SERIES TRANSFORMATIONS AND INTEGRALS INVOLVING THE
RIEMANN =-FUNCTION

ATUL DIXIT

ABSTRACT. The transformation formulas of Ramanujan, Hardy, Koshliakov and Fer-
rar are unified, in the sense that all these formulas come from the same source, namely,
a general formula involving an integral of Riemann’s E-function. We give proofs of
all of these transformation formulas using the theory of Mellin transforms and the
residue theorem. Our study includes new extensions of the formulas of Koshliakov
and Ferrar through their connection with integrals involving the Riemann =-function.
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1. INTRODUCTION

In the year 1929, N.S. Koshliakov [13] discovered a result now remembered as Koshli-
akov’s formula. To state his theorem, let K, (z) denote the modified Bessel function of
order v, and let d(n) denote the number of positive divisors of the positive integer n.
Then, if v denotes Euler’s constant and a > 0,

+ —log (%”) 14 f: d(n) Ko(2man) — é (v ~log(4ma) + 4 i d(n) K, (2”7”>) |

n=1 n=1
(1.1)
Later in 1936, W.L. Ferrar [6] showed that Koshliakov’s formula is equivalent to the
functional equation for ¢*(s), where ((s) is the Riemann zeta function defined by

G(s) = ni (1.2)

o0

Ferrar rephrased Koshliakov’s formula in the form F(«) = F(3), where a5 = 1, given
below.

Theorem 1.1. If K,(2), d(n) and « are defined as before and if o and 5 are positive
numbers such that aff =1, then

Ja <%’5<4m) 4 ) K0(27ma)> _ /B (%’4(‘”5) - d(n)K0(27m5)) .
(1.3)

n=1 n=1

Actually Ramanujan had discovered Koshliakov’s formula before Koshliakov, as can
be seen from page 253 of Ramanujan’s Lost Notebook [20]. See [3] for details.

2000 Mathematics Subject Classification. Primary 11MO06.
1



2 ATUL DIXIT

In the same paper [6], Ferrar demonstrated some other solutions of the general
equation F'(a) = F(f3), where a5 = 1. For example,

Theorem 1.2. If o and B are positive numbers such that af =1, then

2\ [ za?n? 2n? 1
\/a<—’y+log167r—210ga+22(e : K0<m”>——>)
2 no

= (wﬁsqﬂ) - %)> o

© 2. 2
= \/B <—7 + log 16m — 2log B + 22 (ew;
n=1

Ferrar’s method in [6] is general in the sense that it applies to any Dirichlet series
having a functional equation. However in this paper, we would like to emphasize an
alternative method for producing solutions of the equation F(a) = F(f3) for af =1
through a connection with an integral involving the Riemann Z-function, the prototype
of which can be found in a manuscript of Ramanujan, in the handwriting of G.N. Wat-
son, contained in the Lost Notebook [20, p. 220] written several years before the papers
of Koshliakov and Ferrar. Ramanujan’s beautiful claim is as follows.

Theorem 1.3. Define

8(r) = Y(r) + 5 — loga, (1.5)

I (x = 1 1
Pl) = Féx;:_7_§(m+x_m+l)’ (16)

the logarithmic derivative of the Gamma function. Let Riemann’s £-function be defined
by

where

£(s) = (s — 1)n 2°T(1 + 18)C(s), (1.7)
and let
E(t) = &(5 +1t) (1.8)

be the Riemann =-function. If a and B are positive numbers such that oS =1, then

\/a{ 1og27ra Z¢na}_ ﬁ{ log27r/3 Zgbnﬁ}

1 o 1 -1+t
= —— =E(=t)T
= [F(2) ( )

where v here again denotes Euler’s constant.

cos (ﬁtlog a)
1+¢2

dt, (1.9)

A.P. Guinand [8, 9] rediscovered the first equality in (1.9) in a slightly different form.
Recently, B.C. Berndt and A. Dixit [2] proved both parts of (1.9). Later, A. Dixit [5]
obtained (1.9) as a limiting case of a more general formula given below.

Theorem 1.4. Let 0 < Re z < 2. Define p(z,x) by

1 xl*

o(z2) = ((2,2) = 5275 + T—,

(1.10)
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where ((z,z) denotes the Hurwitz zeta function. Then if a and B are any positive
numbers such that aff =1,

: (() (-1 ((z) ¢z—-1)
@ (ng #na) 20 afz— ) & (ZSO #nh) - 23% _ﬁ(z—1)>

_ 8(;{%/0 F(z—i—l—it)r(z—i—@t) - <t+z(2z—1)> - <t@'(§1()1>1j;>sz(2§z_f:<;§a) ”

where Z(t) is defined in (1.8).

Ramanujan’s transformation formula (1.9) not only gives an example of F' satisfying
F(a) = F(B), where af = 1, but also reveals a nice connection with an integral
involving the Riemann =-function. This suggests that one might try to find such
integral representations for Theorems 1.1 and 1.2. These representations which extend
the formulas of Koshliakov and Ferrar are derived in Sections 2 and 4 and are as follows.

Theorem 1.5 (Extended version of Koshliakov’s formula). If a and  are positive
numbers such that aff = 1, then

Ja <7 log(4ma) 4Zd ) Ko 27ma)> - /B (%”W - 4§:d(”)K0(2m5)>
2 [ e 1

Theorem 1.6 (Extended version of Ferrar’s formula). If o and 8 are positive numbers

such that o = 1, then
To’n? _ 1
2 no
—v +log1 21 N[ ng?e?
:\/B( 7+ log 167 + 0gﬁ—22<65

n=1

]. 1 21 TN
n=1 n

«
4 _S/OOF 14t . 1—4t\ _ [/t cos (%tloga) @ (1.13)
=472 == )| —————=dt. .
0 4 4 2 1+1¢2

Two further examples of a transformation formula and an integral involving the
Riemann =-function associated with it, namely equations (1.15) and (1.18), can be
easily derived from Ramanujan’s formula (Equation (1.14) below) and Hardy’s formula
(Equation (1.17) below) respectively. In [17], Ramanujan derives the identity for real
n?

2,—4n

> pe—mate —1+ it —1—it t
e_”—47re_3”/ 1:62— dz = + ! r ‘ = = | cosntdt.
(1.14)

Letting n = Jloga in (1.14) and noting that the integral on the right-hand side is
invariant under the map a — 3, where a8 = 1, we deduce the following result.
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Theorem 1.7. If a and [ are two positive numbers such that o =1, then

71-332 o2

[oe) 5 o a2
_1 _3 Te o _3 re -
a2 —4 2/ ———dr =" 2—47TB ——dzx
0

627rx -1 e27rm -1

47\/— ( HZt) r (_14_ it) = (%) cos (%tloga) dt. (1.15)

The first equality in the above formula can be easily seen to be equivalent to the
following well-known identity of Ramanujan.

Theorem 1.8. If a and 3 be any two positive numbers such that a3 = 72, then

oo —az? oo —Bz?
xe 1 xre
(1 + 40(/0 e2m—_1 dl’) = B 1 (1 + 46\/0 e2m——1 dl’) . (116)

Ramanujan discussed (1.16) in [17], just after proving (1.14). Another proof of this
identity can be seen in a paper of Ramanujan [18]. It also appears in Ramanujan’s first
letter to Hardy [19, p. xxvi] (Chelsea reprint). Further, this result was also established
by C. T. Preece [16]. See [1, p. 291] for more details.

Another example of such a function F' can be easily derived from an identity found
in a 1915 paper of G.H. Hardy [11] (see (1.17) below) in the Quarterly Journal of Math-
ematics, immediately following Ramanujan’s paper [17]. Interestingly, this short note
is not reproduced in any of the seven volumes of the Collected Papers of G.H. Hardy
(see [10, pp. 691-692] for example). In this note, Hardy says that the integral on the
right-hand side in Ramanujan’s formula (1.14) can be used to prove Hardy’s result
that there are infinitely many zeros of ((s) on the critical line Re s = %, and then he
concludes the note by giving (1.17) below, which he says is not unlike (1.14). However,
Hardy does not give a proof of his formula, and no proof has been supplied later by
anyone else either. It turns out that there is a small error in the original formula given

.N»—t

by Hardy. The sign of one of the expressions in it, namely of %, should be + and not

—. We will sketch a proof of this formula in Section 5.

Theorem 1.9 (Correct version of Hardy’s claim). For n real, we have

> E(%t) cosnt 1 1 1 o0 o
dt ==e " (2n+ =y + =1 log 2 |+21e” e ™" d
/0 1+ ¢? Cosh%mf 46 nt 274_ 9 ogm + log 2 |+3¢€ /0 Y(r+1)e Z,
(1.17)

where (x) is defined in (1.6).

Now letting n = floga in (1.17) and noting that the integral on the right-hand
side is invariant under the map o« — 3, where a8 = 1, we have another example of a
function F satisfying F'(«) = F(3), where a5 = 1.
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Theorem 1.10. If a and [ are two positive numbers such that af = 1, then
Va /°° 22 1
= 1 LEAE

2/, P(x +1e x + N
\/B /OO 3222 1
=22 Y+ 1De ™" de +
2 Jo 4y/B

> B(3t 5tl
:/ (31) cos (3 loga) dt. (1.18)
o 1+1t* coshgnt

(loga + 3 + 3 log ™ + log 2)

(log 8+ v + 3 logm + log 2)

This paper is organized as follows. In Section 2, we prove Theorem 1.5. Then in
Section 3, we give another proof of Theorem 1.3 different from the ones given in [2] and
[5]. In Sections 4 and 5, we give only brief sketches of the proofs of Theorems 1.6 and
1.9 respectively, since the same method using the theory of Mellin transforms and the
residue theorem is employed to derive all four of these formulas. The common source
for proving them is a simple formula found in [22, p. 35], which we derive here to make
this paper self-contained. Let

F&) = lo(it)|* = ¢(it)d(—it), (1.19)

where ¢ is analytic. Also let y = €™ for n real. Then,

/OOo f()Z(t) cosnt dt = 1/oo B(it)p(—it)Z(t)y™ dt

/ o(it)p ztf( —Ht)y”dt

5 +zoo

22\/_ 1 iso

Actually we use (1.20) in a slightly different form. Replacing ¢ by ¢/2 on the left-hand
side of (1.20) and then replacing n by 2n in (1.20) yields

/0°°f (;) (;) cosnt dt = Z\/—/f:o —3)0(5 = 8)€(s)y*ds,  (1.21)

where y = e*™. Tt is (1.21) that we will use in subsequent sections.

gb(% —38)&(s)y® ds. (1.20)

2. KOSHLIAKOV’S FORMULA

In this section, we prove Theorem 1.5. Even though the details in the latter part of
the proof are similar to Ferrar’s proof of Koshliakov’s formula in [6], we give a complete
proof so as to make this work self-contained. Let

AZ(t)

() = T (2.1)
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Then from (1.19) and the fact that £(s) = £(1 — s), where &(s) is defined in (1.7), we
find that

o VR y
SR Tea) 22

Thus from (1.21), (2.1) and (2.2), we see that

64 (2 ( )2cosnt 3Hioo 44/E(s)/E(1 — s) i
/0 (1+12)2 z\/_/ S(s)y” ds

ieo 825 —1)?

2+200 452 iy
z\/_/ 828—1 2(s—127 ¥

Z\/_/QHOO SFQ )Cz(s)ysds.

—100

(2.3)

Now to examine the integral in the last expression in (2.3), we wish to move the line
of integration from Re s = % to Re s = 1+ 9, for some d > 0, so that we can use the
series representation for (?(s) [22, p. 4], namely,

Cls) =) %- (2.4)

But while doing that, we need to take care of the pole of order 2 (due to ((s)) of the
integrand at s = 1 in the last expression in (2.3).
Let T' > 0 denote a real number. Then by the residue theorem, we know that

T s 14+6—iT 1+6+iT ST s
/ I (—> C(s)y* ds = / ~|—/ +/ 2 (—) C(s)y* ds
LT 2 iir —iT 14+5+iT 2

5 1+6

— 2mi lim 4 ((s —1)*7 T2 (2) Cz(s)ys) : (2.5)

s—1 dS

d
First, we evaluate lirr% P ((s —1)*7 T2 (g) (2(3)3/5). Using the product rule for
S—r S

differentiation and then simplifying, we have
3 (=0 () e (5) )
=25 = 1) (£) 12 (5) <) (¢() + (s = )¢ ()
e (2w () et - (B () ()t
= fi(s) + fa(s) + fs(s), say. (2.6)
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Since from [22, p. 20], we have

1
() =_—gtr—mls—1+-, (2.7)
we see that,
lim (g(s) +(s— 1)(’(3)) = . (2.8)
s—1
Hence from (2.6), we deduce that
lim f1(s) = 27y, (2.9)
' — Y
lim fa(s) = ylog (W) : (2.10)
and
m fuls) = tim(s — 172 (U) 12 (5) B () 2
fing fs(s) = lim(s — 1) (7?) F (2) T <2)C (s)
= y(—y — 2log 2), (2.11)
since [7, p. 895, formula 8.366, no. 2]
' (1
— | =) =—7—2log?2 2.12
T <2> v —2log?2, (2.12)

and I' (3) = /7. Hence from (2.6), (2.9), (2.10) and (2.11), we conclude that

i (o (2) 1 5) ) o (v (). o

Using Stirling’s formula on a vertical strip

T S 1
IT(s)| = (2m)2|t]" 2 2" (1+O <|t_|>) (2.14)
and the fact [22, p. 95] that for Re s > %, we have
C(s) = O(Jt]), (2.15)
one can easily observe that
15T S
lim 72 (-) C¥(s)y* ds = 0. (2.16)
T—oo J2tir 2
Now it remains to evaluate 11;5:@';0 712 (%) ¢*(s)y* ds. Using (2.4), we observe that
1+6+ico o0 14+6+ico —s
s s\ [ m™m
72 (—) Cs)yds = S d(m) / r? (—) (—) ds  (2.17)
/1+5—ioo 2 mzz:l 1+d—ioco 2 ()

where we have interchanged the order of summation and integration because of absolute
convergence. But from [14, p. 115, formula 11.1], for ¢ = Re s > £+ Re v,

1 c+1i00 S v S 14
25—2 =T (_ _ _> I (_ _) S ds = KV . 2.1
i @ T\g73)t \gtg)r & (a) (219

c—100
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14+d+i00
2
/ r2 <f> (@> ds = SmKO( ”m) . (2.19)
1+8—ioco 2 Yy Yy

Thus from (2.17) and (2.19), we conclude that

/HMO@ 75 ( )g s)y® ds = 8mZd (%m) . (2.20)

14+d—ioco Y

Hence,

Then from (2.5), (2.13), (2.16) and (2.20), we see that

[ () o o (o (s (47)) -4 S5t (222

Hence from ( ) and (2.21), we deduce that

[ o (5) - S (3.

Let n =

log v so that y = a. Since a8 = 1, we see that

I 64 (2 () cos (o) oy (1D S o)

(14-12)2 B

n=1

(2.23)
Switching @ and (5 in (2.23) and then combining with (2.23) and simplifying, we arrive
at (1.12), since the left-hand side of (2.23) is invariant under the map o — f.

Corollary 2.1. Let G(x) = 3.2, e™™%. Then,

42 d(n)Ko(2mn) = v — log(4m) + /OOO (G’(:BQ) -1- 1) dx. (2.24)

n=1
Proof. Letting a = 1 in (1.12), we see that
2
32 [~ (EG)
—log(4m) —4 ) d(n)Ky(2 —— | /2Lt 2.25
og(4r) Z o(2mn) T Jo (1+12)2 (2.25)
Now from Theorem 4 in [12], we have for 0 < o < 1 that

/OO ¢(0 +it)T(30 + %izﬁ)‘2 dt = 27!t /oo(uG(uz) —1—u)*u*?du. (2.26)
_ 0

[e.e]

Substituting o = 1/2 in (2.26) and writing the left-hand side in terms of the Riemann-=
function, we see that

Combining (2.25) and (2.27), we obtain (2.24). O
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Remark. Equation (2.24) is not unlike the first equality of a formula on page 254
in Ramanujan’s Lost Notebook [20], given below in a different version in [3], i.e.,

/0 x(627r1’ _ 1)(627ra/a: _ 1) - 2;6“71)[(0(471'\/ CLTL) (228)
_a ~d(n)log(a/n) 1 1 1 log(2m)

3. ANOTHER PROOF OF RAMANUJAN’S TRANSFORMATION FORMULA (1.9)

In this section we give a new proof of Ramanujan’s transformation formula (1.9)
employing the same method used for proving Koshliakov’s formula, i.e., by using (1.21).

bet =) [ 1 it 1t
= i i
Then from (1.19), we deduce that
f(% —5) 1 s

Thus from (1.21) with y = €*", we find that
> N\ [ —1+it —1—4t\ cosnt
412 = r r dt
[ EE) ) ()

:_; 3 -ioo £2(s) F(S_l)f‘<—§>ysd8

Y S s s(s—1) 2 2

1
1 [27®s(s—1) (s—l) < 3) 2(3) ) Y\ *
- r T (=2)12(2) ¢2(s) (—) ds, (3.3)
iy i 4 2 2 2 T
where in the penultimate line, we have made use of (1.7). Now to examine the integral
in the last expression in (3.3), we wish to move the line of integration from Re s = %
to Re s = 144, for some § € (0, 1), so that we can use (1.2). But while doing that, we
need to take care of the pole of order 2 at s = 1 of the integrand in the last expression
in (3.3).
Let T' > 0 denote a real number. Then by the residue theorem, we know that

/;:TzT 5(84— D (8 ; 1) . (_g) - (g) 2(s) (g)S .
/Ty i CO R IRGRAOR

B} +0+iT

- £ (S () r () (5) e (2)'). 54
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First we evaluate

i (S () (e en(®). o

Using the product rule for differentiation and then simplifying, we see that

& (T () r )G ea )

d 2 ( )
-5 (e () ew () (5 (55
ey (e () @ (9))r () (32).
(3.6)
Then from (2.12), (2.13), (3.6) and the fact that S = —, we deduce that
i (0 () (e () - wiloo(2))
From (2.14), we observe that, &0
e S G I GICTC RCEUE
Lastly, i
[ T () () Qe () e
LT Q@) - e

where in the last step, we have interchanged the order of summation and integration be-
cause of absolute convergence. We simplify the integrand using Legendre’s duplication
formula [21, p. 46], namely,

5 ] T 9251

I(s)r (3 + 1) VT o), (3.10)

the reflection formula for Gamma function [21, p. 46]

L(s)I'(1—s) = (3.11)

sinms’
for s ¢ Z and the functional equation for the Riemann zeta function [22, p. 13, eqn.
(2.1.1)],

((s) = 2°7°7'T(1 — s)¢(1 — s) sin (37s) . (3.12)
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(e e ()
3/2 s
TS SI:n ;(rs>)< )

T Gl ( ) (3.13)

Thus,

sin s

Hence from (3.9) and (3.13), we find that

i S A OEEIOK

14+6—ioco
00 1+0+ic0 —s
1— k
= —27r3/22/ (d=s) (—) ds. (3.14)
o1 J1+6—ico  SIITS \Y
Now from [14, p. 201, formula 5.74], we know that if 0 < Re s < 1, then
1 et (1 — 1
— C(.—S)x_s ds = ——(Y(x + 1) —logz). (3.15)

271 sin s T

Hence we need to shift the line of integration from Re s = 1 4+ ¢ to Re s = ¢, where
¢ € (0,1) and then use the residue theorem. While doing that, we encounter a pole
of order 1 at s = 1 of the integrand in the last expression in (3.14). Thus by another
application of the residue theorem, we see that

1+5-+ic0 o -8 c+ico . —s - . —s
[T (17 g [ (1) g (D) ()
1+6—ico SINTTS Yy Cc—i0o SIN TS Yy s—1 SINTTS Yy

(3.16)
But
py L= (B gy 00000 _ o
s—1 sinms Yy k s—1 T COS TS 2km
since ((0) = —1 and ¢'(0) = —Llog(27) [22, pp. 19-20, eqns. (2.4.3), (2.4.5)]. Hence

from (3.14), (3. 15) (3.16), and (3.17), we deduce that

[ 2 () G e @) n-wi (o) <50 (5).

(3.17)
since Y(z+1) = ¢¥(x)+1/z [21, p. 54]. Finally from (3.3), (3.4), (3.7), (3.8) and (3.17),

we observe that
_ (1 -1+t % cosnt
=l =t)T
2 4

dt

1 o0
_7r3/2/0 1+ ¢2

7500 ()

RS

(o))
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Letting n = %loga in (3.18), where a8 = 1, and noting that y = ¢** = «, we have
12 /1 1+ it
) EE)r ()

=B (%ﬂ(%ﬁ) +) (w(k:ﬁ) + ﬁ - log(kﬁ))) . (3.19)

% cos (%tlog a)
1+

Now switching a and $ in (3.19), combining with (3.19), and then using (1.5), we
arrive at (1.9), since the left-hand side of (3.19) is invariant under the map a — f.
This proves Ramanujan’s transformation formula.

4. FERRAR'S FORMULA

In this section, we give a brief sketch of a proof of the extended version of Ferrar’s
formula (1.13). The steps in the latter part of the proof are similar to those given by
Ferrar [6]; but we give them here for self-containedness.

Let
2 1 1t

Then using (1.19), we see that

6(s) = %F <1 + f) | (4.2)

5—8 4 2

Hence from (1.21) with y = e?", we find that

1 .
° it (1—it\ _ [t t L2 L-
8/ r< “)r( 2>5(_> O = —— 7L <5>F( S) C(s)y’ ds.
i I 1 2) T+t iv/G )1 i 2 2

(4.3)
While examining the integral in the last expression in (4.3), we shift the line of integra-
tion from Re s = 1 to Re s = 144, for some 4 € (0,2), so that we can use (1.2). But
while doing that, we need to take care of the pole of order 2 at s = 1 of the integrand
in the last expression in (4.3).
Let T > 0 denote a real number. Then by the residue theorem, we know that

1
/1—¢T 722 <§> r ( 5 S) C(s)y’ ds
1
14+6—4T 146-+iT 5+iT
S ]. -
= / +/ +/2 A (§> r ( S) C(s)y* ds
i 14+6—iT 1+5+iT 2 2

2

— i hmdi ((5 _1)2rir? (g) r (1 5 S) g(s)yS) . (4.4)

s—1 ds
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Using the product rule for differentiation and simplifying, we have

d v \° s 1—s5

() <5> 1 (57) )

— (s 1) (%) (1;‘9) (260 = 5500 (152) co)+ (5 - 1))

( >

()
()
s) + fa(s) + f3(s

say.
Now we need the well-known Laurent expansion [7, p. 944, formula 8.321, no. 1]

Ds)= 7+, (4.6)
so that
e (4.7
Then from (2.7) and (4.7), we have
i (26060 - 6= 00 (57 ) e+ - 1C) = @)
so that from (4.5) and (4.8), we obtain
i 1(6) = (s = 1) (=) 1 (3) 1 (152 (2609 - 3= 00 (152) <o)+ 5= 160
= —3yyV/T. (4.9)
Also,
lim f3(s) = lim(s—1)? (%)slog (%) r(s)r (1 S S) ((s) = —2yv/T log (% ,

and using (2.12), we find that

lmn fy(s) = lim(s—1)? (%)r (2)e()r (1 - ) ((s) = ~ 2/ (— — 2log?).
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Finally from (4.9), (4.10) and (4.11), we deduce that

i (e () ) (7))

= —3yy/1 — 2y\/7 log (%) — 2yy/7 (=7 — 2log 2)

= yv/7 (log 167 — 2logy — ) . (4.12)

Let T — oo in (4.4). Then the integrals along the horizontal segments [ —iT', 146 —iT]
and [1+ 0 + T, 1 + 4T tend to 0. Next using (1.2), we have

1+6+ioco . s 1—3 ) B o0 14-0+ioo s 1—s mﬁ —s
/14—5—1'00 " 2F2 <§> s ( 2 ) C(S)y ds = Z /1+6—ioo F2 <§> b ( 2 ) ( Yy ) ds’

m=1
(4.13)
where we have interchanged the order of summation and integration because of absolute
convergence. Now from [14, p. 115, formula 11.4], we know that if £ Re v < ¢ = Re
s < 1/2, then
1 c+1i00
— T
27

N

(2a) " cos(mv)T (3 — s) T(s + v)[(s — v)z ™ ds = e K, (ax). (4.14)

c—100

Letting v = 0, and replacing s by s/2 and a by a/2 in (4.14), we find that for 0 < ¢ =

Re s <1,
1 c+ico _SF 1—s F2 <3> _%d . % %axK 1 (4 15)
1 a 5 5 T s=rTze 0 2a:v . .

c—100

Now let @ = 1 and x = mm?/y? in (4.15). Then for 0 < ¢ = Re s < 1, we have

c+1i0o 1— -s am?2 2
/ r ( 3) I (f) (mﬁ) ds = Andie ™" K, (”mz ) . (4.16)
c—100 2 2 Y 2y

But since (4.16) is valid only for 0 < Re s < 1, in order to simplify the integral on the
right-hand side of (4.13), we need to shift the line of integration from Re s =1+0 ,
where 6 € (0,2) to Re s = ¢, where ¢ € (0,1) and then use the residue theorem. While
doing that, we encounter a pole of order 1 at s = 1 of the integrand on the right-hand
side of (4.13). Thus by another application of the residue theorem, we see that

[ e () ()
R () e (15 (5

(4.17)

lim(s — 1) (5> T (1 — 3) (mﬁ>_ _ 2T (4.18)

s—1 2 2 Y m/y

First,
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Hence from (4.16), (4.17) and (4.18), we find that

[ e (e (5) () e (2vm 3 (0 (50) - 510 )

(4.19)

Then from (4.3), (4.4), (4.12) and (4.19), we see that
o 1+t 11—t t\ cosnt
r r = =
o) ()= () e
= — | 2mi 2\/_Z(€2U2 K()( 2)—L)—yﬁ(10g167—210gy—7)
\/_ 29> ) mly

2 3/2 2 2 1
= 7:/@ ( (log 16w — 2logy — ) —22(62”4 Ky (7;7; > _m_/y>> (4.20)

m=1

Now letting n = 3 log a in (4.20), noting that y = e*" and a8 = 1 and then simplifying,
we observe that

47T_3/2/00F Lt (L=t o (1) cos (3tloga) o
0 4 4 2 1+¢t2
log 167 + 2log 5 — [ am2p? w252 1
=\/B< & 5 & 7—22(6 : K0< 25 -a5) ) e
m=1

Now switching o and £ in (4.21) and combining with (4.21), we arrive at (1.13), since
the left-hand side of (4.21) is invariant under the map a — .

5. HARDY’S FORMULA

Here we give a brief sketch of a proof of Hardy’s formula (1.17). Let

J():= 3217T2FGﬁ%)F(_TlJEt)F(i_%)F(%_%)‘ (5.1)

Using (1.19), we observe that

B(s) = ﬁr G + g) r (%1 + g) , (5.2)

and using (3.11), we find that

t 1 1+t —1
()= (1)
1 1
1+ ¢22sin (7 (H2)) sin (7 (152))
1 1
1+ 12 cos (2t) — cos ()
1
~ (L+1¢2)cosh it

=+
~
~
~_
=
VR
—_
]
~.
~
~~
=
VR
|
—_
=1
o~
~
~_

'S




16 ATUL DIXIT

Hence from (1.21) with y = ", (3. 10) and (1.7), we see that

> =(L¢ t +l°° —1 1— —
/ (3) COS? dt = /2 F i r G £(s)y®ds
o 1+t?coshgmt 32#22\/_ 2 2 2

2—1—200

47?2\/_ i

(s — DI'(=s)(s — I (1 + g) 72 (s)y® ds,
(5.4)

To examine the integral in the last expression in (5.4), we wish to move the line of
integration from Re s = 1 to Re s = 146, for some 4 € (0,1), so that we can use (1.2).
In this process, we encounter the pole of order 2 of the integrand at s = 1 in the last
expression in (5.4).

Let T > 0 denote a real number. Then by the residue theorem, we know that

/jHT ['(s—1I'(=s)(s—1)T (1 + g) W_S/ZC(s)ys ds

5—iT

14+6—iT 14+6+iT ST

= /1 +/ +/ ['(s—1DI'(=s)(s— 1T <1+ ) /2 (s)y* ds
5—iT 14+6—iT 14+6+iT 2
od s
— 2mi £1_r>r% oy ((s = 1)°D(s — DI (—s)&(s)y°) - (5.5)
Now
d

(s = 1T (s = DI (=5)&()y°)
= (4 (5= PG = DT(-9) ) ol + (s = 170 = DP9 (01

+ (s = 1)’I'(s — 1)I'(—s)&(s)y* log y. (5.6)

Using (3.11) to simplify the first expression on the right-hand side of (5.6) and then
using L’Hopital’s rule twice, we easily see that

ds

’

. d 5
il_r)ri 7 ((s = 1)°I'(s — 1)I(—s)) = —1. (5.7)
Now T'(s) has a residue l)n at s = —n where n is a positive integer [7, p. 883, formula

8.310, no. 2]. Hence we see that

£1_r>1%(5 — 1) (—s) =1 (5.8)
Also from [4, pp. 80-81], we know that
1
€ =1, (59)
and /
£€1) v 1
—2——=—=—14+ —log4 1
1) 5 +2 og4m, (5.10)
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so that L
‘=L _ =
E(1) = 1 + 5 410g47r. (5.11)
Thus from (5.6), (5.7), (5.8), (5.9) and (5.11), we deduce that
d
lin% o ((s —1)°I'(s — 1)I(—s)&(s)y") = % (v —logdm +2logy) . (5.12)

Now let 7" — oo in (5.5). The integrals along the horizontal segments [£ —iT’, 140 — T
and [1 + 6 + T, 3 + T tend to 0. Finally,

/11+5+z‘°° (s = 1)I(=s)(s — 1T (1 + g) T2 () ds

+d—ioco

145+io0
:/ __T I‘(%) m%2¢(s)y ds
1

§ico  28InTs

1+6+ico 00
T S 1
— o r (_) —s/2 s d
/1 2sinms \2) " ; ksy s

+0—i00
0 pl4dtico L —s
=Z/ —5——r1(3) FVT s, (5.13)
— Jito—ico 2sinms  \2 Y

where in the last step, we have interchanged the order of summation and integration
because of absolute convergence. Now employing a change of variable s — s+ 1, we
see that

i/«lﬂ-&&-ioo_ T F(f) kﬁ —s ds—i y /5+ioo T . s+1 ]fﬁ
l4o—ico  2sinms \2 Y N P kT Js 2sin7s 2 Y

k=1 —100
(5.14)
Next, let F(s) denote the Mellin transform of f(z), i.e.,
M(f(x);s) = F(s) = / ¥ f(x) dx. (5.15)
0
Then the inverse Mellin transform is given by [22, p. 33]
1 c+100
MY F(s);z) = f(z) = 2—2/ F(s)x™*ds, (5.16)
m c—100

where ¢ = Re s lies in the fundamental strip (or the strip of analyticity) for which F'(s)
is defined. Since [15, p. 404]

MY (F(s+a);x) = 2°f(z), (5.17)

1 S 2
—1 —x
T <_> . 1
M <2 5 ,x) e ", (5.18)
for Re s > 0, we see that

1 1 s+1 ) - 2
M (QF( 5 ),$)—a:e : (5.19)

and [15, p.406]
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Also for 0 < Re s < 1, we have [15, p. 91, eqn. (3.3.10)]
1
M ( 7 ;x) = : (5.20)

sin s 1+
But from [15, p.83, eqn. (3.1.13)], we observe that

MTL(F(s) / f(x (5.21)

where F'(s) and G(s) are Mellin transforms of f(x) and g( ) respectlvely.
Thus from (1.6), (5.19), (5. 20) and (5.21), we see that for 0 < § < 1,

> iir . T (531) (57)

—9
ME:kJ_/ 1+k“7$

1 e T
=9 - d
mzk/() stk
k=1
o) B o T
:2m/ e ™Y’ dx
0 ;k(x—l—k)
> g 1 1
— i —mxly—2 o d
m/o ¢ ;(kﬂ x+1+k> v

= 2 <% + / Wz +1)e ™V dx) ) (5.22)
0

o0

™

since / e~ dp = % Here again the interchange of the order of integration and
0 a

summation is justified by absolute convergence. Thus from (5.4), (5.5), (5.12), (5.13),
(5.14) and (5.22), we deduce that

~ =(1 t 1 > - 2mi
/ (31) cosn dt = — (27ri <% + / Uz +1)e ™V d:c) _ 2y (7 — log4m + 2log y))
o 0

1+ 12 cosh 17t 4miy/y 4

n 1 1 [ —an
= ez <—2TL + 5’)/ + 5 IOgTF + 10g 2) + 67/0 w(l‘ -+ 1>€_7m26 ! dx.
(5.23)
Finally, since the left-hand side of (5.23) is an even function of n, replacing n by —n
n (5.23), we obtain (1.17). This completes the proof.
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