which can then be seen to be true for all s ∈ C
by analytic continuation.

Several proofs of (1.1) are available in the literature. For example, Hurwitz himself ob-
tained it by transforming the Mellin transform representation of ζ(s, a) as a loop integral and
then evaluating the latter. This proof can be found, for example, in [23, p. 37]. Berndt [4,
Section 5] found a short proof of (1.1) by using the boundedly convergent Fourier series of
bxc−x+ 1

2 . We refer the reader interested in knowing the various proofs of this formula to [9]
and the references therein (see also [10]). In [9, Section 4], Kanemitsu, Tanigawa, Tsukada
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1See [1, p. 257, Theorem 12.6].
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and Yoshimoto obtained a new proof of (1.1). Their proof commences with employing [9,
Equation (4.1)] (see also [11, Equation (47)])

ζ(s, a) =
1

2
a−s +

a1−s

s− 1

+

∞∑
n=1

{
e−2πina

(−2πina)1−s
Γ(1− s,−2πina) +

e2πina

(2πina)1−s
Γ(1− s, 2πina)

}
,

which is a special case of the Ueno-Nishizawa formula [24] and then invoking the Fourier
series of the Dirac-delta function δ(s).

The aim of this note is to give a yet another new proof of (1.1) beginning with Hermite’s
well-known formula for ζ(s, a) [16, p. 609, Formula 25.11.29], valid for Re(a) > 0 and s 6= 1:

ζ(s, a) =
1

2
a−s +

a1−s

s− 1
+ 2

∫ ∞
0

sin(s tan−1(x/a)) dx

(a2 + x2)s/2 (e2πx − 1)
. (1.2)

The novelty of this proof is that it reveals the connection between Hurwitz zeta function and
the Lommel functions sµ,ν(z) and Sµ,ν(z) which, to the best of our knowledge, seems to have
been unnoticed before. The Lommel functions are defined by [25, p. 346, equation (10)]

sµ,ν(z) =
zµ+1

(µ− ν + 1)(µ+ ν + 1)
1F2

(
1;

1

2
µ− 1

2
ν +

3

2
,
1

2
µ+

1

2
ν +

3

2
;−1

4
z2
)
. (1.3)

and [25, p. 347, equation (2)]

Sµ,ν(z) = sµ,ν(z) +
2µ−1Γ

(
µ−ν+1

2

)
Γ
(
µ+ν+1

2

)
sin(νπ)

(1.4)

×
{

cos

(
1

2
(µ− ν)π

)
J−ν(z)− cos

(
1

2
(µ+ ν)π

)
Jν(z)

}
for ν /∈ Z, and

Sµ,ν(z) = sµ,ν(z) + 2µ−1Γ

(
µ− ν + 1

2

)
Γ

(
µ+ ν + 1

2

)
(1.5)

×
{

sin

(
1

2
(µ− ν)π

)
Jν(z)− cos

(
1

2
(µ− ν)π

)
Yν(z)

}
for ν ∈ Z, where Jν(z) and Yν(z) are Bessel functions of the first and second kinds respectively.
The Lommel functions are the solutions of an inhomogeneous form of the Bessel differential
equation [25, p. 345], namely,

z2
d2y

dz2
+ z

dy

dz
+ (z2 − ν2)y = zµ+1.

Lommel functions arise in mathematics, for example, in the theory of positive trigonometric
sums[12]. Outside of mathematics, Lommel functions have been found to be very useful in
physics as well as mathematical physics. See, for example, [2, 7, 20, 22]. Lewis [14] studied
a special case of Sµ,ν(z), that is,

Cs(z) =
√
zΓ(2s+ 1)S−2s− 1

2
, 1
2
(z), (1.6)

and represented it in terms of the incomplete gamma function. Lewis and Zagier [13] repre-
sented the period functions for Maass wave forms with spectral parameter s in terms of an
infinite series of Cs(z), and in the course of which they gave different representations for this
special case of the Lommel function. See [13, p. 214, Proposition 1].
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In the present work, we require a new integral representation for this special case of the
Lommel function Sµ,ν(z) which, to the best of our knowledge, does not seem to have been
explicitly stated anywhere including [13]. This is derived in Lemma 2.1.

Another ingredient needed in our proof of (1.1) is a recent result of Maširević [15, Theorem
2.1] (see also [3, p. 176, Theorem 5.23]) which states that for all m ∈ N ∪ {0}, ν ∈ R, x ∈
(0, 2π) and µ > max

{
−ν − 1, ν − 2,−1

2

}
,

∞∑
k=1

sµ,ν(kx)

k2m+µ+1
=
xµ+1

4
Γ

(
1 + µ− ν

2

)
Γ

(
1 + µ+ ν

2

)

×

(
(−1)mπ

2Γ(m+ 1 + (µ− ν)/2)Γ(m+ 1 + (µ+ ν)/2)

(x
2

)2m−1
+

m∑
n=0

(−1)nζ(2m− 2n)

Γ(n+ 1 + (1 + µ− ν)/2)Γ(n+ 1 + (1 + µ+ ν)/2)

(x
2

)2n)
. (1.7)

2. A new proof of Hurwitz’s formula using Hermite’s formula (1.2)

Here we prove Theorem 1.1. To do that, however, we first need a lemma which evaluates
an integral in terms of the Lommel function Sµ,ν(z). This lemma seems to be new.

Lemma 2.1. Let the Lommel function Sµ,ν(z) be defined in (1.4) and (1.5). For k ∈ N and
a > 0, we have∫ ∞

0

e−2πkx sin(s tan−1(x/a))

(a2 + x2)s/2
dx = s

√
a(2πk)s−

1
2S−s− 1

2
, 1
2
(2πak). (2.1)

Proof. We first prove the above result for Re(s) < 0 and then extend it to all s ∈ C by
analytic continuation.

Using the inverse Mellin transform representation of the exponential function, for c1 :=
Re(ξ) > 0 and k > 0,

1

2πi

∫
(c1)

Γ(ξ)

(2πk)ξ
y−ξ dξ = e−2πky, (2.2)

where here, and throughout the paper,
∫
(d) will always mean the integral

∫ d+i∞
d−i∞ .

Also, from [17, p. 193, Formula 5.19], for −1 < c2 := Re(ξ) < Re(s),

1

2πi

∫
(c2)

Γ(s− ξ)Γ(ξ)

Γ(s)
sin

(
πξ

2

)
aξ−sy−ξ dξ =

sin
(
s tan−1

(y
a

))
(y2 + a2)

s
2

. (2.3)

From (2.2), (2.3) and Parseval’s identity [18, p. 82, Equation (3.1.11)]∫ ∞
0

g(x)h(x) dx =
1

2πi

∫
(c)

G(1− s)H(s) ds,

where G and H are Mellin transforms of g and h respectively, for c := Re(ξ) < Re(s) and
−1 < Re(ξ) < 1,

2

∫ ∞
0

e−2πkx sin(s tan−1(x/a))

(a2 + x2)s/2
dx =

2

2πi

∫
(c)

Γ(ξ)Γ(1− ξ)Γ(s− ξ)
(2πk)1−ξΓ(s)

sin

(
πξ

2

)
aξ−s dξ

=
a−s

Γ(s)

1

2πi

∫
(c)

πΓ(s− ξ)

cos
(
πξ
2

) (2πk)ξ−1aξ dξ
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=
a−s

Γ(s)

1

2πi

∫
(c)

Γ

(
1 + ξ

2

)
Γ

(
1− ξ

2

)
Γ(s− ξ)(2πk)ξ−1aξ dξ,

where we used the reflection formula for the gamma function. Replacing ξ by −ξ, we see
that for c := Re(ξ) > −Re(s) and −1 < Re(ξ) < 1,

2

∫ ∞
0

e−2πkx sin(s tan−1(x/a))

(a2 + x2)s/2
dx =

a−s

2πkΓ(s)

1

2πi

∫
(c)

Γ

(
1 + ξ

2

)
Γ

(
1− ξ

2

)
Γ(s+ ξ)(2πak)−ξ dξ.

(2.4)

To evaluate the integral on the right-hand side of the above equation, first consider

Is(z) :=
1

2πi

∫
(c)

Γ

(
1 + ξ

2

)
Γ

(
1− ξ

2

)
Γ(s+ ξ)z−ξ dξ, (2.5)

where c = Re(ξ).
We evaluate the above integral first for |z| < 1, z /∈ (−1, 0] and then extend it later

to all z ∈ C\(−∞, 0] by analytic continuation. Consider the contour formed by the line
segments [c− iT, c+ iT ], [c+ iT,−λ+ iT ], [−λ+ iT,−λ− iT ] and [−λ− iT, c− iT ], where
λ /∈ Z, λ > 1. Observe that the integrand on the right-hand side of (2.5) has simple poles at
ξ = −s −m, 0 ≤ m ≤ bλ − Re(s)c, and ξ = −2n − 1, where 0 ≤ n ≤ bλ−12 c due to Γ(s − ξ)
and Γ

(
1+ξ
2

)
respectively. (Note that since Re(s) < 0, there will not be any pole of order 2.)

The residues of the integrand at these poles can be easily calculated to be (−1)mzm+sπ

m! cos(π2 (m+s))
and

2(−1)nz2n+1Γ(−1− 2n+ s) respectively. By employing Stirling’s formula in a vertical strip
α ≤ c ≤ β [16, p. 141, Formula 5.11.9], namely,

|Γ(c+ iT )| = (2π)
1
2 |T |c−

1
2 e−

1
2π|T |

(
1 +O

(
1

|T |

))
, (2.6)

as |T | → ∞, we see that the integrals along horizontal segments go to 0 as T → ∞. Hence
by Cauchy’s residue theorem, we obtain

Is(z) = πzs
bλ−Re(s)c∑
m=0

(−z)m

m! cos
(
π
2 (m+ s)

) + 2z

bλ−1
2
c∑

n=0

(−1)nz2nΓ(−1− 2n+ s)

+
1

2πi

∫
(−λ)

Γ

(
1 + ξ

2

)
Γ

(
1− ξ

2

)
Γ(s+ ξ)z−ξ dξ. (2.7)

Next, we show that as λ→∞,

1

2πi

∫
(−λ)

Γ

(
1 + ξ

2

)
Γ

(
1− ξ

2

)
Γ(s+ ξ)z−ξ dξ → 0. (2.8)

By (2.6), we find that as |t| → ∞,∣∣∣∣Γ(1± λ− it
2

)∣∣∣∣ = Oλ

(
|t|±λ/2e−

π
4
|t|
)
, (2.9)

and

|Γ(s− λ+ it)| = O
(
|(t+ Im(s))|−λ+Re(s)−1/2e−

π
2
|(t+Im(s))|

)
. (2.10)
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Upon making change of variable ξ = −λ+ it and then using (2.9) and (2.10), we see that∣∣∣∣∣
∫
(−λ)

Γ

(
1 + ξ

2

)
Γ

(
1− ξ

2

)
Γ(s+ ξ)z−ξ dξ

∣∣∣∣∣
=

∣∣∣∣1i
∫ ∞
−∞

Γ

(
1− λ+ it

2

)
Γ

(
1 + λ− it

2

)
Γ(s− λ+ it)zλ−it dt

∣∣∣∣
= |z|λ

∫ M

−M
O(1) dt+ |z|λ

∫
|t|≥M

O
(
|(t+ Im(s))|−λ+Re(s)−1/2 e−

π
2
|t|−π

2
|(t+Im(s))|

)
dt

= O(|z|λ),

where M is a large enough positive real number. Since |z| < 1, as λ→∞, we arrive at (2.8).
Therefore by (2.7) and (2.8), for |z| < 1, z /∈ (−1, 0],

Is(z) = πzs
∞∑
m=0

(−z)m

m! cos
(
π
2 (m+ s)

) + 2z
∞∑
n=0

(−1)nz2nΓ(−1− 2n+ s). (2.11)

Now observe that both sides of above equation are analytic, as functions of z, in C\(−∞, 0].
Therefore (2.11) holds for all z ∈ C\(−∞, 0] by analytic continuation. Hence letting z =
2πak, a > 0, k ∈ N, in (2.11) and simplifying the resulting first sum by splitting it into two
sums, one over even m and other over odd m and by rephrasing the resulting second sum
into a 1F2 using the reflection and duplication formulas of the gamma function, we obtain

Is(2πak) =
2π(2πak)s

sin(πs)
sin
(π

2
(4ak + s)

)
+ 4πakΓ(s− 1)1F2

(
1; 1− s

2
,
3− s

2
;−a2π2k2

)
.

(2.12)

Equation (2.1) now follows from (1.3), (1.4), (2.4), (2.5) and (2.12). This completes the proof
for Re(s) < 0. Now using an argument similar to that in [26, p. 269-270], one can show
that the left-hand side of (2.1) is an entire function of s. The right-hand side of (2.1) is also
analytic in the whole s-complex plane except for possible poles at s = 1, 2, 3 · · · . However,
as shown in [25, p. 347-349], the Lommel function Sµ,ν(z) has a limit when µ + ν or µ − ν
are odd negative integers. Since the positive integer values of s render the µ + ν and µ − ν
of our special case of the Lommel function, namely, S−s− 1

2
, 1
2
(2πak), to fall precisely in this

category, we see that s = 1, 2, 3, · · · are indeed removable singularities of the right-hand side.
Therefore both sides of (2.1) are entire functions of s, and hence the equality follows for all
s ∈ C by analytic continuation. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. The proof is divided into two cases.

Case 1: 0 < a < 1.
We first prove the result for s < 0 and then extend it by analytic continuation. For a > 0
and s 6= 1, from (1.2),

ζ(s, a) =
1

2
a−s +

a1−s

s− 1
+ 2

∞∑
k=1

∫ ∞
0

e−2πkx sin(s tan−1(x/a))

(a2 + x2)s/2
dx, (2.13)

where the interchange of the order of summation and integration is justified by absolute and
uniform convergence (see, for example, [21, p. 30, Theorem 2.1]). Invoking Lemma 2.1 in
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(2.13), we have, for a > 0 and s 6= 1,

ζ(s, a) =
1

2
a−s +

a1−s

s− 1
+ 2s
√
a(2π)s−

1
2

∞∑
k=1

S−s− 1
2
, 1
2
(2πak)

k
1
2
−s

=
1

2
a−s +

a1−s

s− 1
+

1

Γ(s)

∞∑
k=1

{
2
√
a(2π)s−

1
2 Γ(s+ 1)

s−s− 1
2
, 1
2
(2πak)

k
1
2
−s

+
(2π)s

sin(πs)

sin
(
π
2 (4ak + s)

)
k1−s

}
, (2.14)

where in the second step, we used (1.4). This is the first instance where the infinite series on
the right-hand side of (1.1) makes its conspicuous presence.

Now let m = 0, µ = −s − 1
2 , ν = 1

2 and x = 2πa in (1.7) and then use ζ(0) = −1/2 to
deduce that for s < 0 and 0 < a < 1,

∞∑
k=1

s−s− 1
2
, 1
2
(2πak)

k
1
2
−s

=
(2πa)

1
2
−s

4
Γ
(
−s

2

)
Γ

(
1− s

2

)(
π

2πaΓ
(
1−s
2

)
Γ
(
1− s

2

) +
−1/2

Γ
(
1− s

2

)
Γ
(
3−s
2

))

=
(2πa)

1
2
−s

4

√
πΓ(−s)
2−s−1

(
2−s

2a
√
πΓ(1− s)

− 21−s

2
√
πΓ(2− s)

)
,

where in the last step, we used the duplication formula for the gamma function twice. Thus,

∞∑
k=1

s−s− 1
2
, 1
2
(2πak)

k
1
2
−s

=
−1

2s
√
a(2π)s−

1
2

(
1

2
a−s +

a1−s

s− 1

)
. (2.15)

Hence from (2.14) and (2.15),

ζ(s, a) =
(2π)s

Γ(s) sin(πs)

∞∑
k=1

sin
(
π
2 (4ak + s)

)
k1−s

,

which readily gives (1.1). This completes the proof of Theorem 1.1 for s < 0. Since both
sides of (1.1) are analytic for Re(s) < 0, we conclude that (1.1) is valid for Re(s) < 0.

If 0 < a < 1, note that in addition to being absolutely convergent for Re(s) < 0, the series
on the right-hand side of (1.1) are conditionally convergent for 0 < Re(s) < 1 whence we see
that for 0 < a < 1, the result (1.1) actually holds for Re(s) < 1.

Case 2: a = 1.
We first prove the result for s < −1 and then extend it to all complex s by analytic continu-
ation. From (2.14) and the fact that ζ(s, 1) = ζ(s) for all s ∈ C, we have

ζ(s) =
1

2
+

1

s− 1
+

1

Γ(s)

∞∑
k=1

{
2(2π)s−

1
2 Γ(s+ 1)

s−s− 1
2
, 1
2
(2πk)

k
1
2
−s

+
(2π)s

sin(πs)

sin
(
π
2 (4k + s)

)
k1−s

}
.

(2.16)

We now wish to evaluate in closed form the series

∞∑
k=1

s−s− 1
2
, 1
2
(2πk)

k
1
2
−s

, which is indeed conver-

gent for s < −1 since
∑∞

k=1 k
s−1 sin

(
π
2 (4k + s)

)
converges for s < −1.

However, one should be careful as (1.7) cannot be applied here. This is because, it requires
x ∈ (0, 2π), whereas here we need x in (1.7) to be 2π. Thankfully, Maširević has also obtained
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the following result [15, Theorem 2.2] where 0 ≤ x ≤ 2π,m ∈ N and µ > 0:

∞∑
k=1

sµ− 3
2
, 1
2
(kx)

k2m+µ− 1
2

=
1

2
(−1)m−1x2m+µ− 1

2 Γ(µ− 1)

(
−π

xΓ(2m+ µ)
+ 2

m∑
n=0

(−1)n−1ζ(2n)

Γ(2m+ µ+ 1− 2n)x2n

)
.

(2.17)

Even though x can equal 2π in the above result, note that m has to be a natural number,

whereas, to evaluate the series
∞∑
k=1

s−s− 1
2
, 1
2
(2πk)

k
1
2
−s

using (2.17), we would require m = 0. To

circumvent this problem, we first employ the well-known result [8, p. 946, Formula 8.575.1],

sµ+2,ν(z) = zµ+1 − [(µ+ 1)2 − ν2]sµ,ν(z). (2.18)

Use (2.18) with µ = −s− 5/2, ν = 1/2 and z = 2πk so that

∞∑
k=1

s−s− 1
2
, 1
2
(2πk)

k
1
2
−s

=

∞∑
k=1

(2πk)−s−
3
2

k
1
2
−s

−

{(
s+

3

2

)2

− 1

4

} ∞∑
k=1

s−s− 5
2
, 1
2
(2πk)

k
1
2
−s

. (2.19)

We now transform the second series on the right-hand side of the above equation using
(2.17). Before we do that, however, we need the well-known result ζ(0) = −1/2, which can
be proved without using the functional equation of ζ(s) so that circular reasoning is avoided.
For example, one can put s = 0 in the following formula [23, p. 14, Equation (2.1.4)]

ζ(s) = s

∫ ∞
1

[x]− x+ 1/2

xs+1
dx+

1

s− 1
+

1

2
(Re(s) > −1),

to conclude that ζ(0) = −1/2.
Let m = 1, x = 2π and µ = −s− 1 in (2.17) so that for s < −1,

∞∑
k=1

s−s− 5
2
, 1
2
(2πk)

k
1
2
−s

=
1

2
(2π)

1
2
−sΓ(−s− 2)

(
− 1

2Γ(1− s)
+

1

Γ(2− s)
+

1

12Γ(−s)

)
, (2.20)

where we used ζ(0) = −1/2 and ζ(2) =
∑∞

k=1
1
k2

= π2/6.
Substitute (2.20) in (2.19) and simplify using the functional equation of the gamma function

to arrive at
∞∑
k=1

s−s− 1
2
, 1
2
(2πk)

k
1
2
−s

= − 1

2s(2π)s−
1
2

(
1

2
+

1

s− 1

)
. (2.21)

Comparing the above equation with (2.15), we see that (2.15) holds for a = 1 too.
Using (2.21) in (2.16), we arrive at

ζ(s) =
2Γ(1− s)
(2π)1−s

sin
(πs

2

)
ζ(1− s)

for s < −1. The result then follows for all complex s by analytic continuation. �

3. A modular-type transformation involving the Lommel function S−s− 1
2
, 1
2
(z)

Modular-type transformations are the ones governed by the map α → β, where αβ = 1.
An equivalent way to say this using the language of modular forms is that they consist of
functions which transform nicely under z → −1/z, Im(z) > 0. But they may not transform
nicely under z → z+1, hence the nomenclature modular-type transformations. For a detailed
survey on modular-type transformations, the reader is referred to [6].
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The following modular-type transformation involving infinite series of Hurwitz zeta func-
tion was obtained by the first author in [5, Theorem 1.4] as a generalization of a transforma-
tion of Ramanujan [5, Theorem 1.1] on page 220 of the Lost Notebook [19].

Theorem 3.1. Let 0 < Re(s) < 2. Define ϕ(s, x) by

ϕ(s, x) := ζ(s, x)− 1

2
x−s +

x1−s

1− s
.

If α and β are any positive numbers such that αβ = 1,

α
s
2

( ∞∑
n=1

ϕ(s, nα)− ζ(s)

2αs
− ζ(s− 1)

(s− 1)α

)
= β

s
2

( ∞∑
n=1

ϕ(s, nβ)− ζ(s)

2βs
− ζ(s− 1)

(s− 1)β

)

=
8(4π)

s−4
2

Γ(s)

∫ ∞
0

Γ

(
s− 2 + it

4

)
Γ

(
s− 2− it

4

)
Ξ

(
t+ i(s− 1)

2

)
× Ξ

(
t− i(s− 1)

2

)
cos
(
1
2 t logα

)
s2 + t2

dt,

where Ξ(t) := ξ
(
1
2 + it

)
with ξ(s) = 1

2s(s− 1)π−
1
2
sΓ(12s)ζ(s).

In view of the first equality in (2.14), the modular-type transformation in the above result
can be rephrased in the following form.

Corollary 3.2. Let 0 < Re(s) < 2 and let σs(n) =
∑

d|n d
s. Let Sµ,ν(z) be defined in (1.4).

If α and β are any positive numbers such that αβ = 1,

α
s
2

(
2s(2π)s−

1
2
√
α
∞∑
m=1

σ1−s(m)ms− 1
2S−s− 1

2
, 1
2
(2πmα)− ζ(s)

2αs
− ζ(s− 1)

(s− 1)α

)

= β
s
2

(
2s(2π)s−

1
2

√
β

∞∑
m=1

σ1−s(m)ms− 1
2S−s− 1

2
, 1
2
(2πmβ)− ζ(s)

2βs
− ζ(s− 1)

(s− 1)β

)
.

Proof. The result follows at once if we observe that from (2.14),

∞∑
n=1

ϕ(s, nα) = 2s(2π)s−
1
2
√
α
∞∑
n=1

√
n
∞∑
k=1

S−s− 1
2
, 1
2
(2πnkα)

k
1
2
−s

= 2s(2π)s−
1
2
√
α

∞∑
n,k=1

n1−s(nk)s−
1
2S−s− 1

2
, 1
2
(2πnkα)

= 2s(2π)s−
1
2
√
α

∞∑
m=1

σ1−s(m)ms− 1
2S−s− 1

2
, 1
2
(2πmα).

�

Remark 1. The series in Corollary 3.2 should be compared with the series considered by
Lewis and Zagier in [13, Equation (2.11)], namely,

∑∞
n=1 n

s−1/2AnCs(2πna), where Cs(z) is
defined by (1.6).
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