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1. Introduction. Since Ramanujan introduced mock theta functions in
his last letter to Hardy in 1920, they have been the subject of intense study.
Along with his third order mock theta function f(q) defined by

f(q) :=
∞∑
n=0

qn
2

(−q; q)2n
,

there are many studies on the mock theta function

ω(q) :=
∞∑
n=0

q2n
2+2n

(q; q2)2n+1

in the literature [14], [18], [21], [34]. Throughout the paper, we adopt the
following q-series notation:

(a; q)0 := 1,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1,

(a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

When the base is q, we sometimes use the short-hand notation (a)n := (a; q)n
and (a)∞ := (a; q)∞.

In a recent paper [11], the first, second and the fourth authors discovered
a new partition-theoretic interpretation of ω(q), namely, the coefficient of
qn in q ω(q) counts pω(n), the number of partitions of n in which all odd
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parts are less than twice the smallest part, that is,
∞∑
n=1

pω(n)qn =
∞∑
n=1

qn

(1− qn)(qn+1; q)n(q2n+2; q2)∞
= qω(q).

In the same paper, they also studied some arithmetic properties of the as-
sociated smallest parts function sptω(n) whose generating function is given
by

∞∑
n=1

sptω(n)qn =
∞∑
n=1

qn

(1− qn)2(qn+1; q)n(q2n+2; q2)∞
.

In this paper, we study the overpartition analogue of pω(n) and its associ-
ated smallest parts function. Overpartitions are ordinary partitions extended
by allowing a possible overline designation on the first (or equivalently the
final) occurrence of a part. For instance, there are eight overpartitions of 3:
3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, and 1 + 1 + 1. Throughout this paper,
however, we consider overpartitions in which the smallest part is always over-
lined, and denote by p(n) the number of such overpartitions. For instance,
p(3) = 4 since there are four such overpartitions of 3: 3, 2 + 1, 2 + 1, and
1 + 1 + 1. In an overpartition, a smallest part may or may not be overlined,
so the number of overpartitions of n is exactly twice of p(n).

Since its introduction in [19], the overpartition construct has been very
popular, and has led to a number of studies in q-series, partition theory,
modular and mock modular forms.

As remarked earlier, in this paper we study the overpartition analogue
of pω(n), namely pω(n), which enumerates the number of overpartitions of
n such that all odd parts are less than twice the smallest part, and in which
the smallest part is always overlined. It is clear that its generating function
is given by

(1.1)

∞∑
n=1

pω(n)qn =

∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)(qn+1; q)n(q2n+2; q2)∞

.

The series in (1.1) can be written as
∞∑
n=1

pω(n)qn =
q(−q2; q2)∞

(1− q)(q2; q2)∞

∞∑
n=0

(−q3; q2)n(q; q)n
(q3; q2)n(−q2; q)n

qn(1.2)

=
q(−q2; q2)∞

(1− q)(q2; q2)∞
4φ3

(
q, q, iq3/2, −iq3/2

−q2, q3/2, −q3/2
; q, q

)
,

where the basic hypergeometric series r+1φr is defined as

r+1φr

(
a1, . . . , ar+1

b1, . . . , br
; q, z

)
:=

∞∑
n=0

(a1; q)n · · · (ar+1; q)n
(q; q)n(b1; q)n · · · (br; q)n

zn.
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Thus the generating function is essentially a nonterminating 4φ3. The prob-
lem of relating this generating function to familiar objects in the theory of
basic hypergeometric series, modular forms and mock modular forms is quite
difficult. In fact, in order to transform it, we derive a new multi-parameter
q-series identity, which generalizes a deep identity due to the first author,
and its extension due to R. P. Agarwal (see Theorem 3.1). Basically we need
its following variant for our case.

Theorem 1.1. Let the Gaussian polynomial be defined by

(1.3)

[
n

m

]
:=

[
n

m

]
q

:=


(q; q)n

(q; q)m(q; q)n−m
if 0 ≤ m ≤ n,

0 otherwise.

Then, provided β, δ, f, t 6= q−j, j ≥ 0, the following identity holds:

(1.4)
∞∑
n=0

(α)n(γ)n(ε)n
(β)n(δ)n(f)n

tn

=
(ε, γ, β/α, q, αt, q/(αt), δq/β, fq/β; q)∞

(f, δ, q/α, β, β/(αt), αtq/β, γq/β, εq/β; q)∞
3φ2

(
αq
β ,

γq
β ,

εq
β

δq
β ,

fq
β

; q, t

)

+

(
1− q

β

)
(ε, γ, t, δq/β, fq/β; q)∞

(f, δ, αt/β, γq/β, εq/β; q)∞

× 3φ2

(
αq
β ,

γq
β ,

εq
β

δq
β ,

fq
β

; q, t

)(
2φ1

(
q, q

t
βq
αt

; q,
q

α

)
− 1

)

+
(ε, γ; q)∞
(f, δ; q)∞

(
1− q

β

) ∞∑
n=0

(t)n
(q)n(αt/β)n+1

(
q

β

)n n∑
p=0

(αt/β)p
(t)p

(
β

q

)p

×
n∑

m=0

[
n

m

](
f

ε

)
m

εm
(
δ

γ

)
n−m

γn−m,

where we use the notation

(a1, . . . , am; q)∞ := (a1; q)∞ · · · (am; q)∞.

This result is then specialized to obtain the following theorem which
expresses the generating function in terms of a 3φ2 basic hypergeometric
series and an infinite series involving the little q-Jacobi polynomial defined
by [9, (3.1)]

(1.5) pn(x;α, β : q) = 2φ1

(
q−n, αβqn+1

αq
; qx

)
.
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Theorem 1.2. The following identity holds for |q| < 1:

(1.6)
∞∑
n=0

qn(−q3; q2)n(q; q)n
(q3; q2)n(−q2; q)n

=
1

2

(
1− 1

q

)
(q; q)2∞

(−q; q)2∞

∞∑
n=0

(−1; q)n(−q; q2)n
(q; q2)n(q; q)n

qn

+
1

q

(−q; q2)∞
(q3; q2)∞

∞∑
n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q).

Hence the generating function of pω(n) is given by

(1.7)
∞∑
n=1

pω(n)qn = −1

2

(q; q)∞(q; q2)∞
(−q; q)∞(−q; q2)∞

3φ2

(
−1, iq1/2, −iq1/2

q1/2, −q1/2
; q, q

)

+
(−q; q)∞
(q; q)∞

∞∑
n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q).

The series involving the little q-Jacobi polynomials on the right side of
(1.7) satisfies a nice congruence modulo 4 given below.

Theorem 1.3. The following congruence holds:

(1.8)
∞∑
n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q)

≡ 1

2

(q; q2)∞
(−q; q2)∞

(mod 4).

The overpartition function pω(n) satisfies some nice congruences. Indeed
the two congruences in the following theorem will be proved in Section 4.

Theorem 1.4. We have

pω(4n+ 3) ≡ 0 (mod 4),(1.9)

pω(8n+ 6) ≡ 0 (mod 4).(1.10)

The smallest parts function spt(n) counts the total number of appear-
ances of the smallest parts in all partitions of n (see [8]). For the last decade,
there have been many papers on spt(n), and in particular, for generalizations
of spt(n), we refer the reader to [23], [24], [27] and [28].

Bringmann, Lovejoy, and Osburn [16, 17] defined spt(n) as the number
of smallest parts in the overpartitions of n and showed that the generating
function of spt(n) is a quasimock theta function (see [17, pp. 3–4] for the
definition) satisfying simple Ramanujan-type congruences, for instance,

spt(3n) ≡ 0 (mod 3).

In this paper, we study sptω(n), the number of smallest parts in the over-
partitions of n in which the smallest part is always overlined and all odd
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parts are less than twice the smallest part. By its definition we see that the
generating function of sptω(n) is given by

(1.11)
∞∑
n=1

sptω(n)qn =
∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)2(qn+1; q)n(q2n+2; q2)∞

.

The smallest parts function sptω(n) seems to carry arithmetic properties
analogous to those of spt2(n), where spt2(n) counts the number of smallest
parts in the overpartitions of n with smallest parts even. It is known [16]
that

spt2(3n) ≡ 0 (mod 3),(1.12)

spt2(3n+ 1) ≡ 0 (mod 3),(1.13)

spt2(5n+ 3) ≡ 0 (mod 5).(1.14)

The following are the main congruences satisfied by sptω(n):

Theorem 1.5. We have

sptω(3n) ≡ 0 (mod 3),(1.15)

sptω(3n+ 2) ≡ 0 (mod 3),(1.16)

sptω(10n+ 6) ≡ 0 (mod 5),(1.17)

sptω(6n+ 5) ≡ 0 (mod 6).(1.18)

We remark that sptω(n) has recently been studied by Jennings-Shaffer [29],
although with a different combinatorial interpretation. The notation in [29]
for its generating function is SG2(q). Also, the mod 3 congruences in Theo-
rem 1.5 were established in the same paper.

There are further congruences that both spt(n) and sptω(n) satisfy:

Theorem 1.6. For any positive integer n,

(1.19) sptω(n) ≡ spt(n) ≡

{
1 (mod 2) if n = k2 or 2k2 for some k,

0 (mod 2) otherwise.

Theorem 1.7. For any positive integer n,

spt(7n) ≡ spt(n/7) (mod 4),(1.20)

sptω(7n) ≡ sptω(n/7) (mod 4),(1.21)

where we follow the convention that spt(x) = sptω(x) = 0 if x is not a
positive integer.

This paper is organized as follows. In Section 2, we recall some basic
facts and theorems that are used in the following. Section 3 is devoted to
finding an alternative representation for the generating function of pω(n) in
terms of a 3φ2 basic hypergeometric series and an infinite series involving the
little q-Jacobi polynomials. A congruence modulo 4, satisfied by the latter
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series, is also obtained in that section. In Section 4, we give a proof of the
congruences modulo 4 satisfied by pω(n) in Theorem 1.4. We recall some
facts about spt(n) and spt2(n) in Section 5 and represent the generating
function of sptω(n) in terms of those of these functions. In Section 6, we
prove the congruences modulo 3, 5 and 6 given in Theorem 1.5 based on
these representations. We also prove Theorems 1.6 and 1.7 in Section 7.
Lastly we conclude our paper by stating two open problems in Section 8.

2. Preliminaries. In this section we collect some important facts and
theorems on q-series and partitions. First of all, we assume throughout that
|q| < 1. The most fundamental theorem in the literature is the q-binomial
theorem given for |z| < 1 by [5, p. 17, (2.2.1)]

(2.1)

∞∑
n=0

(a; q)nz
n

(q; q)n
=

(az; q)∞
(z; q)∞

.

For |z| < 1 and |b| < 1, Heine’s transformation [5, p. 19, Corollary 2.3] is
given by

(2.2) 2φ1

(
a, b

c
; q, z

)
=

(b, az; q)∞
(c, z; q)∞

2φ1

(
c/b, z

az
; q, b

)
,

and we also note Bailey’s 10φ9 transformation [7, (2.10)], [12, (6.3)]

(2.3)

lim
N→∞

10φ9

(
a, q2

√
a, −q2

√
a, p1, p1q, p2, p2q, f, q−2N , q−2N+1

√
a, −

√
a, aq2

p1
, aq

p1
, aq2

p2
, aq

p2
, aq2

f
, aq2N+2, aq2N+1

; q2, a
3q4N+3

p21p
2
2f

)
=

(aq; q)∞
( aq
p1p2

; q
)
∞(aq

p1
; q
)
∞
(aq
p2

; q
)
∞

∞∑
n=0

(p1; q)n(p2; q)n
(aq
f ; q2

)
n

(q; q)n(aq; q2)n
(aq
f ; q

)
n

(
aq

p1p2

)n
.

Finally we note a transformation for 2ψ2 due to Bailey [25, p. 148, Exercise
5.11]:

(2.4) 2ψ2

(
e, f
aq
c ,

aq
d

; q,
aq

ef

)
=( q

c ,
q
d ,

aq
e ,

aq
f ; q

)
∞(

aq, qa ,
aq
cd ,

aq
ef ; q

)
∞

∞∑
n=−∞

(1− aq2n)(c; q)n(d; q)n(e; q)n(f ; q)n

(1−a)
(aq
c ; q

)
n

(aq
d ; q

)
n

(aq
e ; q

)
n

(aq
f ; q

)
n

(
qa3

cdef

)n
qn

2
,

where rψr is the basic bilateral hypergeometric series defined by [25, p. 137,
(5.1.1)]

rψr

(
a1, . . . , ar

b1, . . . , br
; q, z

)
:=

∞∑
n=−∞

(a1; q)n · · · (ar; q)n
(b1; q)n · · · (br; q)n

zn,

where (a; q)n := (a; q)∞/(aq
n; q)∞ for n < 0.
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3. The generating function of pω(n). First, we recall that pω(n)
counts the number of overpartitions of n such that all odd parts are less than
twice the smallest part, and in which the smallest part is always overlined.
To the best of our knowledge, none of the already existing identities from
the theory of basic hypergeometric series seems to be capable of handling
its generating function. Hence we devise a new q-series identity consisting
of seven parameters that transforms (1.2) into a 3φ2 and an infinite series
involving little q-Jacobi polynomials defined in (1.5). The motivation and
the need for devising such an identity is now given.

In the proof of the representation of the generating function of pω(n) in
terms of the third order mock theta function ω(q) [11, Theorem 3.1], the fol-
lowing four-parameter q-series identity due to the first author [6, Theorem 1]
played an instrumental role:

∞∑
n=0

(B; q)n(−Abq; q)nqn

(−aq; q)n(−bq; q)n
=
−a−1(B; q)∞(−Abq; q)∞

(−bq; q)∞(−aq; q)∞

∞∑
m=0

(A−1; q)m
(Abq
a

)m(
−B
a ; q
)
m+1

(3.1)

+ (1 + b)
∞∑
m=0

(−a−1; q)m+1

(
−ABq

a ; q
)
m

(−b)m(
−B
a ; q
)
m+1

(Abq
a ; q

)
m+1

.

Agarwal [2, (3.1)] obtained the following ‘mild’ extension/generalization
of (3.1) in the sense that we get (3.1) from the identity below when t = q:

∞∑
n=0

(α)n(γ)n
(β)n(δ)n

tn

(3.2)

=
(q/(αt), γ, αt, β/α, q; q)∞
(β/(αt), δ, t, q/α, β; q)∞

2φ1

(
δ/γ, t

qαt/β
; q, γq/β

)

+
(γ)∞
(δ)∞

(
1− q

β

) ∞∑
m=0

(δ/γ)m(t)m
(q)m(αt/β)m+1

(qγ/β)m
(
2φ1

(
q, q/t

qβ/(αt)
; q, q/α

)
−1

)

+
(γ)∞
(δ)∞

(
1− q

β

) ∞∑
p=0

γp(δ/γ)p
(q)p

∞∑
m=0

(δqp/γ)m(tqp)m
(q1+p)m(αtqp/β)m+1

(qγ/β)m.

Since the right side of (1.2) involves three q-shifted factorials (with base q) in
the numerator as well as in the denominator of its summand, we need to first
generalize (3.2). Indeed, such a generalization will be given in Theorem 3.1.
However, we shall first prove its variant, namely Theorem 1.1, that we need
for our purpose.
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Proof of Theorem 1.1. Let

(3.3) S := S(α, β, γ, δ, ε, f ; q; t) :=
∞∑
n=0

(α)n(γ)n(ε)n
(β)n(δ)n(f)n

tn.

Then by an application of the q-binomial theorem (2.1),

S =
(ε)∞
(f)∞

∞∑
n=0

(α)n(γ)n(fqn)∞
(β)n(δ)n(εqn)∞

tn

(3.4)

=
(ε)∞
(f)∞

∞∑
n=0

(α)n(γ)nt
n

(β)n(δ)n

∞∑
m=0

(f/ε)m
(q)m

(εqn)m

=
(ε)∞
(f)∞

∞∑
m=0

(f/ε)mε
m

(q)m

∞∑
n=0

(α)n(γ)n
(β)n(δ)n

(tqm)n

=
(ε)∞
(f)∞

∞∑
m=0

(f/ε)mε
m

(q)m

×
{

(q1−m/(αt), γ, αtqm, β/α, q; q)∞
(βq−m/(αt), δ, tqm, q/α, β; q)∞

2φ1

(
δ/γ, tqm

αtqm+1/β
; q, γq/β

)

+
(γ)∞
(δ)∞

(1− q/β)

(1−αtqm/β)

∞∑
k=0

(δ/γ)k(αtq
m/β)kγ

k

(q)k(αtqm+1/β)k

∞∑
r=0

(q1−k−m/t)r
(βq1−k−m/(αt))r

(
q

α

)r}
=:

(ε)∞
(f)∞

(
(γ, β/α, q; q)∞
(δ, q/α, β; q)∞

V1 + V2

)
,

where in the penultimate step, we have used (3.2) in the form given in
[2, (3.2)]. Here

V1 :=
∞∑
m=0

(f/ε)m(q1−m/(αt), αtqm; q)∞ε
m

(q)m(βq−m/(αt), tqm; q)∞
2φ1

(
δ/γ, tqm

αtqm+1/β
; q, γq/β

)
,

(3.5)

V2 :=
(γ)∞
(δ)∞

(
1− q

β

) ∞∑
m=0

(f
ε

)
m
εm

(q)m
(
1− αtqm

β

)
×
∞∑
k=0

(
δ
γ

)
k

(αtqm
β

)
k
γk

(q)k
(αtqm+1

β

)
k

∞∑
r=0

( q1−k−m

t

)
r(βq1−k−m

αt

)
r

(
q

α

)r
.

Rewriting V1 using

(aq−m)∞ = (a)∞(q/a)mq
mq−m(m+1)/2,

and then applying Heine’s transformation (2.2) in the second step below,
we see that
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V1 =
(αt)∞(q/(at))∞
(t)∞(β/(at))∞

∞∑
m=0

(f/ε)m(t)m
(αtq/β)m(q)m

(
qε

β

)m
2φ1

(
δ/γ, tqm

αtqm+1/β
; q, γq/β

)(3.6)

=
(αt)∞(q/(at))∞(δq/β)∞

(αtq/β)∞(γq/β)∞(β/(at))∞

∞∑
m=0

(f/ε)m
(q)m

(
qε

β

)m
2φ1

(
αq/β, γq/β

δq/β
; q, tqm

)

=
(αt)∞(q/(at))∞(δq/β)∞

(αtq/β)∞(γq/β)∞(β/(at))∞

∞∑
k=0

(αq/β)k(γq/β)k(fq
k+1/β)∞t

k

(δq/β)k(q)k(εqk+1/β)∞
,

where in the last step we used (2.1) after interchanging the order of sum-
mation. Hence

(3.7) V1=
(αt, q/(αt), δq/β, fq/β; q)∞

(β/(αt), αtq/β, γq/β, εq/β; q)∞
3φ2

(
αq/β, γq/β, εq/β

δq/β, fq/β
; q, t

)
.

Let us now consider V2. Since

(3.8)
∞∑
r=0

(q1−k−m/t)r
(βq1−k−m/(αt))r

(
q

α

)r
=

(t)m+k

(αt/β)m+k

(
q

β

)m+k ∞∑
r=0

(αt/β)m+k−r
(t)m+k−r

(
β

q

)m+k−r

=
(t)m+k(
αt
β

)
m+k

(
q

β

)m+k
 ∞∑
p=1

( q
t

)
p(βq

αt

)
p

(
q

α

)p
+

m+k∑
p=0

(αt/β)p
(t)p

(
β

q

)p,
we find that

(3.9) V2 =
(γ)∞
(δ)∞

(
1− q

β

)
(V3 + V ∗3 ),

where

V3 :=
∞∑
m=0

(f/ε)m(t)m(εq/β)m

(q)m(αt/β)m(1− αtqm/β)

∞∑
k=0

(δ/γ)k(tq
m)k(γq/β)k

(q)k(αtqm+1/β)k

×
∞∑
p=1

(q/t)p
(βq/(αt))p

(
q

α

)p
,

(3.10)

V ∗3 :=

∞∑
m=0

(f/ε)m(εq/β)m

(q)m(1− αtqm/β)

∞∑
k=0

(δ/γ)k(t)m+k(αtq
m/β)k(γq/β)k

(q)k(αtqm+1/β)k(αt/β)m+k

×
m+k∑
p=0

(αt/β)p
(t)p

(
β

q

)p
.
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Consider V3. Again using Heine’s transformation (2.2) for the middle series
followed by (2.1), we have

(3.11) V3 =
(t, δq/β, fq/β; q)∞

(αt/β, γq/β, εq/β; q)∞
3φ2

(
αq/β, γq/β, εq/β

δq/β, fq/β
; q, t

)

×
(

2φ1

(
q, q/t

βq/(αt)
; q, q/α

)
− 1

)
.

Also,

(3.12) V ∗3 =

∞∑
n=0

(t)n
(q)n(αt/β)n+1

(
q

β

)n n∑
p=0

(αt/β)p
(t)p

(
β

q

)p

×
n∑

m=0

[
n

m

](
f

ε

)
m

εm
(
δ

γ

)
n−m

γn−m.

Finally, from (3.4), (3.7), (3.9), (3.11) and (3.12), we arrive at (1.4).

We now give the aforementioned generalization of (3.2) which can also
be viewed as a corollary of Theorem 1.1.

Theorem 3.1. Provided β, δ, f, t 6= q−j, j ≥ 0, the following identity
holds:

(3.13)
∞∑
n=0

(α)n(γ)n(ε)n
(β)n(δ)n(f)n

tn

=
(ε, γ, β/α, q, αt, q/(αt), δq/β, fq/β; q)∞

(f, δ, q/α, β, β/(αt), αtq/β, γq/β, εq/β; q)∞
3φ2

(
αq/β, γq/β, εq/β

δq/β, fq/β
; q, t

)
+

(
1− q

β

)
(ε, γ, t, δq/β, fq/β; q)∞

(f, δ, αt/β, γq/β, εq/β; q)∞
3φ2

(
αq/β, γq/β, εq/β

δq/β, fq/β
; q, t

)
×
(

2φ1

(
q, q/t

βq/(αt)
; q/α

)
− 1

)
+

(
1− q

β

)
(ε, γ, t, fq/β; q)∞

(f, δ, αt/β, εq/β; q)∞

∞∑
p=0

(δ/γ)p(αt/β)pγ
p

(t)p(q)p

∞∑
k=0

(δqp/γ)k(qγ/β)k

(q1+p)k

×2φ1

(
αq/β, εq/β

fq/β
; q, tqk+p

)
+

(
1− q

β

)
(ε, γ; q)∞
(f, δ; q)∞

∞∑
p=1

(f/ε)pε
p

(q)p

∞∑
k=0

(δ/γ)kγ
k

(q)k

×
∞∑
m=0

(fqp/ε)m(tqp+k)m
(q1+p)m(αtqp+k/β)m+1

(εq/β)m.
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Proof. Write V ∗3 in (3.10) as

(3.14) V ∗3 = V4 + V5,

where

V4 =
∞∑
m=0

(f/ε)m(εq/β)m

(q)m(1− αtqm/β)

∞∑
k=0

(δ/γ)k(t)m+k(αtq
m/β)k(γq/β)k

(q)k(αtqm+1/β)k(αt/β)m+k

×
k∑
p=0

(αt/β)p
(t)p

(
β

q

)p
,

(3.15)

V5 =

∞∑
m=0

(f/ε)m(εq/β)m

(q)m(1− αtqm/β)

∞∑
k=0

(δ/γ)k(t)m+k(αtq
m/β)k(γq/β)k

(q)k(αtqm+1/β)k(αt/β)m+k

×
m∑
p=1

(αt/β)k+p
(t)k+p

(
β

q

)k+p
.

Note that V4 can be written as

V4 =
∞∑
m=0

(f/ε)m(t)m(εq/β)m

(q)m(αt/β)m+1

∞∑
p=0

(αt/β)p
(t)p

(
β

q

)p ∞∑
k=p

(δ/γ)k(tq
m)k

(q)k(αtqm+1/β)k

(
γq

β

)k(3.16)

=

∞∑
m=0

(f/ε)m(t)m(εq/β)m

(q)m(αt/β)m+1

∞∑
p=0

(αt/β)p(δ/γ)p(tq
m)pγ

p

(t)p(αtqm+1/β)p(q)p

×
∞∑
k=0

(δqp/γ)k(tq
m+p)k(γq/β)k

(qp+1)k(αtqm+p+1/β)k

=

∞∑
p=0

(δ/γ)pγ
p

(q)p

∞∑
m=0

(f/ε)m(tqp)m
(q)m(αtqp/β)m+1

(
εq

β

)m ∞∑
k=0

(δqp/γ)k(tq
m+p)k(γq/β)k

(qp+1)k(αtqm+p+1/β)k

=

∞∑
p=0

(δ/γ)pγ
p

(q)p

∞∑
k=0

(δqp/γ)k(tq
p)k

(qp+1)k(αtqp/β)k+1

(
γq

β

)k ∞∑
m=0

(f/ε)m(tqp+k)m
(q)m(αtqp+k+1/β)m

(
εq

β

)m

=
(fq/β)∞(t)∞

(αt/β)∞(εq/β)∞

∞∑
p=0

(δ/γ)p(αt/β)pγ
p

(t)p(q)p

×
∞∑
k=0

(δqp/γ)k(qγ/β)k

(q1+p)k
2φ1

(
αq/b, εq/β

fq/β
; q, tqk+p

)
,

where in the last step, we have used (2.2) to transform the innermost series.
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Lastly, V5 can be simplified to

(3.17) V5 =
∞∑
k=0

(δ/γ)kγ
k

(q)k

∞∑
m=1

(f/ε)m(tqk)m(εq/β)m

(q)m(αtqk/β)m+1

m∑
p=1

(αtqk/β)p
(tqk)p

(
β

q

)p
=

∞∑
k=0

(δ/γ)kγ
k

(q)k

∞∑
p=1

(αtqk/β)p
(tqk)p

(
β

q

)p ∞∑
m=0

(f/ε)m+p(tq
k)m+p

(q)m+p(αtqk/β)m+p+1

(
εq

β

)m+p

=

∞∑
p=1

(f/ε)pε
p

(q)p

∞∑
k=0

(δ/γ)kγ
k

(q)k

∞∑
m=0

(fqp/ε)m(tqp+k)m
(q1+p)m(αtqp+k/β)m+1

(
εq

β

)m
.

Now (3.4), (3.7), (3.9), (3.11), (3.14), (3.16) and (3.17) give (3.13).

Remarks. 1. Agarwal’s identity (3.2) can be obtained from (3.13) by
letting ε = f = 0 in (3.13), and then applying (2.2) to each of the resulting

3φ2’s and to the 2φ1 in the third expression on the right side.

2. The fact that the identity [1, (4.5)]
∞∑
n=0

(α)n
(β)n

tn =
(β/α, q, αt, q/(αt); q)∞
(q/α, β, t, β/(αt); q)∞

(3.18)

+
(1− (q/β))

(1− (αt/β))
2φ1(q, q/t; qβ/(αt); q, q/α)

was used in the proof of (3.2) (see [2, p. 294]), and (3.2) was used in the
proof of (3.13) given above, suggests that a generalization of (3.2) for the
series

(3.19)
∞∑
n=0

(a1, . . . , ar; q)n
(b1, . . . , br; q)n

tn,

for r ∈ N, is not inconceivable. A generalization of (3.13), with r = 4
in (3.19), has recently been obtained in [13, Theorem 1.3], which, together
with (3.18) and (3.2), shows a nice pattern among the expressions as r in-
creases. Actually, Gupta [26] has already obtained a generalization of Agar-
wal’s result (3.2) for the series in (3.19) for any r ∈ N, however, his general
result, and hence also its specialization when r = 3 (and r = 4), is not ex-
plicit, and is in terms of q-Lauricella functions. Our Theorem 3.1, its variant
Theorem 1.1 as well as Theorem 1.3 from [13] are, on the other hand, quite
explicit.

We now prove Theorem 1.2 using Theorem 1.1.

Lemma 3.2. If m is a positive integer, we have

(3.20)
m∑
j=0

[
m

j

]
(−a)j(−a)m−j(−1)j =

{
(q; q2)n(a2; q2)n if m = 2n,

0 if m is odd.
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Proof. We note that

m∑
j=0

[
m

j

]
(−a)j(−a)m−j(−1)j = (−a)m

m∑
j=0

(q−m)j(−a)j(q/a)j

(q)j(−a−1q1−m)j

=

{
(q; q2)n(a2; q2)n if m = 2n,

0 if m is odd,

by [4, p. 526, (1.7)].

Remark. Ismail and Zhang [32, Lemma 4.1] have obtained several in-
teresting results of a similar type.

Proof of Theorem 1.2. Let

β = −q2, γ = iq3/2, δ = q3/2, ε = −iq3/2, f = −q3/2, t = q

in Theorem 1.1, and then let α→ q. Note that the second expression on the
right side of (1.4) vanishes. Hence

∞∑
n=0

qn(−q3; q2)n(q; q)n
(q3; q2)n(−q2; q)n

(3.21)

=
1

2

(
1− 1

q

)
(q; q)2∞

(−q; q)2∞

∞∑
n=0

(−1; q)n(−q; q2)n
(q; q2)n(q; q)n

qn

+
(−q3; q2)∞
(q3; q2)∞

(
1 +

1

q

) ∞∑
n=0

(−i√q)n

(−1)n+1

n∑
p=0

(−1)p(−q)p

(q)p

×
n∑

m=0

[
n

m

]
(−i)m(−i)n−m(−1)m

=
1

2

(
1− 1

q

)
(q; q)2∞

(−q; q)2∞

∞∑
n=0

(−1; q)n(−q; q2)n
(q; q2)n(q; q)n

qn

+
1

2q

(−q; q2)∞
(q3; q2)∞

∞∑
n=0

(q; q2)n(−1; q2)n(−q)n

(−q)2n

2n∑
p=0

(−1)p(−q)p

(q)p
,

where in the last step, we have applied Lemma 3.2 with a = i. This proves
(1.6) upon observing that

(3.22) p2n(−1; q−2n−1,−1 : q) =
2n∑
p=0

(−1)p(−q)p

(q)p
,

which follows from (1.5). Now (1.2) and (1.6) imply (1.7).
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Proof of Theorem 1.3. Let

(3.23)

S1(q) :=

∞∑
n=0

qn(−q3; q2)n(q)n
(q3; q2)n(−q2)n

, S2(q) := −1

2

(
1− 1

q

)
(q)2∞

(−q)2∞
,

S3(q) := −1

2

(
1− 1

q

)
(q)2∞

(−q)2∞

∞∑
n=1

(−1)n(−q; q2)n
(q; q2)n(q)n

qn.

By (1.6), proving (1.8) is equivalent to showing

(3.24) S1(q) + S2(q) + S3(q) ≡
1

2q
− 1

2
(mod 4).

Note that (q)2∞ ≡ (−q)2∞ (mod 4) since (1− x)2 ≡ (1 + x)2 (mod 4). Hence

(3.25) S1(q) + S3(q) ≡ S1(q) +
∞∑
n=1

(−q)n−1(−q; q2)nqn−1

(q3; q2)n−1(q)n
(mod 4)

= S1(q) +
∞∑
n=0

(−q)n(−q; q2)n+1q
n

(q3; q2)n(q)n+1

=
∞∑
n=0

qn(−q; q2)n+1(q)n
(q3; q2)n(−q)n+1

+
∞∑
n=0

(−q)n(−q; q2)n+1q
n

(q3; q2)n(q)n+1

=
∞∑
n=0

(−q; q2)n+1q
n

(q3; q2)n

(
(q)n

(−q)n+1
+

(−q)n
(q)n+1

)

=

∞∑
n=0

(−q; q2)n+1q
n

(q2; q)2n+1

(
(q)2n(1− qn+1) + (−q)2n(1 + qn+1)

)
≡ 2

∞∑
n=0

(−q; q2)n+1(q)
2
nq
n

(q2; q)2n+1
(mod 4),

since (q)2n ≡ (−q)2n (mod 4). Now

S2(q) = −1

2

(
1− 1

q

)(
1 + 2

∞∑
n=1

(−1)nqn
2
)2

(3.26)

=
1

2q
− 1

2
+

2

q
(1− q)

( ∞∑
n=1

(−1)nqn
2

+
( ∞∑
n=1

(−1)nqn
2
)2)

.

From (3.25) and (3.26), it suffices to show that

(3.27) 2

∞∑
n=0

(−q; q2)n+1(q)
2
nq
n

(q2; q)2n+1

≡ −2

q
(1− q)

( ∞∑
n=1

(−1)nqn
2

+
( ∞∑
n=1

(−1)nqn
2
)2)

(mod 4),
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or equivalently

(3.28)

∞∑
n=0

(q3; q2)n(q2; q2)nq
n+1

(q2; q2)n+1(q3; q2)n

≡ −
( ∞∑
n=1

(−1)nqn
2

+
( ∞∑
n=1

(−1)nqn
2
)2)

(mod 4).

Now

(3.29)
∞∑
n=0

(q3; q2)n(q2; q2)nq
n+1

(q2; q2)n+1(q3; q2)n
=

∞∑
n=0

qn+1

1− q2n+2
=

∞∑
N=1

do(N)qN ,

where do(N) is the number of odd divisors of N . Also,

(3.30) −
( ∞∑
n=1

(−1)nqn
2

+
( ∞∑
n=1

(−1)nqn
2
)2)

≡
∞∑
n=1

qn
2

+
( ∞∑
n=1

qn
2
)2

(mod 4).

Let

(3.31)
∞∑
N=1

a(N)qN :=
∞∑
n=1

qn
2

+
( ∞∑
n=1

qn
2
)2
.

Let r2(m) denote the number of representations ofm as a sum of two squares,
where representations with different orders or different signs of the sum-
mands are regarded as distinct. Now if N is not a square, then the number
of representations of N as a sum of two positive squares is equal to

(3.32) 1
4r2(N) = d1(N)− d3(N) ≡ do(N) (mod 2),

where dj(N) denotes the number of divisors of N congruent to j modulo 4
for j = 1, 3. Note that Jacobi’s formula on r2(N) was employed in the
penultimate step. Thus, a(N) ≡ do(N) (mod 2). If, however, N is a square,
then the number of representations of N as a sum of two positive squares is
equal to 1

4r2(n)− 1. Hence,

(3.33) a(N) = 1
4r2(N) = d1(N)− d3(N) ≡ do(N) (mod 2).

This implies that (3.28) always holds, and this proves the theorem.

4. Congruences for pω(n). This section is devoted to proving Theorem
1.4. We start with the following series S(q):

(4.1) S(q) :=
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

.
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Lemma 4.1. The following identity holds:

(4.2) S(q) = −
∞∑
n=1

(−1)nq2n
2

+

∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

.

Proof. We have

S(q) =

∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

=
(q; q)∞

(−q; q)∞

∞∑
n=1

qn(−q; q)n−1(−q2n+1; q2)∞
(q; q)n(q2n+1; q2)∞

=
(q; q)∞

(−q; q)∞

∞∑
n=1

qn(−q; q)n−1
(q; q)n

∞∑
k=0

(−1; q2)k
(q2; q2)k

q(2n+1)k

=
(q; q)∞

(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

∞∑
n=1

(−q; q)n−1
(q; q)n

q(2k+1)n

=
(q; q)∞

(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

(
−1

2
+

1

2

∞∑
n=0

(−1; q)n
(q; q)n

q(2k+1)n

)

= − (q; q)∞
2(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

+
(q; q)∞

2(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

∞∑
n=0

(−1; q)n
(q; q)n

q(2k+1)n

= − (q; q)∞
2(−q; q)∞

(−q; q2)∞
(q; q2)∞

+
(q; q)∞

2(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

(−q2k+1; q)∞
(q2k+1; q)∞

= − (q2; q2)∞
2(−q2; q2)∞

+
1

2

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

(q; q)2k
(−q; q)2k

= −1

2
−
∞∑
n=1

(−1)nq2n
2

+
1

2
+

∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

,

where (2.1) has been used for the third and seventh equalities.

Let

(4.3) A(q) :=

∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

.

Lemma 4.2. We have

A(q) +A(−q) = −1

2
+

1

2

(q2, q2; q2)∞
(−q2,−q2; q2)∞

.
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Proof. We now extend the sum in (4.3) to negative infinity:

(4.4)
∞∑

k=−∞

qk(q; q2)k
(−q; q2)k(1 + q2k)

=
1

2
+
∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

+
∞∑
k=1

(−1)kqk(−q; q2)k
(q; q2)k(1 + q2k)

,

where (a; q)n := (a; q)∞/(aq
n; q)∞. Thus

(4.5)

∞∑
k=−∞

qk(q; q2)k
(−q; q2)k(1 + q2k)

=
1

2
+A(q) +A(−q).

Set q → q2, a = −1, c = q, d = 1, e = q, and f = −1 in (2.4). Then we
obtain

∞∑
k=−∞

qk(q; q2)k
(−q; q2)k(1 + q2k)

=
1

2

∞∑
k=−∞

qk(q; q2)k(−1; q2)k
(−q; q2)k(−q2; q2)k

=
1

2

(q, q2,−q, q2; q2)∞
(−q2,−q2,−q, q; q2)∞

=
1

2

(q2, q2; q2)∞
(−q2,−q2; q2)∞

,

which with (4.5) completes the proof.

Lemma 4.3. We have

1

2

(
A(q)−A(−q)

)
≡ q (q8; q8)4∞

(q4; q4)2∞
(mod 4).(4.6)

Proof. First note that using Alladi’s identity [3, p. 215] we obtain

(q; q2)k
(−q; q2)k

= 1− 2

k∑
j=1

q2j−1(q; q2)j−1
(−q; q2)j

.

Thus

A(q) =
∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

(4.7)

=

∞∑
k=1

qk

1 + q2k
− 2

∞∑
k=1

qk

1 + q2k

k∑
j=1

q2j−1(q; q2)j−1
(−q; q2)j

≡
∞∑
k=1

qk

1 + q2k
+ 2

∞∑
k=1

qk

1 + q2k

k∑
j=1

q2j−1

1 + q2j−1
(mod 4).
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Now
∞∑
k=1

qk

1 + q2k

k∑
j=1

q2j−1

1 + q2j−1
=
∞∑
k=1

qk

1 + q2k

k∑
j=1

∞∑
m=1

(−1)m−1q(2j−1)m(4.8)

=
∞∑
k=1

qk

1 + q2k

∞∑
m=1

k∑
j=1

(−1)m−1q(2j−1)m

= −
∞∑
k=1

qk

1 + q2k

∞∑
m=1

(−q)m
k−1∑
j=0

q2mj

= −
∞∑
k=1

qk

1 + q2k

∞∑
m=1

(−q)m (1− q2km)

1− q2m

≡
∞∑

k,m=1

qk+m

(1 + q2k)(1 + q2m)
+

∞∑
k,m=1

q2km+k+m

(1 + q2k)(1 + q2m)
(mod 2)

≡
∞∑
k=1

q2k

(1− q2k)2
+
∞∑
k=1

q2k
2+2k

(1− q2k)2
(mod 2),

where the last congruence follows since each of the double summations is
symmetric in k and m. Thus, by (4.7) and (4.8),

A(q) ≡
∞∑
k=1

qk

1 + q2k
+ 2

∞∑
k=1

q2k

1− q4k
+ 2

∞∑
k=1

q2k(k+1)

1− q4k
(mod 4)

≡
∞∑
k=1

q2k−1

1 + q4k−2
+
∞∑
k=1

q2k

1 + q4k
+ 2

∞∑
k=1

q2k

1− q4k
+ 2

∞∑
k=1

q2k(k+1)

1− q4k
(mod 4).

Since the odd powers of q appear only in the first sum on the right hand
side above, we see that

1

2

(
A(q)−A(−q)

)
≡
∞∑
k=1

q2k−1

1 + q4k−2
(mod 4)

= q
(q8; q8)4∞
(q4; q4)2∞

,

where the last equality follows from [20, (32.26)]. It can also be derived
by letting q → q4 and then substituting a = −q−2, b = −q2, z = q2 in
Ramanujan’s 1ψ1 summation formula [25, p. 239, (II 29)]

(4.9)

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
(az; q)∞(q/(az); q)∞(q; q)∞(b/a; q)∞
(z; q)∞(b/(az); q)∞(b; q)∞(q/a; q)∞

,

valid for |b/a| < |z| < 1 and |q| < 1.
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By Lemmas 4.2 and 4.3, we have

A(q) ≡ −1

4
+

1

4

(q2; q2)2∞
(−q2; q2)2∞

+ q
(q8; q8)4∞
(q4; q4)2∞

(mod 4).

Also, we recall that

φ(−q) :=
∞∑

n=−∞
(−1)nqn

2
= (q; q)∞(q; q2)∞ =

(q; q)∞
(−q; q)∞

,(4.10)

ψ(q) :=

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
(q2; q2)2∞
(q; q)∞

.(4.11)

Thus,

(4.12) A(q) ≡

− 1

4
+

1

4

∞∑
m,n=−∞

(−1)m+nq2(m
2+n2) + q

∞∑
m,n=0

q2m(m+1)+2n(n+1) (mod 4).

We are now ready to prove Theorem 1.4. First, note that

(4.13)
1 + x

1− x
≡ 1− x

1 + x
(mod 4).

Thus from (1.1),

(4.14)
∞∑
n=1

pω(n)qn ≡
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1− qn)(−qn+1; q)n(−q2n+2; q2)∞

(mod 4).

Now, modulo 4,

(4.15)
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1− qn)(−qn+1; q)n(−q2n+2; q2)∞

=

∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

+ 2
∞∑
n=1

q2n(qn+1; q)n(q2n+2; q2)∞
(1− q2n)(−qn+1; q)n(−q2n+2; q2)∞

≡
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

+ 2

∞∑
n=1

q2n

1− q2n

≡
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

+ 2
∞∑
n=1

q2n
2
,

where the second-to-last congruence follows from the fact that

(4.16) 1 + x ≡ 1− x (mod 2).
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For the last congruence above, we have used Clausen’s identity [20, p. 16,
(14.51)]

∞∑
n=1

d(n)qn =

∞∑
n=1

1 + qn

1− qn
qn

2
,

which implies that

(4.17)

∞∑
n=1

qn

1− qn
≡
∞∑
n=1

qn
2

(mod 2).

Thus, from (4.1), (4.14) and (4.15), we have

(4.18)

∞∑
n=1

pω(n)qn ≡ S(q) + 2

∞∑
n=1

q2n
2

(mod 4).

Theorem 4.4. We have

(4.19)

∞∑
n=1

pω(n)qn

≡ −1 +
∞∑

m,n=0

(−1)m+nq2(m
2+n2) + q

∞∑
m,n=0

q2m(m+1)+2n(n+1) (mod 4).

Proof. The congruence follows from (4.2), (4.3), (4.12), and (4.18).

Thus it immediately follows from Theorem 4.4 that pω(4n + 3) ≡ 0
(mod 4). Since 8n + 6 = 2(4n + 3) and 4n + 3 cannot be written as a sum
of two squares, this also proves pω(8n+ 6) ≡ 0 (mod 4).

5. Different representations of the generating function of
sptω(n). In this section, we will show some relationships between sptω(n)
and spt(n) and spt2(n).

First, note that (a; q)−n = 1/(aq−n; q)n for any n ≥ 0. Now, by taking
d = 1, e = 0, and v = 1 in [17, (1.1)], we obtain

N2(1, 0; q)

=
(−q; q)∞
(q; q)∞

( ∞∑
n=1

(−1)n−1qn
2+n(−1; q)n

(1− qn)2(−q; q)n
+

∞∑
n=1

(−1)n−1qn
2+n(−q1−n; q)n

(1− qn)2(−q−n; q)n

)

= 2
(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)n−1qn
2+n

(1− qn)2
.

Also, by [17, (1.2)],

Spt(1, 0; q) =
(−q; q)∞
(q; q)∞

∞∑
n=1

nqn

1− qn
−N2(1, 0; q),
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where Spt(1, 0; q) is the generating function spt(n) by [17, Theorem 7.1].
Thus,

∞∑
n=1

spt(n)qn =
∞∑
n=1

qn(−qn+1; q)∞
(1− qn)2(qn+1; q)∞

(5.1)

=
(−q; q)∞
(q; q)∞

∞∑
n=1

nqn

1− qn
+ 2

(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)nqn
2+n

(1− qn)2
.

We also define
∞∑
n=1

spt2(n)qn :=
∞∑
n=1

q2n(−q2n+1; q)∞
(1− q2n)2(q2n+1; q)∞

.

We replace q by q2, and then set d = 1 and e = q−1 in [17, (1.1) and (1.2)].
Then, by [17, Theorem 7.1], we have
∞∑
n=1

spt2(n)qn =
(−q; q)∞
(q; q)∞

∞∑
n=1

nq2n

1− q2n
+ 2

(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)nqn
2+2n

(1− q2n)2

=
(−q; q)∞
(q; q)∞

∞∑
n=1

nq2n

1− q2n

+
(−q; q)∞
(q; q)∞

( ∞∑
n=1

(−1)n−1qn
2+n(1+q2n)

(1− q2n)2
+
∞∑
n=1

(−1)nqn
2+n

(1− qn)2

)

=
(−q; q)∞
(q; q)∞

∞∑
n=1

nq2n

1− q2n

+
(−q; q)∞
(q; q)∞

∞∑
n=1

q2n

(1− q2n)2
+

(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)nqn
2+n

(1− qn)2
,

where the last equality follows from [22, (1.4) and Theorem 2.2], i.e.,
∞∑
n=1

(−1)n−1qn(n+1)/2(1 + qn)

(1− qn)2
=

∞∑
n=1

qn

(1− qn)2
.

Also,
∞∑
n=1

qn

(1− qn)2
=

∞∑
n,k=1

kqkn =

∞∑
k=1

kqk

1− qk
.

Therefore,
∞∑
n=1

spt2(n)qn =
∞∑
n=1

q2n(−q2n+1; q)∞
(1− q2n)2(q2n+1; q)∞

(5.2)

= 2
(−q; q)∞
(q; q)∞

∞∑
n=1

nq2n

1− q2n
+

(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)nqn
2+n

(1− qn)2
.
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Theorem 5.1. We have

(5.3)
∞∑
n=1

sptω(n)qn =
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

nqn

1− qn
+ 2

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2
.

Proof. In (2.3), we set a = 1, p1 = z = p−12 , and f = −1. Then we obtain

(5.4)
∞∑
n=0

(z; q)n(z−1; q)n(−q; q2)nqn

(q; q)n(q; q2)n(−q; q)n

=
(zq; q)∞(z−1q; q)∞

(q; q)2∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nq2n(n+1)

(1− zq2n)(1− z−1q2n)

)
.

Recalling the facts [8, (2.1), (2.4)]

−1

2

[
d2

dz2
(1− z)(1− z−1)f(z)

]
z=1

= f(1),

−1

2

[
d2

dz2
(zq; q)∞(z−1q; q)∞

]
z=1

= (q; q)2∞

∞∑
n=1

nqn

1− qn
,

we now take the second derivative on both sides of (5.4) with respect to z,
then set z = 1 to obtain

∞∑
n=1

qn(q; q)n(−q; q2)n
(1− qn)2(−q; q)n(q; q2)n

=
∞∑
n=1

nqn

1− qn
+ 2

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2
.

Multiply both sides of the above identity by (−q2; q2)∞/(q2; q2)∞ to get

(5.5)
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

qn(q; q)n(−q; q2)n
(1− qn)2(−q; q)n(q; q2)n

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

nqn

1− qn
+ 2

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2
.

Note that the left hand side of (5.5) is

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

qn(q; q)n(−q; q2)n
(1− qn)2(−q; q)n(q; q2)n

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

qn(q; q)n(−q; q)2n(q2; q2)n
(1− qn)2(−q; q)n(q; q)2n(−q2; q2)n

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

qn(−qn+1; q)n(q2; q2)n
(1− qn)2(qn+1; q)n(−q2; q2)n
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=

∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)2(qn+1; q)n(q2n+2; q2)∞

=
∞∑
n=1

sptω(n)qn,

where the last equality follows from the definition of sptω(n) in (1.11).

We now relate our sptω(n) to spt(n) and spt2(n).

Corollary 5.2. We have
∞∑
n=1

sptω(n)qn

=
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

∞∑
n=1

nq2n

1− q2n

)
+

∞∑
n=1

spt(n)q2n(5.6)

=
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+ 2

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)
(5.7)

+ 2
∞∑
n=1

spt2(n)q2n.

Proof. From (5.3),

∞∑
n=1

sptω(n)qn

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

2nq2n

1− q2n

+ 2
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

nq2n

1− q2n
+

∞∑
n=1

spt(n)q2n

=
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+
∞∑
n=1

nq2n

1− q2n

)
+
∞∑
n=1

spt(n)q2n,

where the second last equality follows from (5.1). Also, by (5.2),

∞∑
n=1

sptω(n)qn =
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

nqn

1− qn
−
∞∑
n=1

4nq4n

1− q4n

)
+ 2

∞∑
n=1

spt2(n)q2n,

which yields (5.7).
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6. Congruences for sptω(n). The congruences satisfied by sptω(n),
which are given in Theorem 1.5, are proved in this section.

6.1. Congruences modulo 3. We prove (1.15) and (1.16) here. Let

S(q) :=
∞∑
n=1

cnq
n =

(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+ 2

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)
.

(6.1)

Then, by (5.7),

sptω(n) = cn + 2spt2(n/2),(6.2)

where we follow the convention that spt2(x) = 0 if x is not a positive integer.

By (1.12) and (1.13), it suffices to show that c3n ≡ c3n+2 ≡ 0 (mod 3).
Now

S(q) ≡ (−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
−
∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)
(mod 3)

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(2n− 1)q2n−1

1− q4n−2
=

(−q2; q2)∞
(q2; q2)∞

q(q4; q4)8∞
(q2; q2)4∞

= q(−q2; q2)9∞(q2; q2)3∞ ≡ q(−q6; q6)3∞(q6; q6)∞ (mod 3),

where the third equality follows from [20, (32.31)]. Hence c3n ≡ c3n+2 ≡ 0
(mod 3).

6.2. Another proof of (1.15). Let

M1(q) :=
∞∑
n=1

dnq
n =

(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+
∞∑
n=1

nq2n

1− q2n

)
.

Since [23, Thm. 1.2] implies spt(3n) ≡ 0 (mod 3), it suffices to show d3n ≡ 0
(mod 3) by (5.6). Now

M1(q) =
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

∞∑
n=1

nq2n

1− q2n

)

≡ (−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
−
∞∑
n=1

2nq2n

1− q2n

)
(mod 3)

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n−1nqn

1− qn

≡ (−q2; q2)∞
(q2; q2)∞

∞∑
n=1

χ(n)qn

1− qn
(mod 3),
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where χ(n) = 1 if n ≡ 1 or 2 (mod 6), is −1 if n ≡ 4 or 5 (mod 6), and is 0
if n ≡ 0 (mod 3). Thus,

M1(q) ≡
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

E1,2(n; 6)qn (mod 3),

where

E1,2(n; 6) =
∑
d|n

d≡1,2 (mod 6)

1−
∑
d|n

d≡−1,−2 (mod 6)

1.

By (4.10), we see that

φ(−q) =
∞∑

n=−∞
(−1)nq9n

2 − 2q
∞∑

n=−∞
(−1)nq9n

2+6n = φ(−q9)− 2qW (q3).

Hence, by [20, p. 80, (32.39)] we have, modulo 3,

M1(q) ≡
1

φ(−q2)

∞∑
n=1

E1,2(n; 6)qn

≡ 1

φ(−q2)

(
1− (q2; q2)∞(q3; q3)6∞

(q; q)2∞(q6; q6)3∞

)
=

1

φ(−q2)

(
1− φ(−q3)3

φ(−q)

)
≡ (φ(−q)− φ(−q9))

φ(−q2)φ(−q)

=
−2qW (q3)(−q; q)∞(−q2; q2)∞

(q2; q2)∞(q; q)∞
=
−2qW (q3)(q; q)∞(−q2; q2)∞

(q; q)3∞

≡ qW (q3)

(q3; q3)∞
(q4; q4)∞(q; q2)∞ =

qW (q3)

(q3; q3)∞

∞∑
n=−∞

(−1)nq2n
2−n.

Now 2n2−n is only congruent to 0 or 1 modulo 3. Hence this last expression
has no nonzero coefficients for terms where q is a power of 3. Hence 3 | d3n.

6.3. Congruence modulo 6. The congruence in (1.18) can be reduced
to (1.16). Using (4.16), we see that, modulo 2,

∞∑
n=1

sptω(n)qn =
∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)2(qn+1; q)n(q2n+2; q2)∞

(6.3)

≡
∞∑
n=1

qn

(1− qn)2
=
∞∑
n=1

σ(n)qn,

where σ(n) denotes the sum of all positive divisors of n.
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Now any number of the form 6n+ 5 has all its prime divisors odd. The
sum of the divisors of an odd prime raised to an odd power is even. For
any number congruent to 5 modulo 6 there must be at least one odd prime
congruent to 5 modulo 6 raised to an odd power in its prime factorization
(otherwise the number would be congruent to 1 modulo 6). Since σ(n) is
multiplicative, it follows that σ(6n + 5) is even. Hence the coefficients of
q6n+5 in both series are all even.

6.4. Congruence modulo 5. The congruence (1.17) is proved here.
Since spt2(5n+3) ≡ 0 (mod 5), using (6.2), it suffices to show that c10n+6 ≡ 0
(mod 5), where cn is defined in (6.1). By (6.1),

S(q) =
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+ 2

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)
(6.4)

=
(−q2; q2)∞
(q2; q2)∞

×
( ∞∑
n=1

(2n− 1)q2n−1

1− q4n−2
+

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2
+ 2

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)

=
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q4n−2
+ 3

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)
=: qE1(q

2) + 3E2(q
2).

Thus, it suffices to show that the coefficient of q5n+3 in E2(q) is congruent
to 0 modulo 5, which follows from the following lemma.

Lemma 6.1. Let r(q) be the Rogers–Ramanujan continued fraction given
by

r(q) = q1/5
(q, q4; q5)∞
(q2, q3; q5)∞

,

and let E2(q) be defined as above. Then, modulo 5,

E2(q
1/5) ≡ q(q; q)2∞(q10; q10)∞

(q2, q3; q5)5∞(q5; q5)2∞

(
r(q2)

r(q)2
+

1

r(q)2r(q2)
+

3

r(q)3
+
r(q2)

r(q)3

)
.

Proof. As in [30], set

A(q) = q1/5
(q, q4, q5; q5)∞

(q; q)
3/5
∞

, B(q) =
(q2, q3, q5; q5)∞

(q; q)
3/5
∞

.

Although A(q)±1 and B(q)±1 do not have integer coefficients, all of the
series A(q)±5, B(q)±5, and r(q)±1 have integer coefficients. We will use the
following properties:

r(q) =
A(q)

B(q)
,(6.5)
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A(q)B(q) = q1/5
(q5; q5)∞

(q; q)
1/5
∞

,(6.6)

2A(q)5 +B(q)5 ≡ 1 (mod 5),(6.7)

A(q1/5)5 ≡ r(q)

1 + 2r(q)
(mod 5).(6.8)

Identities (6.5) and (6.6) follow directly from the definitions of A(q) and
B(q). By multiplying through by (q; q)3∞, we see that (6.7) has the equivalent
formulation

(q2, q3, q5; q5)5∞ + 2q(q, q4, q5; q5)5∞ ≡ (q; q)3∞ (mod 5).

After applying Jacobi’s triple product identity [5, p. 21, Theorem 2.8] to each
of the products on the left hand side, applying the fact that the characteristic
is 5, and using Jacobi’s identity [5, p. 176] on the right side, we must show that

∞∑
n=−∞

(−1)nq
5n
2
(5n−1) + 2q

∞∑
n=−∞

(−1)nq
5n
2
(5n−3)

≡
∞∑
n=0

(−1)n(2n+ 1)q
n
2
(n+1) (mod 5),

which is easily seen to be true by breaking n into residue classes modulo 10
on the right hand side. Next, from [30, Theorem 3.3], we have

A(q1/5)5 = A(q)5 − 3A(q)4B(q) + 4A(q)3B(q)2 − 2A(q)2B(q)3 +A(q)B(q)4,

so, by (6.5),

A(q1/5)5 = A(q)5 − 3A(q)4B(q) + 4A(q)3B(q)2 − 2A(q)2B(q)3 +A(q)B(q)4

= B(q)5r(q)
(
1− 2r(q) + 4r(q)2 − 3r(q)3 + r(q)4

)
≡ B(q)5r(q)(1 + 2r(q))4 ≡ r(q)(1 + 2r(q))4

1 + 2r(q)5
≡ r(q)

1 + 2r(q)
(mod 5),

where (6.5) and (6.7) have been used to obtain the penultimate equality.
Thus, (6.8) is clear. We will also require the two identities

(q1/5; q1/5)∞ = q1/5(q5; q5)∞

(
1

r(q)
− r(q)− 1

)
,(6.9)

A(q)5 =

∞∑
n=1
5-n

qn

1− qn
·


1, n ≡ 1 (mod 5),

−3, n ≡ 2 (mod 5),

3, n ≡ 3 (mod 5),

−1, n ≡ 4 (mod 5).

(6.10)

The first identity can be found in [15, p. 270] and the second is the first
equality in [30, Lemma 2.4]. Let us save space by writing r = r(q) and
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R = r(q2). Now, by (6.10),

E2(q
1/5) =

(−q1/5; q1/5)∞
(q1/5; q1/5)∞

∞∑
n=1

(2n− 1)q(2n−1)/5

1− q(2n−1)/5

=
(q2/5; q2/5)∞

(q1/5; q1/5)2∞

∞∑
n=1

(
nqn/5

1− qn/5
− 2nq2n/5

1− q2n/5

)

≡ (q2/5; q2/5)∞(q1/5; q1/5)3∞
(q; q)∞

∞∑
n=1

(
nqn/5

1− qn/5
− 2nq2n/5

1− q2n/5

)
(mod 5)

≡ (q2/5; q2/5)∞(q1/5; q1/5)3∞
(q; q)∞

(A(q1/5)5 − 2A(q2/5)5) (mod 5).

By the dissection formulas (6.9) and (6.8) we have, modulo 5,

E2(q
1/5)

≡ q(q5; q5)3∞(q10; q10)∞
(q; q)∞

(
1

R
−R− 1

)(
1

r
− r − 1

)3( r

1 + 2r
− 2R

1 + 2R

)
≡ q(q5; q5)3∞(q10; q10)∞

(q; q)∞

(1 + 2R)2

R

(1 + 2r)6

r3

(
r

1 + 2r
− 2R

1 + 2R

)
≡ q(q5; q5)3∞(q10; q10)∞(1 + 2r5)

(q; q)∞

(1 + 2R)2

R

1 + 2r

r3

(
r

1 + 2r
− 2R

1 + 2R

)
=
q(q5; q5)3∞(q10; q10)∞(1 + 2r5)

(q; q)∞

(
−4R

r2
+

1

r2R
− 2

r3
− 4R

r3

)
≡ q(q5; q5)3∞(q10; q10)∞

(q; q)∞B(q)5

(
R

r2
+

1

r2R
+

3

r3
+
R

r3

)
.

Remarks. 1. E2(q) defined in (6.4) is the function Ov(q) in [16, (1.9)],
and the desired congruence modulo 5 then follows from [16, (1.10)]. However,
the above lemma is much more general.

2. In [11, proof of Theorem 6.4], it is written that

∞∑
n=0

(2n+ 1)q2n+1

1− q2n+1
= q

(q4; q4)8∞
(q2; q2)4∞

,

which is not correct. What the authors meant is
∞∑
n=0

(2n+ 1)q2n+1

1− q4n+2
= q

(q4; q4)8∞
(q2; q2)4∞

.

The proof can be easily fixed as the congruence concerns the odd power
terms only. However, using the functions A(q), B(q) and r(q) from the proof
of the lemma above, we can also correct the proof of [11, Theorem 6.4]. With
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k = r(q)r(q2)2, we have the parameterizations [10, Entry 24]

r(q)5 = k

(
1− k
1 + k

)2

, r(q2)5 = k2
(

1− k
1 + k

)
,

and the dissection of the relevant q-series is found to be

1

(q1/5; q1/5)∞

∞∑
n=1

nqn/5

1− qn/5

≡ r(q2)B(q)5B(q2)5

q2/5(q10; q10)∞

(2 + k)3

(1 + k)2
(
4k + 2r(q)(1 + k) + r(q2)

)
(mod 5).

7. Congruences involving spt(n) and sptω(n). This section is de-
voted to proving Theorems 1.6 and 1.7. We first need the following lemmas.

Lemma 7.1. We have
∞∑
n=1

qn(n+1)/2

1− qn
=

∞∑
n=1

q2n−1

1− q2n−1
.(7.1)

Proof. This is proved in [33, p. 28].

Lemma 7.2. We have
∞∑
n=1

q2n−1

1− q2n−1
≡
∞∑
n=1

(qn
2

+ q2n
2
) (mod 2).(7.2)

Proof. We have
∞∑
n=1

q2n−1

1− q2n−1
=
∞∑
n=1

qn

1− qn
−
∞∑
n=1

q2n

1− q2n

≡
∞∑
n=1

qn
2

+
∞∑
n=1

q2n
2

(mod 2),

by (4.17).

7.1. Proof of Theorem 1.6. By (5.1) and (5.3), we know that
∞∑
n=1

spt(n)qn ≡
∞∑
n=1

sptω(n)qn ≡
∞∑
n=1

nqn

1− qn
≡
∞∑
n=1

q2n−1

1− q2n−1
(mod 2).

Therefore, the congruences in (1.19) follow from (7.2).

7.2. Proof of Theorem 1.7. Let us introduce the series

T (q) =
∞∑
n=1

qn
2
.
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Several identities satisfied by this series are

1 + 2T (−q) =
(q; q)∞

(−q; q)∞
,(7.3)

T (q) + T (q)2 =

∞∑
n=0

(−1)nq2n+1

1− q2n+1
,(7.4)

where the first identity is a restatement of (4.10) and the second is [20, p. 59,
(26.63)]. By applying (5.1), (7.1), (7.3), and (7.4) in the same sequence, we
find that, modulo 4,
∞∑
n=1

spt(n)qn =
(−q; q)∞
(q; q)∞

( ∞∑
n=1

nqn

1− qn
+ 2

∞∑
n=1

(−1)nqn
2+n

(1− qn)2

)

≡ (−q; q)∞
(q; q)∞

( ∞∑
n=0

(−1)nq2n+1

1− q2n+1
+ 2

∞∑
n=0

q4n+2

1− q4n+2
+ 2

∞∑
n=1

qn(n+1)

1− q2n

)

≡ (−q; q)∞
(q; q)∞

∞∑
n=0

(−1)nq2n+1

1− q2n+1
≡ 1

1 + 2T (−q)
(T (q) + T (q)2)

≡ (1 + 2T (q))(T (q) + T (q)2) ≡ 2T (q)3 + 3T (q)2 + T (q).

Next, set

t =

∞∑
n=1

q(7n+0)2/7 = T (q7), b =

∞∑
n=−∞

q(7n+2)2/7,

a =
∞∑

n=−∞
q(7n+1)2/7, c =

∞∑
n=−∞

q(7n+3)2/7,

and note that T (q1/7) = t+ a+ b+ c. Therefore,
∞∑
n=1

spt(n)qn/7 ≡ 2T (q1/7)3 + 3T (q1/7)2 + T (q1/7) (mod 4)

= 12abc+ 2t3 + 3t2 + t

+ 6at2 + 6at+ a+ 6b2t+ 3b2 + 6bc2

+ 6a2t+ 3a2 + 6ab2 + 6ct2 + 6ct+ c

+ 2a3 + 12act+ 6ac+ 6b2c

+ 6a2c+ 6bt2 + 6bt+ b+ 6c2t+ 3c2

+ 12abt+ 6ab+ 6ac2 + 2b3

+ 6a2b+ 12bct+ 6bc+ 2c3,

where the terms in the expansion have been collected according to the
residue classes modulo 1 of the exponents on q. Taking the terms involv-
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ing only integral powers of q gives
∞∑
n=1

spt(7n)qn ≡ 12abc+ 2t3 + 3t2 + t

≡ 2t3 + 3t2 + t ≡
∞∑
n=1

spt(n)q7n (mod 4).

This proves the congruence (1.20). Similarly, by (5.3), modulo 4,
∞∑
n=1

sptω(n)qn =
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

nqn

1− qn
+ 2

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2

)

≡ (−q2; q2)∞
(q2; q2)∞

( ∞∑
n=0

(−1)nq2n+1

1− q2n+1
+ 2

∞∑
n=0

(−1)nq4n+2

1− q4n+2
+ 2

( ∞∑
n=1

qn(n+1)/2

1− qn

)4)
=

1

1 + 2T (−q2)
(
T (q) + T (q)2 + 2T (q2) + 2T (q2)2 + 2(T (q) + T (q)2)4

)
≡ (1 + 2T (q)2)(T (q) + 3T (q)2 + 2T (q)8)

≡ 2T (q)8 + 2T (q)4 + 2T (q)3 + 3T (q)2 + T (q).

This polynomial in T (q) may be dissected in the same fashion, and we find
that

∞∑
n=1

sptω(7n)qn ≡ 2t8 + 2t4 + 2t3 + 3t2 + t ≡
∞∑
n=1

sptω(n)q7n (mod 4),

which proves the congruence (1.21).

8. Concluding remarks and some open problems. In conclusion,
we remark that the study involving the partition function pω(n) and its
associated smallest parts function sptω(n) is more difficult than the one
involving pω(n) and sptω(n). Nonetheless, these functions are as interesting
as their aforementioned counterparts. This certainly merits further study of
these functions. In particular, we give two open problems below. First, it is
not difficult to relate (1.1) to indefinite theta functions. Using the following
Bailey pair relative to (q, q):

αn =
(1− q2n+1)qn

2

1− q

n∑
j=−n

(−1)jzjq−j(j+1)/2, βn =
(z; q)n(q/z; q)n

(q; q)2n
,

we apply the Bailey Lemma

∞∑
n=0

(ρ1, ρ2; q)n

(
q2

ρ1ρ2

)n
βn

=
(q2/ρ1, q

2/ρ2; q)∞
(q2, q2/ρ1ρ2; q)∞

∞∑
n=0

(ρ1, ρ2; q)n
(q2/ρ1, q2/ρ2; q)n

(
q2

ρ1ρ2

)n
αn,
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and then with ρ1 = −ρ2 = i
√
q, we take d

dz

∣∣
z=1

on both sides of the resulting
identity to obtain

∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)(qn+1; q)n(q2n+2; q2)∞

=
−1

(q; q)3∞

∞∑
n=1

∑
|j|≤n

j(−1)jqn
2+n−j(j+1)/2 1− q2n+1

1 + q2n+1
,

where the left hand side is the generating function of pω(n) in (1.1).

Problem 1. Give the precise modular behavior of the generating func-
tion of pω(n).

We have been able to obtain another proof of the mod 4 congruences in
Theorem 1.4 assuming the conjecture that the function Y (q) defined by

(8.1) Y (q) :=
∑
n,m≥1

(−1)mq2nm+m

(1 + qn)(1− q2m−1)

is an odd function of q. Some coefficients in the expansion of Y (q) are

Y (q) = −q3 − 2q5 − 3q7 − 5q9 − 4q11 − 7q13 − 9q15 − · · ·
− 53q91 − 62q93 − 38q95 − 55q97 − · · · .

Unfortunately we are unable to prove that indeed it is an odd function,
hence we state it below as another open problem.

Problem 2. Prove that the function Y (q) defined in (8.1) is an odd
function of q.
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Abstract (will appear on the journal’s web site only)

It was recently shown that qω(q), where ω(q) is one of the third or-
der mock theta functions, is the generating function of pω(n), the number
of partitions of a positive integer n such that all odd parts are less than
twice the smallest part. In this paper, we study the overpartition analogue
of pω(n), and express its generating function in terms of a 3φ2 basic hyper-
geometric series and an infinite series involving little q-Jacobi polynomials.
This is accomplished by obtaining a new seven-parameter q-series identity
which generalizes a deep identity due to the first author as well as its gen-
eralization by R. P. Agarwal. We also derive two interesting congruences
satisfied by the overpartition analogue, and some congruences satisfied by
the associated smallest parts function.
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