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Abstract. Let rk(n) denote the number of representations of the positive integer n as the
sum of k squares. We rigorously prove for the first time a Voronöı summation formula for
rk(n), k ≥ 2, proved incorrectly by A. I. Popov and later rediscovered by A. P. Guinand,
but without proof and without conditions on the functions associated in the transformation.
Using this summation formula we establish a new transformation between a series consisting
of rk(n) and a product of two Bessel functions, and a series involving rk(n) and the Gaussian
hypergeometric function. This transformation can be considered as a massive generalization
of well-known results of G. H. Hardy, and of A. L. Dixon and W. L. Ferrar, as well as of
a classical result of A. I. Popov that was completely forgotten. An analytic continuation
of this transformation yields further useful results that generalize those obtained earlier by
Dixon and Ferrar.

1. Introduction

Infinite series involving arithmetic functions and Bessel functions are instrumental in study-
ing some notoriously difficult problems in analytic number theory, for example, the circle and
the divisor problems. As mentioned by G. H. Hardy [19, p. 266], S. Wigert [43] was the first
mathematician to recognize the importance of series of Bessel functions in analytic number
theory. Since then, several mathematicians have studied, and continue to study, such series,
for example, with the point of view of understanding and improving the order of magnitude
of error terms associated with the summatory functions of certain arithmetic functions. A
prime tool in making the connection between a summatory function and certain series of
Bessel functions is the Voronöı summation formula associated with the corresponding arith-
metic function.

Let rk(n) denote the number of representations of a positive integer n as the sum of k
squares, where different signs and different orders of the summands give distinct representa-
tions. The ordinary Bessel function Jν(z) of order ν is defined by [42, p. 40]

Jν(z) :=
∞∑
m=0

(−1)m(z/2)2m+ν

m!Γ(m+ 1 + ν)
, |z| <∞. (1.1)

We record the Voronöı summation formula associated with r2(n), sometimes known as the
Hardy–Landau summation formula, in the form given in [26, p. 274] (or [13, Thm. A]).

Theorem 1.1. If 0 ≤ α < β and h(y) is real and of bounded variation in (α, β), then∑
α≤n≤β

r2(n)12(h(n− 0) + h(n+ 0)) = π
∞∑
n=0

r2(n)

∫ β

α
h(y)J0(2π

√
ny) dy, (1.2)
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where, if n = β, the coefficient of r2(β) is taken to be 1
2h(β− 0); if n = α 6= 0, the coefficient

of r2(α) is taken to be 1
2h(α + 0); and if n = α = 0, the coefficient of r2(0) := 1 is taken to

be h(0+).

A. L. Dixon and W. L. Ferrar [13, eqs. (2.2), (2.3)] extended this theorem to include the
case when β =∞ and obtained the following result.

Theorem 1.2. If h(y), h′(y) and h′′(y) are bounded in (0,∞), and are O(exp(−yu)) for y
large and u > 0, then

∞∑
n=0

r2(n)h(n) = π

∞∑
n=0

r2(n)

∫ ∞
0

h(t)J0(2π
√
nt) dt. (1.3)

To state Dixon and Ferrar’s application of Theorem 1.2, we need to define two further
Bessel functions. The modified Bessel function of the first kind of order ν is defined by [42,
p. 77]

Iν(z) =

{
e−

1
2
πνiJν(e

1
2
πiz), if −π < arg z ≤ π

2 ,

e
3
2
πνiJν(e−

3
2
πiz), if π

2 < arg z ≤ π,
(1.4)

where Jν(z) is the ordinary Bessel function of order ν defined in (1.1). The modified Bessel
function of the second kind is defined by [42, p. 78, eq. (6)],

Kν(z) :=
π

2

I−ν(z)− Iν(z)

sin νπ
. (1.5)

Using Theorem 1.2, Dixon and Ferrar [13, eq. (3.12)] showed that, for Re(
√
β) > 0 and

Re(ν) > 0,
∞∑
n=0

r2(n)n
ν
2Kν(2π

√
nβ) =

β
ν
2 Γ(ν + 1)

2πν+1

∞∑
n=0

r2(n)

(n+ β)ν+1
. (1.6)

If we set ν = 1
2 in (1.6) and employ the formula [42, p. 80, eq. (13)]

K 1
2
(z) =

√
π

2z
e−z, (1.7)

after a change of variable, we deduce a result of Hardy [19, eq. (2.12)]

∞∑
n=1

r2(n)e−s
√
n =

2π

s2
− 1 + 2πs

∞∑
n=1

r2(n)

(s2 + 4π2n)3/2
,

where Re s > 0. This was the primary identity that Hardy used to derive a lower bound for
the error term in the famous circle problem.

In [13], Dixon and Ferrar also obtained a generalization of (1.6), namely for Re(
√
β) > 0,

δ ≥ 0, and ν arbitrary,

βν/2
∞∑
n=0

r2(n)

(n+ δ)ν/2
Kν(2π

√
β(n+ δ)) = δ(1−ν)/2

∞∑
n=0

r2(n)

(n+ β)(1−ν)/2
K1−ν(2π

√
δ(n+ β)).

(1.8)
It is easy to see that if we replace ν by −ν in (1.8), let Re(ν) > 0, and then let δ → 0, we
obtain (1.6), with the help of (1.5) and (1.4). If we set δ = a, β = b, and ν = 1

2 in (1.8),
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and use (1.7), we obtain a beautiful formula of Ramanujan [19, p. 283, eq. (4.21)], namely,
for Re(a), Re(b) > 0,

∞∑
n=0

r2(n)√
n+ a

e−2π
√
b(n+a) =

∞∑
n=0

r2(n)√
n+ b

e−2π
√
a(n+b). (1.9)

N. S. Koshliakov [25] obtained a generalization of (1.8) with r2(n) replaced by F (n), the
number of representations of n by a binary quadratic form of discriminant ∆ < 0. A general-
ization, in turn, involving the coefficients of a general Dirichlet series satisfying a functional
equation, was obtained by the first author [2, p. 343, Thm. 9.1]. See also [6, eq. (5.5)].

Around the same time as [13] appeared, A. I. Popov [33, eq. (10)] gave a beautiful trans-
formation for a series involving r2(n) and a product of modified Bessel functions of the first
and second kind, that is, Iν(z) and Kν(z), respectively. He claimed that if Re(ν) > 0 and
α ≥ β > 0, then

2π

(α− β)ν

∞∑
n=1

r2(n)Iν(π(
√
nα−

√
nβ))Kν(π(

√
nα+

√
nβ))

=
ν − π

√
αβ

ν
√
αβ
(√
α+
√
β
)2ν +

∞∑
n=1

r2(n)
√
n+ α

√
n+ β

(√
n+ α+

√
n+ β

)2ν . (1.10)

Later, we will prove (1.10) and more generally show that it holds for a much larger region,
namely, Re(

√
α) ≥ Re(

√
β) > 0. Assuming (1.10) for the moment, however, let α → β+.

The interchange of the order of limit and summation can be justified using the exponential
decay of the summand of the series on the left side, which is discussed in detail in Section 4.
Noting that, by (1.4),

lim
α→β+

Iν(π(
√
nα−

√
nβ))

(α− β)ν
=

1

Γ(ν + 1)

(
π
√
n

4
√
β

)ν
and, by (1.5) and (1.4),

lim
x→0

xν/2Kν(2π
√
xβ) =

Γ(ν)

2πνβν/2
,

we are led to (1.6). Hence, (1.10) is another generalization of (1.6), different from (1.8).
Popov neither gave a proof of (1.10) in [33], nor did he indicate how to prove it. In what

follows, we give plausible evidence for how Popov might have arrived at (1.10).
In [31, eq. (3)], he gave the following result for any positive integer k ≥ 2:

lim
x→0

h(x)

xk/4−1/2
+

∞∑
n=1

rk(n)

nk/4−1/2
h(n)

=
πk/2

Γ(k/2)

∫ ∞
0

xk/4−1/2h(x) dx+ π

∞∑
n=1

rk(n)

nk/4−1/2

∫ ∞
0

h(x)Jk/2−1(2π
√
nx) dx. (1.11)

Note that since J0(0) = 1, (1.11) reduces to (1.3) when k = 2. Also, in [32], he gave a short
proof of the following beautiful integral evaluation found by V. A. Fock [14, eqs. (31), (33)],
namely, for Re(z) > Re(w) > 0 and Re(ν) > −3/4,∫ ∞
0

J0(ρx)

(√
x2 + z2 −

√
x2 + w2

√
x2 + z2 +

√
x2 + w2

)ν
x dx√

x2 + z2
√
x2 + w2

= Iν

(
ρ(z − w)

2

)
Kν

(
ρ(z + w)

2

)
.

(1.12)
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Now observe that if we let

h(t) :=
1

2π
√
t+ α

√
t+ β

(√
t+ α−

√
t+ β√

t+ α+
√
t+ β

)ν
(1.13)

in the special case k = 2 of (1.11), or equivalently in (1.3), and employ (1.12), we are led to
(1.10) after simplification.

Several comments are in order. Firstly, we note that Popov [31] does not give any conditions
on h for (1.11) to hold. Secondly, as we show below, his proof of (1.11) is deficient. Thirdly,
note that the h in (1.13) does not satisfy the big-O hypothesis in Theorem 1.2. Thus the
proof of (1.10) mentioned above is purely formal. Popov wrote 13 papers in mathematics,
and in none of these papers is a rigorous proof of (1.10) given.

In this paper, we not only rigorously prove Popov’s identity (1.10), but we also give its
massive generalization for any positive integer k ≥ 2, with several well-known theorems in
the literature arising as corollaries. We use (1.11) in order to generalize (1.10). But one needs
to first obtain conditions on h so that (1.11) holds. The task of generalizing such results for
k = 2 to k ≥ 2 is not straightforward, as we now explain.

In his study of the average order of r2(n), Hardy [19, eq. (1.25)] offered the identity∑
0<n≤x

′
r2(n) = πx− 1 +

√
x

∞∑
n=1

r2(n)√
n
J1(2π

√
nx), (1.14)

where, here, and throughout the sequel, the prime ′ on the summation sign indicates that if x
is an integer, then only one-half of the summand is counted. Hardy [19, p. 265] acknowledged
that “the form” of (1.14) was suggested by Ramanujan.

Popov [31, eq. (2)] incorrectly generalized (1.14) by claiming that∑
0<n≤x

′
rk(n) =

(πx)k/2

Γ(1 + k
2 )
− 1 + xk/4

∞∑
n=1

rk(n)

nk/4
Jk/2(2π

√
nx), (1.15)

for any positive integer k ≥ 2. As can be seen from the work of Oppenheim [29, Theorem
2], when k > 2, the series on the right-hand side in (1.15) does not converge but is Riesz
summable (R,n, 12k −

3
2 + ε) for any ε > 0.

Also, it is known [10, p. 19] that if x > 0 and q > 1
2(k − 1), then

1

Γ(q + 1)

∑
0≤n≤x

′
rk(n)(x− n)q

=
πk/2xk/2+q

Γ(q + 1 + k/2)
+

(
1

π

)q ∞∑
n=1

rk(n)
(x
n

)k/4+q/2
Jk/2+q(2π

√
nx), (1.16)

where the series on the right-hand side converges absolutely. Here again the prime ′ on the
summation sign in (1.16) indicates that if x is an integer, then only 1

2rk(x) is counted in the
case that q = 0. As proved in [10, p. 19, eq. (67)], the validity of (1.16) can be extended to
q > 1

2(k − 3), which appears to be best possible. However, Popov [31, eq. (1)] used (1.16)
with q > −1 in his proof. Observe that, in particular, if q = 0, then (1.16) is valid only for
k = 2, in agreement with our discussion in the previous paragraph.

Since almost all proofs of Voronöı-type summation formulas (such as (1.11)) require that
the Riesz sum identity (such as (1.16)) holds (see, for example, [3, p. 142]), the problem of
extending (1.2) to k ≥ 2 appears to be delicate. Moreover, in the case of (1.11), that is, when
all of the associated sums and integrals are infinite, one has to take extra care.
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We [5] recently circumvented this issue pertaining to an analogue of (1.2) for k ≥ 2 by
noting that the ingenious proof by N. S. Koshliakov [22], [23] of the Voronöı summation
formula for any arithmetical function whose Dirichlet series satisfies a functional equation
with one simple gamma factor does not make use of (1.16). Recall [10, p. 18] that if

ζk(s) :=
∞∑
n=1

rk(n)

ns
, Re s >

k

2
, (1.17)

then ζk(s) has an analytic continuation to the entire complex plane and satisfies the functional
equation

π−sΓ(s)ζk(s) = πs−
k
2 Γ(k2 − s)ζk(

k
2 − s).

In particular, Koshliakov’s method then rigorously gives a proof of the analogue of (1.2)
for k ≥ 2. For more details, the reader is referred to [5]. Note that in Koshliakov’s work,
h is analytic. We rephrase in the following theorem [5, Thms. 2.3, 2.4] our extension of
Koshliakov’s result [22, p. 10], [23, p. 62] in the case α→ 0.

Theorem 1.3. Let

ϕ(s) :=
∞∑
n=1

a(n)λ−sn and ψ(s) :=
∞∑
n=1

b(n)µ−sn ,

where 0 < λ1 < λ2 < · · · < λn → ∞ and 0 < µ1 < µ2 < · · · < µn → ∞, and where the
abscissae of absolute convergence are σa and σ∗a, respectively. Let ϕ(s) and ψ(s) satisfy a
functional equation of the type

Γ(s)ϕ(s) = Γ(κ− s)ψ(κ− s), (1.18)

for some κ > 0. Suppose that there exists a meromorphic function χ with the following
properties:

(i) χ(s) = Γ(s)ϕ(s), σ > σa, χ(s) = Γ(κ− s)ψ(κ− s), σ < κ− σ∗a;
(ii) lim

|Im s|→∞
χ(s) = 0, uniformly in every interval−∞ < σ1 ≤ σ ≤ σ2 <∞;

(iii) the poles of χ are confined to a compact set.

Let x > 0, and let N be an integer such that λN < x < λN+1. Suppose that all of the poles
of ϕ(s) lie in the half-plane Re(s) > 0, and let h(z) be an analytic function containing the
interval [0, x] in its domain of analyticity. If the infinite series and the integrals on the right
side below converge uniformly on [0, x], then∑

λn≤x

′
a(n)h(λn) = lim

a→0
ϕ(0)h(a) +

∫ x

0
Q′0(t)h(t) dt+

∞∑
n=1

b(n)

µκ−1n

∫ x

0
I−1(µnt)h(t) dt,

where
Iq(x) := x(κ+q)/2Jκ+q(2

√
x)

and

Qq(x) :=
1

2πi

∫
Cq

Γ(s)ϕ(s)

Γ(s+ q + 1)
xs+qds,

with Cq being a positively oriented closed curve (or curves) containing all of the integrand’s
poles on the interior of Cq.

It was only recently that we learned that Guinand [17, p. 117, Thm. 5] derived the following
summation formula.
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Theorem 1.4. Let k be a positive integer greater than 3 and let m =
⌊
1
2k
⌋
−1. If F (x), F ′(x),

F ′′(x), . . . , F (2m−1)(x) are integrals, and F (x), xF ′(x), x2F ′′(x), . . . , x2mF (2m)(x) belong to
L2(0,∞), then

lim
N→∞

{
N∑
n=1

(
1− n

N

)m+1
rk(n)n

1
2
− k

4F (n)− π
k
2

Γ(k2 )

∫ N

0

(
1− x

N

)m+1
x
k
4
− 1

2F (x) dx

}

= lim
N→∞

{
N∑
n=1

(
1− n

N

)m+1
rk(n)n

1
2
− k

4G(n)− π
k
2

Γ(k2 )

∫ N

0

(
1− x

N

)m+1
x
k
4
− 1

2G(x) dx

}
,

(1.19)

where ∫ x

0
G(y)y

k
4
− 1

2 dy = x
k
4

∫ ∞
0

y−
1
2J k

2
(2π
√
xy)F (y) dy, (1.20)

and G(x) is chosen so that it is the integral of its derivative.

Guinand also remarks in a footnote of [17, p. 117] that one could prove this result with a
slightly smaller value of m than the one considered here.

In [18, p. 264, eq. (10.7)], he also claims without proof that

∞∑
n=1

rk(n)n
1
2
− k

4F (n)− π
k
2

Γ(k2 )

∫ ∞
0

x
k
4
− 1

2F (x) dx

=
∞∑
n=1

rk(n)n
1
2
− k

4G(n)− π
k
2

Γ(k2 )

∫ ∞
0

x
k
4
− 1

2G(x) dx, (1.21)

where

G(x) = π

∫ ∞
0

F (t)J k
2
−1(2π

√
xt) dt. (1.22)

If we let F = h, it can be easily seen that this formula is the same as (1.11), except that
Guinand’s formula involves the term

− π
k
2

Γ(k2 )

∫ ∞
0

x
k
4
− 1

2G(x) dx,

whereas (1.11) contains − limx→0 F (x)/xk/4−1/2. Under appropriate hypotheses on F (x) and
G(x), we now show that

lim
x→0

F (x)

x
k
4
− 1

2

=
π
k
2

Γ(k2 )

∫ ∞
0

x
k
4
− 1

2G(x)dx, (1.23)

where G(x) is defined by (1.22). If F (x), G(x) ∈ L(0,∞) and are of bounded variation at
each point in (0,∞), then the Hankel transform of G(x) holds [40, p. 240], i.e.,

F (x) = π

∫ ∞
0

G(t)J k
2
−1(2π

√
xt) dt. (1.24)

To justify taking the limit inside the integral below, we invoke the following theorem from
Titchmarsh’s text [39, p. 25]. If f(x, y) is continuous on the rectangle a ≤ x ≤ b, α ≤ y ≤ β
for all values of b, and if the integral

φ(y) =

∫ ∞
α

f(x, y) dx
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converges uniformly with respect to y on (α, β), then φ(y) is a continuous function of y in this
interval. We apply this theorem with x → t, y → x, α = 0, a = 0, b > 0. We further assume
that G(x) is continuous on [0,∞) and that the integral converges uniformly with respect to
x on some interval 0 ≤ x ≤ ε. Hence, using the definition of Jν(z) from (1.1), we find that

lim
x→0

F (x)

x
k
4
− 1

2

= π lim
x→0

∫ ∞
0

G(t)
J k

2
−1(2π

√
xt)

x
k
4
− 1

2

dt

= π

∫ ∞
0

G(t) lim
x→0

J k
2
−1(2π

√
xt)

x
k
4
− 1

2

dt

= π

∫ ∞
0

G(t) lim
x→0

(
2π
√
xt

2

) k
2
−1

dt

x
k
4
− 1

2 Γ(k2 )

=
π
k
2

Γ(k2 )

∫ ∞
0

G(t)t
k
4
− 1

2 dt,

which is identical to (1.23).
The summation formula (1.21) is one among several that Guinand discusses in Section

10 of [18]. However, like Popov, Guinand [18] does not give conditions for (1.21) to hold,
for, at the beginning of [18, p. 263], Guinand says, “For brevity, no attempt is made to give
conditions on F (x) and G(x) for each summation formula”.

In this paper, using Theorem 1.4 and imposing further conditions on F , we derive the
following theorem, thereby rigorously deriving (1.21), and equivalently from the above dis-
cussion, (1.11), for the first time. This is done in Section 3.

Theorem 1.5. Let k be a positive integer greater than 3. Assume that F satisfies the hy-
potheses of Theorem 1.4, and that, as x→∞,

F (x) = Ok

(
x−

k
4
− 1

2
−τ
)
, (1.25)

for some fixed τ > 0. Let the function G be defined by

G(y) = π

∫ ∞
0

F (t)J k
2
−1(2π

√
yt) dt, (1.26)

and assume that it satisfies

G(y) = Ok

(
y−

k
4
− 1

2
−τ
)
, (1.27)

for τ > 0, as y →∞. Then
∞∑
n=1

rk(n)n
1
2
− k

4F (n)− π
k
2

Γ(k2 )

∫ ∞
0

x
k
4
− 1

2F (x) dx

=

∞∑
n=1

rk(n)n
1
2
− k

4G(n)− π
k
2

Γ(k2 )

∫ ∞
0

x
k
4
− 1

2G(x) dx. (1.28)

For k = 2 and 3, (1.28) holds if F is continuous on [0,∞), F (x), xF ′(x) ∈ L2(0,∞), and F
satisfies (1.25), and if G is defined in (1.26) and satisfies (1.27).

We note that the above theorem is more general than Theorem 1.3 with a(n) = b(n) =
rk(n) and x→∞, since, unlike the latter, it does not require that F be analytic. Moreover,
for certain choices of h in this specialized version of Theorem 1.3, it may be very difficult to
justify the interchange the order of summation and limx→∞. This turns out to be the case
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in our choice of the function to prove Theorem 1.6 below, that is, (4.2), and hence we resort
to Theorem 1.5 for its proof.

If (a)n := a(a+ 1) · · · (a+ n− 1), n ≥ 1, and (a)0 = 1, define the ordinary hypergeometric
function 2F1 by

2F1

(
a, b
c

∣∣∣ z) :=
∞∑
n=0

(a)n(b)n
(c)nn!

zn, |z| < 1. (1.29)

We now state in Theorem 1.6 a new transformation involving rk(n), which is the main result
of our paper. The main ingredients in the proof of this transformation are Theorem 1.5 and a
remarkable generalization of Fock’s integral (1.12) given by Koshliakov [24, eq. (1)], namely,
for Re(µ) > −1, Re

(
µ+ 2ν + 3

2

)
> 0 and Re(z) > Re(w) > 0,∫ ∞

0
Jµ(ρu)

(√
u2 + z2 −

√
u2 + w2

√
u2 + z2 +

√
u2 + w2

)ν
uµ+1

√
u2 + z2

√
u2 + w2

(
1√

u2 + z2
+

1√
u2 + w2

)2µ

× 2F1

ν − µ,−µ
ν + 1

∣∣∣∣
(√

u2 + z2 −
√
u2 + w2

√
u2 + z2 +

√
u2 + w2

)2
 du

=
Γ(ν + 1)

Γ(ν + µ+ 1)
(2ρ)µIν

(
ρ(z − w)

2

)
Kν

(
ρ(z + w)

2

)
, (1.30)

where 2F1, Iν , and Kν are defined by (1.29), (1.4), and (1.5), respectively.

Theorem 1.6. Let k ≥ 2 be a positive integer. Let Iν(z) and Kν(z) denote the modified
Bessel functions of the first and second kinds respectively. If Re(

√
α) ≥ Re(

√
β) > 0 and

Re(ν) > 0, then

∞∑
n=1

rk(n)Iν(π(
√
nα−

√
nβ))Kν(π(

√
nα+

√
nβ))

= − 1

2ν

(√
α−
√
β√

α+
√
β

)ν
+

Γ
(
ν + k

2

)
π
k
2 2k−1Γ(ν + 1)

∞∑
n=0

rk(n)√
n+ α

√
n+ β

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)ν
×
(

1√
n+ α

+
1√
n+ β

)k−2
2F1

(
ν + 1− k

2 , 1−
k
2

ν + 1

∣∣∣∣(√n+ α−
√
n+ β√

n+ α+
√
n+ β

)2
)
. (1.31)

Also applying the inversion formula in the theory of Hankel transforms to (1.30), that
is, (1.22) and (1.24), we find that the following integral evaluation holds for Re(µ) > −1,
Re(µ+ ν) > −1 and Re(π(z + w)) > | Re(π(z − w))|+ | Im(ρ)|:∫ ∞
0

uµ+1Jµ(ρu)Iν(π(z − w)u)Kν(π(z + w)u) du

=
Γ(ν + µ+ 1)

Γ(ν + 1)

(ρ/2)µ√
ρ2 + 4π2z2

√
ρ2 + 4π2w2

(√
ρ2 + 4π2z2 −

√
ρ2 + 4π2w2√

ρ2 + 4π2z2 +
√
ρ2 + 4π2w2

)ν

×

(
1√

ρ2 + 4π2z2
+

1√
ρ2 + 4π2w2

)2µ

2F1

ν − µ,−µ
ν + 1

∣∣∣∣
(√

ρ2 + 4π2z2 −
√
ρ2 + 4π2w2√

ρ2 + 4π2z2 +
√
ρ2 + 4π2w2

)2
 .

This integral evaluation is the same as in [15, p. 686, Formula 6.578.11]. To see this, let
c = ρ, a = π(z + w) and b = π(z − w) in the latter formula and simplify.
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This paper is organized as follows. In Section 2 we collect preliminary results which are
used in the sequel. Theorem 1.5 is proved in Section 3. Section 4 is devoted to the proof
of Theorem 1.6 for Re(ν) > 0 and to several important corollaries that follow from it. In
Section 5, we use the principle of analytic continuation to extend the validity of Theorem 1.6
to Re(ν) > −1. Of course, it can be analytically continued to Re(ν) > −ζ for any ζ > 0,
however, we refrain ourselves from considering the general case. Finally we conclude our
paper with Section 6 consisting of some important remarks and thoughts for further work.

2. Preliminary Results

We require several asymptotic formulas. The asymptotic formulas for the Bessel functions
Jν(z) and Kν(z), as |z| → ∞, | arg(z)| < π, are given by [42, pp. 199, 202]

Jν(z) ∼
(

2

πz

)1
2
(

cosw
∞∑
m=0

(−1)m(ν, 2m)

(2z)2m
− sinw

∞∑
m=0

(−1)m(ν, 2m+ 1)

(2z)2m+1

)
,

Kν(z) ∼
( π

2z

)1
2
e−z

∞∑
m=0

(ν,m)

(2z)m
. (2.1)

Here w = z − 1
2πν −

1
4π, and

(ν,m) =
Γ(ν +m+ 1/2)

Γ(m+ 1)Γ(ν −m+ 1/2)
.

From [38, p. 240, eq. (9.54)], for Re(z) > 0 and |z| large,

Iν(z) ∼ ez√
2πz

∞∑
m=0

(−1)m
(ν,m)

(2z)m
. (2.2)

As mentioned in [38, p. 240], (2.2) is not valid for other complex values of z. In fact, in [42,
p. 203], we find that for large values of |z|,

Iν(z) ∼ ez√
2πz

∞∑
m=0

(−1)m
(ν,m)

(2z)m
+
e−z±(ν+ 1

2)πi
√

2πz

∞∑
m=0

(ν,m)

(2z)m
, (2.3)

where the plus sign in the exponential in the second expression on the right-hand side is taken
when −1

2π < arg(z) < 3
2π and the minus sign is taken when −3

2π < arg(z) < 1
2π. As noted

by Watson [42, p. 203], the discrepancy in the two expansions in (2.3) for −1
2π < arg(z) < 1

2π
is an example of Stokes’ phenomenon and is only an apparent discrepancy. Thus, from (2.2),
for Re(z) > 0 and |z| large,

Iν(z) ∼ ez√
2πz

. (2.4)

We also record below a big-O bound for rk(n), k ≥ 2. From [16, p. 155, Theorem 1] or [36,
eq. (5)], for k ≥ 5,

rk(n) = Ok(n
k
2
−1). (2.5)

Now Jacobi’s four squares theorem [44, p. 116, Theorem 11.1] implies that

r4(n) = 8σ(n)− 32σ(n/4),

where σ(n) =
∑

d|n d, which along with the elementary fact that σ(n) ≤ n(log n+ 1), implies

r4(n) = O(n log n). (2.6)
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One can actually obtain a much better bound, namely O(n log log n), by using Robin’s in-
equality [37, Theorem 2]. Jacobi’s two squares theorem [44, p. 79, Theorem 9.3] is given
by

r2(n) = 4(d1,4(n)− d3,4(n)),

where dj,`(n) denotes the number of divisors of n congruent to j (mod `). Thus,

r2(n) = O(d(n)) = O(nε) (2.7)

for any ε > 0, where the last step follows from [20, p. 343, Thm. 315]. It is known [9, p. 274],
[28, p. 134, Thm. 8.5] that r3(n) can be expressed in terms of H(−n), the class number of
quadratic forms of discriminant −n. If −n < 0 is a fundamental discriminant, then along
with the bound in [21, Proposition 6.2], this implies that

r3(n) = O(n1/2 log n). (2.8)

If −n is not a fundamental discriminant, then the formula in [9, p. 273, Definition 2.2 c)]
with r = 1 (see also [28, p. 133, eq. (8.1)]) can be used to again obtain (2.8).

Finally, (2.5), (2.6), (2.7) and (2.8) imply that for k ≥ 2,

rk(n) = Ok(n
k
2
−1+ε), (2.9)

for every ε > 0.

3. Proof of Theorem 1.5

We now show that, when k is a positive integer greater than 3, (1.28) follows from Theorem
1.4, provided that the functions F and G, in addition to the hypotheses of Theorem 1.4,
respectively satisfy (1.25) and (1.27). Note that m ≥ 1 when k ≥ 4 and so the first hypothesis
of Theorem 1.4 is not vacuous. Also, as will be seen in the proof, (1.25) and (1.27) allow us
to let N →∞ in the associated sums and integrals in (1.19). However, when k = 2 or 3, the
first hypothesis in Theorem 1.4 is vacuous, and we need further conditions given at the end
of Theorem 1.5. These cases are considered at the end of the proof.

Observe first that integrating both sides of (1.26) with respect to y from 0 to x, inter-
changing the order of integration on the resulting right-hand side, and then employing the
differentiation formula

x(ν−1)/2Jν−1(2π
√
xy) =

1

π
√
y

d

dx

(
xν/2Jν(2π

√
xy)
)
,

which can readily be deduced from [15, p. 926, 8.472.3], we arrive at∫ x

0
G(y)y

k
4
− 1

2 dy = π

∫ ∞
0

F (t)

∫ x

0

1

π
√
t

d

dy

(
yk/4J k

2

(
2π
√
yt
))

dy dt

= xk/4
∫ ∞
0

t−1/2J k
2
(2π
√
xt)F (t) dt,

thereby obtaining (1.20).
Note that if one of the limits in (1.19) exists, so does the other. To show that

lim
N→∞

N∑
n=1

(
1− n

N

)m+1
rk(n)n

1
2
− k

4F (n) =

∞∑
n=1

rk(n)n
1
2
− k

4F (n), (3.1)

we use Tannery’s theorem [8, p. 136] stated below.
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Theorem 3.1. Assume an := lim
N→∞

an(N) satisfies |an(N)| ≤Mn with

∞∑
n=0

Mn <∞. Then

lim
N→∞

N∑
n=0

an(N) =

∞∑
n=0

an.

For our application,

an(N) :=
(

1− n

N

)m+1
rk(n)n

1
2
− k

4F (n).

Clearly,

lim
N→∞

an(N) = rk(n)n
1
2
− k

4F (n).

Moreover, from (2.9),

rk(n) ≤ Lknk/2−1+ε,
where Lk is a constant depending on k but not on n. Also,∣∣∣1− n

N

∣∣∣m+1
≤ 2m+1 ≤ 2k/2,

since n ≤ N and m =
⌊
1
2k
⌋
− 1. Hence,

|an(N)| ≤ 2k/2Lkn
k
2
−1+ 1

2
− k

4
+ε|F (n)|.

Let Mn := 2k/2Lkn
k
4
− 1

2
+εF (n). Now

∑∞
n=0Mn converges if F (x) = Ok

(
x−

k
4
− 1

2
−ε−δ

)
for

some δ > 0. Thus assuming (1.25), we see that (3.1) holds.
Next, in order to show that

lim
N→∞

∫ N

0

(
1− x

N

)m+1
x
k
4
− 1

2F (x) dx =

∫ ∞
0

x
k
4
− 1

2F (x) dx, (3.2)

we employ the integral analogue of Tannery’s theorem [8, p. 485–486].

Theorem 3.2. If limN→∞ u(x,N) = v(x) and limN→∞ ηN =∞, then

lim
N→∞

∫ ηN

a
u(x,N) dx =

∫ ∞
a

v(x) dx,

provided that u(x,N) tends to its limit v(x) uniformly in any fixed interval, and there exists
a positive function T (x) such that |u(x,N)| ≤ T (x) for all N , where

∫∞
a T (x) dx converges.

In our case, a = 0, ηN = N , and

u(x,N) =
(

1− x

N

)m+1
x
k
4
− 1

2F (x),

v(x) = x
k
4
− 1

2F (x).

Consider any fixed interval, say [0, B]. Note that since F is continuous in [0, B], v(x) is
bounded on this interval. Also, by the binomial theorem,(

1− x

N

)m+1
=

m+1∑
j=0

(
m+ 1

j

)(
− x
N

)j
= 1 +Om,B

(
1

N

)
,

uniformly for all x in [0, B], as N →∞. Thus, u(x,N)→ v(x) uniformly in any fixed interval.
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Finally, to apply Theorem 3.2, we need to show that there exists a positive function T (x)
such that |u(x,N)| ≤ T (x) for all N , where

∫∞
a T (x) dx converges. This is seen at once if we

take T (x) = |v(x)| and use (1.25). Hence, (3.2) holds if (1.25) holds.
Similarly, (3.1) and (3.2) hold with F replaced by G if (1.27) holds. This completes the

proof of Theorem 1.5 when k ≥ 4.
When k = 2 or 3, then m = 0. If we now examine the hypotheses in Theorem 1.4, we

notice that the first condition is vacuous. The second condition requires F to be in L2(0,∞),
but this does not necessitate F to be continuous. But if F is not continuous on [0,∞) and
we change the values of F over any set of Lebesgue measure zero, for example, over the set of
all positive integers, then even though the right-hand side of (1.28) as well as the integral on
the left side remain the same, the sum on the left side has a different value. However, since
any two continuous functions which differ from each other over a set of Lebesgue measure
zero must agree everywhere, when k = 2 and 3, we require F to be continuous on [0,∞).

Requiring F, xF ′(x) ∈ L2(0,∞) ensures that we can perform an integration by parts in
(1.26), so that an argument analogous to that in [17, Section 2] can be used. This completes
the proof for all k ≥ 2.

4. Proofs of Theorem 1.6 and Its Corollaries

In this section, we prove our main transformation in Theorem 1.6 and then prove numerous
corollaries that arise from it.

Proof of Theorem 1.6. Since Iν(0) = 0 for Re(ν) > 0, it is easy to see that when α = β,
both sides of (1.31) are equal to zero. Hence, (1.31) holds in this case.

For a positive integer k ≥ 2, Re(ν) > 0, and Re(
√
α) ≥ Re(

√
β) > 0, let

f(x) :=
1√

x+ α
√
x+ β

(√
x+ α−

√
x+ β√

x+ α+
√
x+ β

)ν (
1√
x+ α

+
1√
x+ β

)k−2
× 2F1

(
ν + 1− k

2 , 1−
k
2

ν + 1

∣∣∣∣(√x+ α−
√
x+ β√

x+ α+
√
x+ β

)2
)
. (4.1)

Note that f is continuous on [0,∞). We prove (1.31) first for α > β > 0 and k ≥ 2. After
this, we prove (1.31) in its full generality, that is, for Re(

√
α) ≥ Re(

√
β) > 0, by applying

the principle of analytic continuation.
Let

F (x) = x
k
4
− 1

2 f(x), (4.2)

where f is defined in (4.1). Then F is continuous on [0,∞). Let u =
√
y, µ = k

2 − 1, z2 =

α,w2 = β and ρ = 2π
√
x in (1.30), so that by (1.26), for Re(

√
α) >Re(

√
β) > 0 and

Re(ν) > −1
4(k + 1),

G(x) = π

∫ ∞
0

y
k
4
− 1

2 f(y)J k
2
−1(2π

√
xy) dy

= 2k−1π
k
2 x

k
4
− 1

2
Γ(ν + 1)

Γ
(
ν + k

2

)Iν(π(
√
xα−

√
xβ))Kν(π(

√
xα+

√
xβ)). (4.3)

We apply Theorem 1.5 with F and G as given above. To do this, we first show that they
satisfy the hypotheses of Theorem 1.5. Since f is analytic, and hence infinitely differentiable,
F (x), F ′(x), F ′′(x), . . . , F (2m−1)(x) are integrals. Also, as x→∞,

f(x) ∼ 2k−2−2ν(α− β)ν

xν+k/2
, (4.4)
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since the hypergeometric function tends to 1 as x → ∞. Since Re(ν) > 0, from (4.2) and
(4.4), it is easy to see that the bound in (1.25) holds. From (2.4), for Re(

√
α) > Re(

√
β) and

large n,

Iν(π(
√
nα−

√
nβ) ∼ eπ(

√
nα−

√
nβ)

π
√

2(
√
nα−

√
nβ)

. (4.5)

Also from (2.1), for (
√
α+
√
β) ∈ C\(−∞, 0) and large n,

Kν(π(
√
nα+

√
nβ)) ∼ e−π(

√
nα+

√
nβ)√

2(
√
nα+

√
nβ)

. (4.6)

Thus, since α ≥ β > 0, by (4.5) and (4.6), the function G defined in (4.3) decays exponentially
as x→∞. Therefore, G satisfies (1.27).

Next, we show that, for 0 ≤ r ≤ 2m, xrF (r)(x) ∈ L2(0,∞). It is easy to see that f (and
hence F ) is analytic in a fixed small disk centered at the origin. Thus, for any non-negative

integer r, f (r) (and hence F (r)) is bounded in this disk. If we restrict x to be non-negative and

real, then the fact that f (r)(x) is continuous on [0, ε0], for some ε0 > 0, implies that xrf (r)(x)

(and hence xrF (r)(x)) belongs to L2([0, ε0]). In fact, the continuity of xrf (r)(x) on [0,∞)

implies that xrf (r)(x) (and hence xrF (r)(x)) belongs to ∈ L2([ε0, A]), where A is any large

fixed real number. It remains to show that all functions of the form xrF (r)(x) ∈ L2([A,∞)).
This is done next.

Note that f (and hence F ) is analytic at ∞, as can be seen from (4.1), the fact that
Re(ν) > 0, and that the hypergeometric function tends to 1 as x→∞. Also, A lies inside a
neighborhood of ∞. Thus, F can be expanded as a power series in 1/x, and in fact,

F (x) =
∞∑
`=0

c`

x`+ν+
k
4
+ 1

2

,

where the constants c`, ` ≥ 0, depend on ν, k, α, and β, and c0 = 2k−2−2ν(α−β)ν , which can
be seen from (4.4). Hence, for r ≥ 0,

xrF (r)(x) =
∞∑
`=0

d`

x`+ν+
k
4
+ 1

2

,

where the coefficients d`, ` ≥ 0, depend on r, ν, k, α, and β. Hence,

xrF (r)(x) = Or,ν,k,α,β

(
x−ν−

k
4
− 1

2

)
on the interval [A,∞). Since Re(ν + k

4 + 1
2) > 1

2 , we see that xrF (r)(x) ∈ L2([A,∞)).

We have thus shown that xrF (r)(x) ∈ L2((0,∞)) for any r, in particular, for 0 ≤ r ≤ 2m.
Also, when k = 2, 3, the additional condition xF ′(x) ∈ L2((0,∞)) is similarly seen to be true.
Thus, the hypotheses of Theorem 1.5 are satisfied.

Hence, from Theorem 1.5, (4.1), (4.2), and (4.3), we find that
∞∑
n=1

rk(n)√
n+ α

√
n+ β

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)ν (
1√
n+ α

+
1√
n+ β

)k−2
× 2F1

(
ν + 1− k

2 , 1−
k
2

ν + 1

∣∣∣∣(√n+ α−
√
n+ β√

n+ α+
√
n+ β

)2
)
− π

k
2

Γ(k2 )

∫ ∞
0

x
k
2
−1f(x) dx

= 2k−1πk/2
Γ(ν + 1)

Γ(ν + k
2 )

∞∑
n=1

rk(n)Iν(π(
√
nα−

√
nβ))Kν(π(

√
nα+

√
nβ))
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− π
k
2

Γ(k2 )

∫ ∞
0

x
k
4
− 1

2G(x) dx. (4.7)

We now evaluate the two integrals occurring in (4.7). For Re(µ + ν + 1) > 0, Re(a) > 0,
and |b| < |a| [42, p. 385, eq. (3)],∫ ∞

0
e−atJν(bt)tµ−1 dt =

(b/(2a))νΓ(µ+ ν)

aµΓ(ν + 1)

(
1 +

b2

a2

)1
2−µ

2F1

(
ν−µ+1

2 , ν−µ2 + 1

ν + 1

∣∣∣∣− b2a2
)
.

(4.8)
However, as given in [42, p. 385], by analytic continuation in b, (4.8) is valid for Re(a±ib) > 0.
We would like to substitute b = i and a = 1/u in (4.8), where

u =
α− β

2y + α+ β
, y ≥ 0. (4.9)

Since α > β > 0, the condition Re(a) = Re(1/u) > 1 is obviously satisfied. We now use,
from (1.4), the relation Iν(t) = i−νJν(it), to deduce that, for Re(µ+ ν + 1) > 0, 1∫ ∞

0
e−t/uIν(t)tµ dt =

uν+µ+1Γ(ν + µ+ 1)

2νΓ(ν + 1)(1− u2)µ+1/2
· 2F1

(
ν−µ
2 , ν−µ+1

2

ν + 1

∣∣∣∣u2
)
. (4.10)

Also from [27, p. 391], for |z| < 1,

2F1

(
a, b

a− b+ 1

∣∣∣∣z) = (1 + z)−a2F1

( 1
2a,

1
2(a+ 1)

a− b+ 1

∣∣∣∣ 4z

(1 + z)2

)
. (4.11)

Since u < 1, we see that
∣∣∣(1−√1− u2)/(1 +

√
1− u2)

∣∣∣ < 1. Hence, let a = ν − µ, b = −µ,

and z = (1−
√

1− u2)/(1 +
√

1− u2) in (4.11) to find that

2F1

(
ν−µ
2 , ν−µ+1

2

ν + 1

∣∣∣∣u2
)

=
2ν−µ

(1 +
√

1− u2)ν−µ 2F1

(
ν − µ,−µ
ν + 1

∣∣∣∣1−
√

1− u2

1 +
√

1− u2

)
. (4.12)

Substituting (4.12) in (4.10), employing the representation (4.9) of u in terms of y, α and β,
and using the elementary identities

(2y + α+ β)2 − (α− β)2 = 4(y + α)(y + β)

and
2y + α+ β ± 2

√
(y + α)(y + β) = (

√
y + α±

√
y + β)2

in our simplification, we arrive at∫ ∞
0

e−t/uIν(t)tµ dt =
2−3µ−1

√
y + α

√
y + β

(α− β)ν+µ+1Γ(ν + µ+ 1)

(
√
y + α+

√
y + β)2νΓ(ν + 1)

(
1√
y + α

+
1√
y + β

)2µ

× 2F1

(
ν − µ,−µ
ν + 1

∣∣∣∣(√y + α−
√
y + β

√
y + α+

√
y + β

)2
)
. (4.13)

Now we let µ = k
2 − 1. With the choice of f in (4.1), the use of (4.13), the simple algebraic

identity (√
y + α−

√
y + β

√
y + α+

√
y + β

)ν
=

(α− β)ν

(
√
y + α+

√
y + β)2ν

,

1This integral evaluation is also given in [24], but with less details.
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and an inversion in the order of integration, we deduce that, for Re(ν + k
2 ) > 0,∫ ∞

0
y
k
2
−1f(y) dy =

2
3k
2
−2Γ(ν + 1)

(α− β)
k
2 Γ
(
ν + k

2

) ∫ ∞
0

y
k
2
−1
∫ ∞
0

e−(2y+α+β)t/(α−β)t
k
2
−1Iν(t) dt dy

=
2

3k
2
−2Γ(ν + 1)

(α− β)
k
2 Γ
(
ν + k

2

) ∫ ∞
0

t
k
2
−1e
−
(
α+β
α−β

)
t
Iν(t) dt

∫ ∞
0

e
− 2yt

(α−β) y
k
2
−1 dy

=
2k−2Γ(ν + 1)Γ

(
k
2

)
Γ
(
ν + k

2

) ∫ ∞
0

e
−
(
α+β
α−β

)
t
Iν(t)

dt

t
, (4.14)

where the inversion in order of integration can be easily justified with the use of (2.3), and
where in the last step we used the integral representation for the gamma function, namely,
for Re(z) > 0, Re(λ) > 0, ∫ ∞

0
e−λttz−1 dt = λ−zΓ(z).

Now let y = 0 and µ = −1 in (4.13) to see that∫ ∞
0

e
−
(
α+β
α−β

)
t
Iν(t)

dt

t
=

1

ν

(√
α−
√
β√

α+
√
β

)ν
. (4.15)

Thus, from (4.14) and (4.15), for Re(ν) > 0,∫ ∞
0

y
k
2
−1f(y) dy =

2k−2Γ(ν)Γ
(
k
2

)
Γ
(
ν + k

2

) (√
α−
√
β√

α+
√
β

)ν
. (4.16)

(Observe that if we set k = 2 in (4.1), the hypergeometric function therein reduces to 1.
Therefore, a more elementary proof of (4.16) can be established by the change of variable

t = − log

(√
y + α−

√
y + β

√
y + α+

√
y + β

)
.

We leave the details to the reader.)
It remains to evaluate the integral on the right-hand side of (4.7). To that end, we use the

formula from [34, p. 380–381, eq. 2.16.28.1]. For |Re b| < Re c, and |Re ν| < Re (a+ ν),∫ ∞
0

xa−1Iν(bx)Kν(cx) dx = 2a−2(c2 − b2)−a/2Γ
(a

2

)
Γ
(
ν +

a

2

)
P−ν−a/2

(
c2 + b2

c2 − b2

)
, (4.17)

where Pµν (z) is the associated Legendre function of the first kind defined by [15, p. 959,
eq. 8.702]

Pµν (z) :=
1

Γ(1− µ)

(
z + 1

z − 1

)µ/2
2F1

(
−ν, ν + 1

1− µ

∣∣∣∣1− z2

)
. (4.18)

Let a = k, b = π(
√
α−
√
β) and c = π(

√
α+
√
β) in (4.17). The conditions for the validity of

(4.17) are easily seen to hold. Employing (4.18) followed by an application of Pfaff’s formula
[27, p. 390], namely,

2F1

(
a, b

c

∣∣∣∣z) = (1− z)−b2F1

(
c− a, b

c

∣∣∣∣ z

z − 1

)
,
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we obtain, upon simplification,

− π
k
2

Γ(k2 )

∫ ∞
0

x
k
4
− 1

2G(x) dx

= − 1√
αβ

(√
α−
√
β√

α+
√
β

)ν (
1√
α

+
1√
β

)k−2
2F1

(
ν + 1− k

2 , 1−
k
2

ν + 1

∣∣∣∣(√α−√β√
α+
√
β

)2
)
, (4.19)

which, indeed, agrees with (1.23), as can be seen from (4.2).
Substituting (4.16) and (4.19) into (4.7), we find that, for Re(ν) > 0,

∞∑
n=0

rk(n)√
n+ α

√
n+ β

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)ν
×
(

1√
n+ α

+
1√
n+ β

)k−2
2F1

(
ν + 1− k

2 , 1−
k
2

ν + 1

∣∣∣∣(√n+ α−
√
n+ β√

n+ α+
√
n+ β

)2
)

=
2k−2π

k
2 Γ(ν)

Γ
(
ν + k

2

) (√
α−
√
β√

α+
√
β

)ν
+

2k−1π
k
2 Γ(ν + 1)

Γ
(
ν + k

2

) ∞∑
n=1

rk(n)Iν(π(
√
nα−

√
nβ))Kν(π(

√
nα+

√
nβ)), (4.20)

which easily simplifies to (1.31). This completes the proof of (1.31) for α ≥ β > 0 and k ≥ 2.
By (4.5) and (4.6), the series on the right-hand side of (4.20) converges absolutely for

Re(
√
α) > Re(

√
β) > 0. Note that if Re(

√
α) = Re(

√
β), then from (2.3), it is seen that

Iν

(
iπ
√
n
(

Im(
√
α)− Im(

√
β)
))

= Oα,β,ν(n−1/4).

This, together with (4.6), implies that the series on the right-hand side of (4.20) again
converges absolutely for Re(

√
α) = Re(

√
β) > 0. Using (4.1) and (4.4), we see that the

right-hand side of (1.31) is well-defined for Re(
√
α) ≥ Re(

√
β) > 0.

Fix any real positive β0, let Ωβ0 represent the region in the α-complex plane given by
Re(
√
α) >

√
β0 > 0. The region Ωβ0 has, as its boundary, the parabola given by the equation

Re(α) = β0 − 1
4β0

Im(α)2. Both sides of (1.31), with β replaced by β0, are analytic in Ωβ0 .

Since Ωβ0 is simply connected and since by what we have proved so far, the two sides of
(1.31) coincide on Ωβ0 ∩ R, it follows that (1.31) holds for all α ∈ Ωβ0 .

Now fix any two complex numbers α1 and β1 satisfying Re(
√
α1) > Re(

√
β1) > 0. Fix an

arbitrary real positive number β∗ such that
√
β∗ ≤ Re(

√
β1). Note that α1 belongs to Ωβ∗ for

every such β∗. Therefore (1.31), with α replaced by α1, holds with β replaced by any such β∗.
Next, let Dα1 be the region in the β-complex plane given by Re(

√
α1) > Re(

√
β) > 0. Here

Dα1 is simply connected with its boundary formed by the parabola given by the equation
Re(β) = Re(

√
α1)

2 − 1
4Re(

√
α1)2

Im(β)2 and the negative real line. Both sides of (1.31) are

analytic on Dα1 and coincide at all points β = β∗, with β∗ as above, and hence they coincide
everywhere inside Dα1 .

Since β1 belongs to Dα1 , it follows that (1.31) holds for α = α1 and β = β1, as desired.
Lastly, by continuity, (1.31) also holds for all those complex numbers α and β for which
Re(
√
α) = Re(

√
β) > 0. This completes the proof of Theorem 1.6. �
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Remark 4.1. Let λ, δ > 0, Re(ν) > 0 and Re(z) > 0, Using (1.5) and (1.4), we find that,
for Re(ν) > 0,

lim
z→0

Iν(λz)Kν(δz) =
π

2 sin νπ
lim
z→0

(Iν(λz)I−ν(δz)− Iν(λz)Iν(δz))

=
π

2 sin νπ

(
(λ/δ)ν

Γ(1 + ν)Γ(1− ν)
− 0

)
=

1

2ν

(
λ

δ

)ν
,

by using the reflection formula for the gamma function. Thus,

lim
x→0

Iν(π(
√
xα−

√
xβ))Kν(π(

√
xα+

√
xβ)) =

1

2ν

(√
α−
√
β√

α+
√
β

)ν
, (4.21)

and so the identity in Theorem 1.6 can also be written in the more compact form
∞∑
n=0

rk(n)Iν(π(
√
nα−

√
nβ))Kν(π(

√
nα+

√
nβ))

=
Γ
(
ν + k

2

)
π
k
2 2k−1Γ(ν + 1)

∞∑
n=0

rk(n)√
n+ α

√
n+ β

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)ν
×
(

1√
n+ α

+
1√
n+ β

)k−2
2F1

(
ν + 1− k

2 , 1−
k
2

ν + 1

∣∣∣∣(√n+ α−
√
n+ β√

n+ α+
√
n+ β

)2
)
,

with the n = 0 term of the series on the left-hand side interpreted as the limit in (4.21).

Remark 4.2. We can generalize Theorem 1.6 by replacing the coefficients rk(n) by any
arithmetical function a(n) generated by a Dirichlet series satisfying a functional equation of
the form (1.18).

Corollary 4.3. For Re(ν) > 0, Popov’s identity (1.10) holds for a much larger region
Re(
√
α) ≥ Re(

√
β) > 0.

Proof. Set k = 2 in Theorem 1.6 and simplify using (4.21). �

Corollary 4.4. For any positive integer k ≥ 2 and Re(
√
α) ≥ Re(

√
β) > 0,

∞∑
n=1

rk(n)√
n
e−π
√
n(
√
α+
√
β) sinh(π

√
n(
√
α−

√
β)) (4.22)

= −π
(√

α−
√
β
)
− 1

2π(k−1)/2
Γ

(
k − 1

2

) ∞∑
n=0

rk(n)
(

(n+ α)(1−k)/2 − (n+ β)(1−k)/2
)
.

Proof. Let ν = 1
2 in Theorem 1.6. From [42, p. 80, eq. (10)],

I 1
2
(π(
√
nα−

√
nβ)) =

√
2

π

sinh(π(
√
nα−

√
nβ))√√

nα−
√
nβ

, (4.23)

and from (1.7),

K 1
2
(π(
√
nα+

√
nβ)) =

1√
2(
√
nα+

√
nβ)

e−π(
√
nα+

√
nβ). (4.24)
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Next, from [35, p. 389, eq. (107)],

2F1

(
a, a+ 1

2
3
2

∣∣∣∣z
)

=
1

2(2a− 1)
√
z

{
(1−

√
z)1−2a − (1 +

√
z)1−2a

}
. (4.25)

Let a = 1− k
2 and z =

(√
x+α−

√
x+β√

x+α+
√
x+β

)2
in (4.25) and simplify to find that

2F1

(
1− k

2 ,
3−k
2

3
2

∣∣∣∣(√x+ α−
√
x+ β√

x+ α+
√
x+ β

)2
)

=
2k−2

(1− k)

(√
x+ α+

√
x+ β

)2−k (
(x+ β)(k−1)/2 − (x+ α)(k−1)/2

)(√
x+ α−

√
x+ β

) . (4.26)

Now use (4.23), (4.24) and (4.26) in (1.31) to arrive at (4.22). �

Remark 4.5. The special case k = 2 of Corollary 4.4 is equivalent to the following identity
of Popov [33, eq. (11)]:

1√
β
− 1√

α
+

∞∑
n=1

r2(n)

(
1√
n+ β

− 1√
n+ α

)

= 2π(
√
α−

√
β) +

∞∑
n=1

r2(n)√
n

(
e−2π

√
nβ − e−2π

√
nα
)
.

This identity should be compared with (1.9).

Corollary 4.6. For any positive integer k > 1, Re(
√
β) > 0, and Re(ν) > 0,

∞∑
n=0

rk(n)n
ν
2Kν(2π

√
nβ) =

β
ν
2 Γ
(
ν + k

2

)
2πν+

k
2

∞∑
n=0

rk(n)

(n+ β)ν+
k
2

. (4.27)

Proof. Divide both sides of (1.31) by (α− β)ν and then let α→ β+. By (1.4),

lim
α→β+

Iν(π(
√
nα−

√
nβ))Kν(π(

√
nα+

√
nβ))

(α− β)ν
=
(π

4

)ν (n
β

) ν
2 Kν(2π

√
nβ)

Γ(1 + ν)
.

Thus,

(π/4)ν

β
ν
2 Γ(1 + ν)

∞∑
n=1

rk(n)n
ν
2Kν(2π

√
nβ) = − 1

ν22ν+1βν
+

Γ(ν + k
2 )

π
k
2 22ν+1Γ(ν + 1)

∞∑
n=0

rk(n)

(n+ β)ν+
k
2

.

(4.28)

Multiply both sides of (4.28) by β
ν
2 Γ(1 + ν)/(π/4)ν . By (1.5) and (1.4),

lim
x→0

xν/2Kν(2π
√
xβ) =

Γ(ν)

2πνβν/2
.

Thus, the first term on the right-hand side of (4.28) can be interpreted as the additive inverse
of the n = 0 term of the series on the left-hand side of (4.28). Hence, we arrive at (4.27). �

Corollary 4.6 was also established by Popov [33, eq. (6)]. As a special case, Corollary 4.6
implies the following formula in Corollary 4.7, which specializes, when k = 2, to a identity of
Hardy [19, eq. (2.12)], which he used in his study of the famous circle problem to prove that∑

n≤x
r2(n)− πx = Ω(x1/4).
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Corollary 4.7 was also obtained by Popov [30, eq. (1)], but (with our k replaced by his ν) his
condition Re(ν) > −1

2 should be replaced by ν > 0.

Corollary 4.7. For any positive integer k > 1 and Re(
√
β) > 0,

∞∑
n=0

rk(n)e−2π
√
nβ =

√
β

Γ
(
1
2(k + 1)

)
π(k+1)/2

∞∑
n=0

rk(n)

(n+ β)(k+1)/2
. (4.29)

Proof. Let ν = 1
2 in Corollary 4.6 and use (1.7) to obtain (4.29) after simplification. �

Corollary 4.8. Let, for 0 ≤ |k| < 1,

K(k) :=

∫ π
2

0

dt√
1− k2 sin2 t

be the complete elliptic integral of the first kind and

D(k) :=

∫ π
2

0

sin2 t dt√
1− k2 sin2 t

.

Then, for Re(
√
α) ≥ Re(

√
β) > 0,

∞∑
n=1

r3(n)I1(π(
√
nα−

√
nβ))K1(π(

√
nα+

√
nβ))

= −1

2

(√
α−
√
β√

α+
√
β

)
+

(α− β)

4π2

∞∑
n=0

r3(n)

(n+ α)(n+ β)

×

{
1√
n+ α

K

(√
α− β√
n+ α

)
− 4n+ 2α+ 2β(√

n+ α+
√
n+ β

)3D(√n+ α−
√
n+ β√

n+ α+
√
n+ β

)}
. (4.30)

Proof. Let k = 3 and ν = 1 in Theorem 1.6. Using the identity [35, p. 395]

2F1

(
−1

2 ,
1
2

2

∣∣∣∣z) =
4

3π

(
2K(
√
z)− (1 + z)D(

√
z)
)
,

and Landen’s transformation [4, p. 112]

K(k) =
1

(1 + k)
K

(
2
√
k

1 + k

)
, 0 ≤ k < 1,

we arrive at (4.30). �

5. Analytically Continuing Theorem 1.6 to Re(ν) > −1

Recall the definition of ζk(s) from (1.17) and the fact that it has an analytic continuation
into the entire complex plane. Also, recall (1.31). Note that for Re(

√
α) ≥ Re(

√
β) > 0

and Re(ν) > 0, if we separate the n = 0 term on the right-hand side of (1.31) and use the
aforementioned analytic continuation, we can rewrite (1.31) in the form

∞∑
n=1

rk(n)Iν(π(
√
nα−

√
nβ))Kν(π(

√
nα+

√
nβ))

= − 1

2ν

(√
α−
√
β√

α+
√
β

)ν
+

2−2ν−1(α− β)νΓ
(
ν + 1

2k
)

πk/2Γ(ν + 1)
ζk(ν + k

2 )
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+
Γ
(
ν + k

2

)
π
k
2 2k−1Γ(ν + 1)

√
αβ

(√
α−
√
β√

α+
√
β

)ν (
1√
α

+
1√
β

)k−2
× 2F1

(
ν + 1− k

2 , 1−
k
2

ν + 1

∣∣∣∣(√α−√β√
α+
√
β

)2
)

+
Γ
(
ν + k

2

)
π
k
2 2k−1Γ(ν + 1)

∞∑
n=1

rk(n)

{
1√

n+ α
√
n+ β

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)ν
×
(

1√
n+ α

+
1√
n+ β

)k−2
2F1

(
ν + 1− k

2 , 1−
k
2

ν + 1

∣∣∣∣(√n+ α−
√
n+ β√

n+ α+
√
n+ β

)2
)

− 2k−2−2ν(α− β)ν

nν+k/2

}
. (5.1)

Now for large n, from the definition (1.29) of 2F1,

1√
n+ α

√
n+ β

(√
n+ α−

√
n+ β√

n+ α+
√
n+ β

)ν (
1√
n+ α

+
1√
n+ β

)k−2
× 2F1

(
ν + 1− k

2 , 1−
k
2

ν + 1

∣∣∣∣(√n+ α−
√
n+ β√

n+ α+
√
n+ β

)2
)

=
2k−2−2ν(α− β)ν

nν+k/2
+Oα,β,ν,k

(
1

nν+
1
2
k+1

)
. (5.2)

The main term in this asymptotic estimate was already obtained in (4.4). From (5.2), we
see that the series on the right-hand side of (5.1) converges for Re(ν) > −1. By analytic
continuation, we conclude that (5.1) is valid for Re ν > −1. Thus, letting ν = 0 in (5.1), we
find that

∞∑
n=1

rk(n)I0(π(
√
nα−

√
nβ))K0(π(

√
nα+

√
nβ))

= lim
ν→0

(
2−2ν−1(α− β)νΓ

(
ν + 1

2k
)

πk/2Γ(ν + 1)
ζk(ν + k

2 )− 1

2ν

(√
α−
√
β√

α+
√
β

)ν)

+
Γ
(
k
2

)
π
k
2 2k−1

√
αβ

(
1√
α

+
1√
β

)k−2
2F1

(
1− k

2 , 1−
k
2

1

∣∣∣∣(√α−√β√
α+
√
β

)2
)

+
Γ
(
k
2

)
π
k
2 2k−1

∞∑
n=1

rk(n)

{
1√

n+ α
√
n+ β

(
1√
n+ α

+
1√
n+ β

)k−2
× 2F1

(
1− k

2 , 1−
k
2

1

∣∣∣∣(√n+ α−
√
n+ β√

n+ α+
√
n+ β

)2
)
− 2k−2

nk/2

}
. (5.3)

We now specialize (5.3). The Dirichlet series for rk(n), k = 2, 4, 6 and 8, are given by [7,
p. 102]

∞∑
n=1

r2(n)

ns
= 4ζ(s)B(s), Re(s) > 1, (5.4)
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∞∑
n=1

r4(n)

ns
= 8(1− 41−s)ζ(s)ζ(s− 1), Re(s) > 2, (5.5)

∞∑
n=1

r6(n)

ns
= 16ζ(s− 2)B(s)− 4ζ(s)B(s− 2), Re(s) > 3, (5.6)

∞∑
n=1

r8(n)

ns
= 16(1− 21−s + 42−s)ζ(s)ζ(s− 3), Re(s) > 4, (5.7)

where ζ(s) denotes the Riemann zeta function and B(s) denotes the Dirichlet beta-function,
defined for Re(s) > 0, by

B(s) :=

∞∑
n=0

(−1)n

(2n+ 1)s
.

The function B(s) is a Dirichlet L-function, and consequently it satisfies the functional
equation [11, p. 69]

B(1− s) =

(
2

π

)s
sin
(πs

2

)
Γ(s)B(s). (5.8)

For these four values of k, we can deduce the following four theorems. Since the line of
reasoning is similar in the proofs of Theorems 5.1 and 5.4, we provide the proof of only the
former. Similarly, we prove only Theorem 5.3, because its proof is similar to that of Theorem
5.5.

Theorem 5.1. Let γ denote Euler’s constant. For Re(
√
α) ≥ Re(

√
β) > 0,

∞∑
n=1

r2(n)I0(π(
√
nα−

√
nβ))K0(π(

√
nα+

√
nβ))

=
1

2π
√
αβ

+ γ + log

(√
α+
√
β

2

)
+

1

2
log
(π

2

)
−B′(0)

+
1

2π

∞∑
n=1

r2(n)

(
1

(n+ α)1/2(n+ β)1/2
− 1

n

)
. (5.9)

Proof. Letting k = 2 in (5.3) and using (5.4), we find that

∞∑
n=1

r2(n)I0(π(
√
nα−

√
nβ))K0(π(

√
nα+

√
nβ))

= L+
1

2π
√
αβ

+
1

2π

∞∑
n=1

r2(n)

(
1

(n+ α)1/2(n+ β)1/2
− 1

n

)
,

where

L = lim
ν→0

{
21−2ν

π
(α− β)νζ(ν + 1)B(ν + 1)− 1

2ν

(√
α−
√
β√

α+
√
β

)ν}
.

Using the Madhava-Gregory series for π/4 = B(1) and the well-known limit [41, p. 16]

lim
s→1

(
ζ(s)− 1

s− 1

)
= γ, (5.10)
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we see that

L =
γ

2
+

1

2
lim
ν→0

(
π−122−2ν(

√
α+
√
β)2νB(ν + 1)− 1

)
ν

.

Employing L’Hopital’s rule, (5.8), B(1) = π/4 once again, and Γ′(1) = −γ, upon simplifying,
we arrive at

L =
γ

2
+ log

(√
α+
√
β

2

)
+

2

π
B′(1) = γ + log

(√
α+
√
β

2

)
+

1

2
log
(π

2

)
−B′(0).

This proves (5.9). �

Remark 5.2. When we let α → β+ in Theorem 5.1, use the facts that I0(0) = 1 and [41,
p. 20] ζ ′(0) = −1

2 log(2π), and replace β by x, we obtain a result of Dixon and Ferrar [13,
eq. (3.24)]

2
∞∑
n=1

r2(n)K0(2π
√
nx)− log(12πx)− 2γ + 2B′(0) =

1

πx
+

1

π

∞∑
n=1

r2(n)

{
1

x+ n
− 1

n

}
. (5.11)

Theorem 5.3. For Re(
√
α) ≥ Re(

√
β) > 0,

∞∑
n=1

r4(n)I0(π(
√
nα−

√
nβ))K0(π(

√
nα+

√
nβ))

=
α+ β

4π2(αβ)3/2
+
γ

2
+

1

2

(
1− 2

3
log 4 + 2 log

(√
α+

√
β
)

+
6

π2
ζ ′(2)

)
+

1

4π2

∞∑
n=1

r4(n)

{
2n+ α+ β

(n+ α)3/2(n+ β)3/2
− 2

n2

}
. (5.12)

Proof. Let k = 4 in (5.3) and use (5.5). We note that

2F1

(
−1,−1

1

∣∣∣∣x) = 1 + x.

We will calculate the limit below in two stages. In the first, we use (5.10) and the evaluation
ζ(2) = π2/6. In the second, we employ L’Hopital’s rule and again use the evaluation ζ(2) =
π2/6. Accordingly,

lim
ν→0

{
(α− β)νΓ(ν + 2)

22ν+1π2Γ(ν + 1)
8(1− 4−ν−1)ζ(ν + 2)ζ(ν + 1)− 1

2ν

(√
α−
√
β√

α+
√
β

)ν}
=
γ

2
+

1

2
lim
ν→0

(
8π−22−2ν(ν + 1)(1− 4−ν−1)(

√
α+
√
β)2νζ(ν + 2)− 1

)
ν

=
γ

2
+

1

2

(
1− 2

3
log 4 + 2 log

(√
α+

√
β
)

+
6

π2
ζ ′(2)

)
.

This gives (5.12). �
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Theorem 5.4. For Re(
√
α) ≥ Re(

√
β) > 0,

∞∑
n=1

r6(n)I0(π(
√
nα−

√
nβ))K0(π(

√
nα+

√
nβ))

=
3α2 + 2αβ + 3β2

8π3(αβ)5/2
+
γ

2
− ζ(3)

π2
+ log

(√
α+
√
β

2

)
+

3

4
+

16

π3
B′(3)

+
1

8π3

∞∑
n=1

r6(n)

{
8n2 + 8nα+ 3α2 + 8nβ + 2αβ + 3β2

(n+ α)5/2(n+ β)5/2
− 8

n3

}
.

Theorem 5.5. For Re(
√
α) ≥ Re(

√
β) > 0,

∞∑
n=1

r8(n)I0(π(
√
nα−

√
nβ))K0(π(

√
nα+

√
nβ))

=
3(5α3 + 3α2β + 3αβ2 + 5β3)

16π4(αβ)7/2
+
γ

2
+ log

(√
α+
√
β

2

)
+

11

12
+

45

π4
ζ ′(4)

+
3

16π4

∞∑
n=1

r8(n)

{
P (n, α, β)

(n+ α)7/2(n+ β)7/2
− 16

n4

}
,

where P (n, α, β) is a polynomial in n (as well as in α and β) given by

P (n, α, β) := 16n3 + 24n2α+ 18nα2 + 5α3 + 24n2β + 12nαβ + 3α2β + 18nβ2 + 3αβ2 + 5β3.

As previously mentioned, letting α → β+ in Theorems 5.3–5.5, we obtain analogues of
Dixon and Ferrar’s identity (5.11). We refrain from stating them explicitly since it is simple
to derive them from the theorems above.

We now discuss one further interesting special case of (5.1). Let k = 2m, 1 ≤ m ≤ 4.
Substitute (5.4)–(5.7) in (5.1), according as m = 1, 2, 3, or 4. Then let ν = −1

2 ; the required

formulas for Bessel functions with arguments ±1
2 can be found in Watson’s Treatise [42,

pp. 53, 79, 80]. We also need the formula [35, p. 389, eq. (106)]

2F1

(
a, a+ 1

2
1
2

∣∣∣∣x
)

=
1

2

{
(1 +

√
x)−2a + (1−

√
x)−2a

}
.

Foregoing all further details, we arrive at the following theorem.

Theorem 5.6. For Re(
√
α) ≥ Re(

√
β) > 0, and a positive integer m such that 1 ≤ m ≤ 4,

∞∑
n=1

r2m(n)√
n

e−π(
√
nα+

√
nβ) cosh(π(

√
nα−

√
nβ))

= am + π(
√
α+

√
β) +

Γ
(
m− 1

2

)
2πm−

1
2

(
1

α(2m−1)/2 +
1

β(2m−1)/2

)
+

Γ
(
m− 1

2

)
2πm−

1
2

∞∑
n=1

r2m(n)

{
1

(n+ α)(2m−1)/2
+

1

(n+ β)(2m−1)/2
− 2

n(2m−1)/2

}
,
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where

a1 := 4ζ

(
1

2

)
B

(
1

2

)
,

a2 :=
2

π
ζ

(
3

2

)
ζ

(
1

2

)
,

a3 :=
3

4π2

(
16ζ

(
1

2

)
B

(
5

2

)
− 4ζ

(
5

2

)
B

(
1

2

))
,

a4 :=
30

π3

(
9

8
− 1

25/2

)
ζ

(
7

2

)
ζ

(
1

2

)
.

Remark 5.7. We can let α→ β+ in Theorem 5.6 to obtain interesting special cases.

6. Concluding Remarks and Further Possible Work

At first sight, Theorem 1.6 does not appear remarkable. However, as we have seen, several
elegant and well-known transformations in the literature are special cases of Theorem 1.6.

The summands in (1.31) contain a product of Bessel functions Iν(X) and Kν(x). Dixon
and Ferrar [12] obtained an integral representations for the product Iµ(X)Kν(x), where the
orders µ and ν are not necessarily equal. Therefore, perhaps there exists a more general
transformation than that in Theorem 1.6.
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