TRANSFORMATION FORMULAS ASSOCIATED WITH INTEGRALS
INVOLVING THE RIEMANN =-FUNCTION

ATUL DIXIT

ABSTRACT. Using residue calculus and the theory of Mellin transforms, we evaluate
integrals of a certain type involving the Riemann Z-function, which give transfor-
mation formulas of the form F'(z,a) = F(z, ), where a8 = 1. This gives a unified
approach for generating modular transformation formulas, including a famous formula
of Ramanujan and Guinand.

1. INTRODUCTION

Let Riemann’s ¢-function be defined by

£(s) = (s — 1)n 2°T(1 + 18)¢(s), (1.1)
and let
2(t) :=&(5 +it) (1.2)

be the Riemann Z-function. In [11], S. Ramanujan introduced the integral

[ (=) =) e oo
0 4 4 2

2 (z41)2 4t
where Re z is not an integer. There he gave alternative representations for this integral
when Re 2 > 1, =1 < Re 2 < 1, =3 < Re z < —1 and so on. It turns out, as we show
here, that (1.3) gives rise to nice transformation formulas involving the Hurwitz zeta
function that are modular in nature, one of which is a generalization of the following
beautiful transformation formula of Ramanujan (see [10, p. 220]) recently proved in

[1].

Theorem 1.1. Define

(1]

Az) = (x) + % —log z, (1.4)

where

I'(z - 1 1
Plw) = F((x)):_v_mzjo(m%—x_m—l—l)’ (1.5)

the logarithmic derivative of Gamma function. Let the Riemann’s & and = functions

be defined as in (1.1) and (1.2) respectively. If o and 3 are positive numbers such that
1
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aff =1, then
ﬁ{y—IZi(Qﬂa)+gA<na)}:ﬂ{ log 21 3) +Z)‘”ﬁ}
-~ ) PG (”I ol
Here we study a general integral of the form

where v denotes Fuler’s constant.
> t t+1 t—1
/0 f (z, 5) ( ZZZ) = ( 222) cos nt dt, (1.7)

where f(z,t) = ¢(z,it)p(z, —it) and n is real. This includes (1.3) as a special case with

f(z’t>:(4t2+(1z+1)2)r(221+i§t>r<z;1_%t) (18)

This integral always gives rise to modular transformation formulas of the form F'(z, o) =
F(z, ), where aff = 1. Letting z — 0 in these formulas then gives transformation for-
mulas of the form F(«) = F(f) for af = 1, where the integral involving Riemann
=-function giving rise to these formulas is of the form

/UOO f (%) = (%) cosnt dt, (1.9)

with f(t) = ¢(it)p(—it). An example of such a formula is (1.6), which stems from the

integral in (1.9) with
=(t) 1 it 1 it
t) = 'N—+—=-T{——-=]. 1.1

In [12, p. 35], a small section is devoted to the integral in (1.9). For more details, see
[5].

Another special case of (1.7) that we study here extends Guinand’s formula [8],
which, in fact, was discovered by Ramanujan several years earlier (see [2, p. 253]).
This integral does not appear to have been studied before. Ramanujan’s version of
Guinand’s formula is given below.

cos (ﬁtlog a)
1+ ¢2

dt, (1.6)

(1]

Theorem 1.2 (Ramanujan-Guinand formula). Let K,(z) denote the modified Bessel

function of order v and let oy, (n) = >, d*®, let ((s) denote the Riemann zeta function.

If o and 3 are positive numbers such that a3 = 72,

then

and if s is any complex number,

\/azo-—z( /2Kz/2 2n04 ZU— /QKZ/2(2nﬁ)

1

=Zr( ) €02 — 092y 1T (< 2) () {807 — a2} (1)



TRANSFORMATION FORMULAS 3

This identity is related to the Fourier expansion of nonanalytic Eisenstein series on
SL(2,7Z), or Maass wave forms. See [2] for details. The proof of this identity in [2] as
well as in [8] makes use of a theorem of Watson [13] given below.

Theorem 1.3. Let K, (z) be defined as before. If x > 0 and Re v > 0, then

T(v) + Z n’K,(2mnz)

— iﬁ(wm)_”_lf(v +3)+ \2/_5 (%)Vﬂ P +3) Y (n*+a%) 2 (112)

n=1

Our extended version of the Ramanujan-Guinand formula given below not only gives
a new proof of (1.11), which does not make use of Watson’s theorem, but also shows
a surprising connection between the Fourier expansion of Maass waveforms and the
Riemann =Z-function.
Theorem 1.4 (Extended version of Ramanujan-Guinand formula). Let K, (s), ox(n),

and Z(t) be defined as before and let —1 < Re z < 1. Then if a and § are positive
numbers such that a8 = 1, we have

Va <a§17r2zf (g) ((2) +a 27172 (_22) 420 Z/QK% (2n7ra)>
=B (ﬁélw‘fF (g) ((2) + 72wl (_23) (- 420 K (2n7r6)>

_ 3 ooE<t+z‘z> (t—iz> cos (1tlog ) " (1.13)
T Jo 2

2 (24 (z4+1)2)(2+ (2 —1)?)
The Hurwitz zeta function is defined for Re z > 1 by

[1]

C(z,a) = Zm. (1.14)

n=0

It can also be analytically continued to the entire z-plane except for a simple pole at
z = 1. Our theorem involving the Hurwitz zeta function, which generalizes (1.6), is
given below. A different proof of this theorem using the theory of special functions was
obtained in [3].

Theorem 1.5. Let —1 < Re z < 1. Define p(z,x) by

.
T (1.15)

o(z,x) =((z+1,2) —
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where ((z,z) denotes the Hurwitz zeta function. Then if a and B are any positive
numbers such that aff =1,

g Ce+1) C(2)) _ e C(z+1)  ((2)
o 2 (Z@(zvna)_ 202 +1 - O_/Z>_ﬁ (;sp(z,nﬁ)_ 2ﬂz+1 - 52’)

n=1
_SMﬂgs/mF st (2o lzit) (i) J (t—iz mm@ﬂ%a)ﬁ
S T(z+1) J, 4 4 -2 /T 2 (z+1)2+¢2

(1.16)
where Z(t) is defined in (1.2).

Another formula involving the Hurwitz zeta function was introduced in [3]. It is as
follows:

Theorem 1.6. Let Re z > 1 and let ((z,a) be the Hurwitz zeta function defined in
(1.14). If o and B are positive numbers such that a5 =1, then

z+1 i k z+1 b k‘
Cy%ﬁ}:g(z+L1+—):43WV}:g<z+L1+—)
k=1 o k=1 B
_8@@33/“F e-14it) | (z-1-it t+iz
S T(z+1) Jo 4 4 2

where = is defined as in (1.2).

(1]
(1]

t —iz cos (3tloga)
2 (z4+1)2+¢2 7
(1.17)

Corresponding to another strip —3 < Re z < —1, we get a different transformation
formula as follows.

Theorem 1.7. Let —3 < Re z < —1. Define A(z,z) by

—z 1 +1 —z—2
Az, 2) =((z+1,2) — xz - 59:_3_1 - %, (1.18)

where ((z,x) denotes the Hurwitz zeta function. Then if a and [ are any positive
numbers such that a5 =1,

e (f) Aeimay — S, CEHD) | (4 DG 2))

oz 2 120712
I C(z) Clz+1)  (z+1)C(2+2)
=372 (;A(Z,nﬁ)— 3 + 5 + 12372 >
8(4m) "z

(1]

t —iz cos (3tloga) ”
2 (z4+1)2+¢2 7
(1.19)

_ /"OF(z—1+it)r(z—1—it)z<t+iz)
T(z+1) Jo 4 4 2

where Z(t) is defined in (1.2).
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The asymptotic expansion of ((z + 1,z) for large |z| and |arg x| < 7 is as follows

[9, p. 25]:
(el 2) = L z " T(2) + lF(Z + 1)z 4 mzjl Do [(z +2n)x "% | +0(z 72" *72)
’ I'(z+1) 2 = (2n)! '

(1.20)
As can be easily gleaned from (1.15), the definition of ¢(z,x), we have subtracted
from ((z+ 1, ), the first two terms in its asymptotic expansion, whereas in (1.18), the
definition of A(z,x), we have subtracted from ((z + 1, ), the first three terms in its
asymptotic expansion. One can then construct a general transformation formula in the
strip —(2k+1) < Re z < —(2k — 1), where k > 0, by subtracting from ((z + 1, x), req-
uisite number of terms for that particular strip from the asymptotic expansion (1.20).
However, since the formulas soon start becoming complicated, we avoid providing de-
tails.

This paper is organized as follows. In Section 2, we give a complex integral rep-
resentation of (1.7) that we subsequently use. Then in Section 3, we prove Theorem
1.4 and give its companion theorem when |Re z| > 1. Finally in Section 4, we prove
Theorem 1.5 and briefly sketch the proofs of Theorems 1.6 and 1.7 since they are along
the similar lines as that of Theorem 1.5. All of these transformation formulas are
proved using residue calculus and the theory of Mellin transforms, thus delineating a
systematic approach for generating them. In the sequel, we use

R, = Ru(9) (1.21)

to denote the residue of a function ¢ at a. We choose to write just R, instead of R,(g)
when the function in consideration is understood and there is not any ambiguity.

2. A COMPLEX INTEGRAL REPRESENTATION OF (1.7)

In this section, we give a formal calculation of the transformation of the integral in
(1.7) into an equivalent complex integral which allows us to use residue calculus and
Mellin transform techniques for its evaluation. This simple result is a generalization of
a result given in [12, p. 35], where a complex integral representation was obtained for
(1.9). This latter representation is utilized in [5].

Theorem 2.1. Let
f(z:1) = (2, it) (2, —it), (2.1)

where ¢ 1s analytic in t as a function of a real variable and analytic in z in some
domain. Assume that the integral in (1.7) converges. Also let y = e™ for n real. Then,

/ f(zt)= (t—i— E> = (t—l—z) cosnt dt
; 2 2

= 22.1/37 ;j:o o (z, s — %) o) (z, % — 3) 13 (s — %) 13 (s + g) y* ds. (2.2)
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Proof. Let
I(z,n) = (z,1)= (t + Z) = <t — Z) cos nt dt. (2.3)
; 2 2
Then,
1 > 1z 1z
I — _ = ~Z\= = it
(z,m) 2{/0 f(z,t) (t—i— 2> <t 2)y dt
+ f@ﬁEG+Z>EG—z)yﬂﬂ. (2.4)
; 2 2

Now since £(s) = £(1 — s), where £ is defined in (1.1), we have
E(ih+%)=§(%iﬁ—%):§<1—<z;1$ﬁ>): (Z;1$ﬁ>,
E(iﬁ—%):§<%id+§):§(zgli%).

Hence,

From (2.4), (2.6) and the fact that f is an even function of ¢, we deduce that

Aol

“gif (o g)e (5 o) - Delr e e

where in the penultimate line, we made the change of variable s = % + 1t. [l

For our purpose here, we replace n by 2n in (2.2) and then ¢ by ¢/2 on the left-hand
side of (2.2). Thus with y = €2, we find that

/Oof (z,z) = (t+iz) = (t—iz) cosnt dt
o 2 2 2
1 [atie 1 1 2 2\ .
:@ - gb(z,s—§>¢(z,§—s)§(s—§)£<s+§>y ds. (2.8)

It is this equation with which we will be working throughout this paper.

3. PROOF OF THEOREM 1.4

Let
4

2y G2 (g Y (3.1)
+ 50 ) (24 S

fz,1) =
(
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Substituting this representation of f in the integral in (1.7) gives (1.13). Using Stirling’s
formula on a vertical strip, which states that if s = o + it, then for « < ¢ < 3 and

t] > 1,
T(s)| = (2m)2]¢]7 237 <1+o (;l)) (3.2)

as t — 00, one can show the convergence of the integral.
From (3.1) and (2.1), it can be easily seen that ¢(z,s) = % Thus using

CRles
(2.8) with these f and ¢, we find that

> t+1z t—iz cosnt
4 = = dt
6/0 ( 2 ) < 2 )<t2+<z+1>2><t2+<z—1>2>

1 %—i—ioo 4

= ) GoIEETYEE TGt ) )

S GG D)) () e e

where in the penultimate line, we have used (1.1). To evaluate the integral in the last
step in (3.3), we want to use the series representation for ¢ (s — g) ¢ (S + %), namely,

(el -5

valid for Re (s — %) > 1 and Re (s+ %) > 1, i.e, Re s > Re (#) and Re s > Re
(25%) (see [12, p. 8, eqn. 1.3.1]). But since —1 < Re z < 1, we have 0 < Re (s — —) <1
and 0 < Re (s + %) < 1. Thus we move the line of integration from Re s = to Re
s = 3 . In this process, we encounter in the integrand a pole of order 1 at s = (due
to C(s — £)) and a pole of order 1 at s = 2% (due to ((s + £)).

Let T" > 0 denote a real number. Then by the residue theorem and using the notation
n (1.21), we know that

[ GG el-e3) () e
L GG D () T

—omi (Rz# + RQ_?Z) . (3.5)

o_,(m)

S—

WE

, (3.4)

z
mo 2

+l\'l

Now the functional equation for the Riemann zeta function [12, p. 22, eqn. (2.6.4)]
gives,

7 i <§) C(z) =7 "2°T (1 5 Z) C(1—2). (3.6)
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Also, it is easily observed that

SE% (S—Z;_Q)C<S—g>:1. (3.7)

Thus using 3.6) and (3.7), we see that

R#:pe)r(z«y)qzﬂ) G)( 2)

= y"*inir (=) ¢(—2) (3.8)
Also,
SEmZ<S—%)C<S+§>=1 (3.9)

Hence using (3.6) and (3.9), we deduce that

v () (30 (5)
=y i (3) <) (3.10)

Next, we show that as T" — o0, the integrals along the horizontal segments [% —1T, % —
T and [2 + T, 1 + 4T tend to zero. We use the following estimate for ((s) valid for
o> =4 [12, p. 95, eqn. 5.1.1],

346
((s) =0(t2™°). (3.11)
Since % < Re s < % and —1 < Re z < 1, we readily see that 0 < Re (s — g) < 2 and

0 < Re (s + %) <2 Soif s=0+1it, z=x+ 1y and J is any positive number, then
using (3.2) and (3.11), we find that

[ GG DDt ()

B Tt x y y 2+6 345
gC(zn)%—% T,y BEHEAD (1 2 (74 )

(oo (o)

= o(1), (3.12)

as T tends to infinity, where C' is some constant. Thus,

b PG DTG DD+ () e e

Similarly we can show that

1, -
5 +iT

g [ G DTG+ (5) =0 ey
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Now it remains to evaluate

sHe s g s =z 5 N S\
/g'oo F<§_Z>F<§+Z>€<S_§>C<S+§> (5) ds. (3.15)

7

From [6, p. 115, formula 11.1], for ¢ = Re s > &+ Re v,
1 etioo s—9 s (S U s U\ g
2°7%a~°T (5 - 5) I (5 + 5) x%ds = K, (ax). (3.16)

Interchanging the order of summation and integration because of absolute convergence
n (3.15), using (3.4) and then using (3.16) with v = £, @ = 2 and z = ™m/y, we see
that since Re s = % > Re 2, we have

[ G- G-+ (2)
=S oy / - (M) e
= 8ri f: o_.(m)m?K: (2”—7") : (3.17)

Y

2mi c—100

Thus from (3.3), (3. ) 0), (3.13), (3.14) and (3.17), we see that with y = e*"

), (3.1
i :(Hzm) (Hz) eET Y

I\/Y —
2r [ 4z - 1+ = z 2mm
--= (y 1 (5) )+ () €0 -4 o mimi (7)>
(3.18)
Now let n = I loga. Then y = e* implies that y = a. Since a8 = 1, (3.18) becomes

[1]
(1]

2 2+ (z+ 1))+ (2 — 1)?)

1
2
32 [ _ [(t+iz t—iz cos (3tlog ) dt
-2 =(50)=(57)
=B (ﬁglwfr (g) ((z)+ 75 'xiT (_72) C(—z2) — 4mz_1az(m)mz/2[(; (2m7rﬁ)> .
(3.19)

Finally, switching the roles of o and § in (3.19) and then combining the result with
(3.19), we arrive at (1.13), since with a3 = 1, the left-hand side of (3.19) is invariant
under the map o« — 3. This completes the proof.

Remarks. 1. It can be readily seen from (1.13) that the identity is invariant if we
replace z by —z.
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2. The first equality in (1.13) can be easily simplified to obtain (1.11), where a3 = 7.

As a corollary of Theorem 1.4, we get an extension of Koshliakov’s formula given in
[5].

Corollary 3.1 (Extended version of Koshliakov’s formula). Let d(n) denote the number
of positive divisors of n and let Ky (n) be defined as before. If o and B are positive
numbers such that a8 =1, then

Va <%g(47m¢) — 4Zd(n)K0(27ma)> =/ (%M - 42 d(n)Kdezﬁ))

n=1 n=1

32 [ (E (%))2COS (%tloga) dt
B (1 +¢2)2 ' (3:20)

Proof. Let z — 0 in Theorem 1.4. Using Lebesgue’s dominated convergence theorem,
we can interchange the limit and the integral sign readily giving the integral in (3.20).
For obtaining the first equality in (3.20), we follow along the similar lines as in the
proof of Corollary 3.4 in [2], i.e., by using the following series expansions [7, p. 944,
formula 8.321, no. 1]

F(Z)Zé—wr---, (3.21)
and [12, pp. 19-20, eqns. (2.4.3), (2.4.5)]
() = —% - %log(Qﬂ)z I (3.22)
along with
o/t =edloer =14 = loga+4;(loga)2+--- , (3.23)
and also noting that lim, ,go_.(n) = d(n). O

Using arguments similar to those in the proof of Theorem 1.4, we obtain the following
analogue of Theorem 1.4. For a detailed proof, see the author’s doctoral thesis [4].

Theorem 3.2. If a and ( are positive numbers such that a3 =1, then for Re z > 1,

Ja <—a_g7r_§F (%) C(2) +a 3 a3l ( ) 420 2K (2n7ra)>

—f( Enir (2) e+ wF( ) - —420 ”2KZ<2W>)

=2 () () e e &2

Observe that if we replace z by —z, we obtain the following corollary.
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Corollary 3.3. If a and (8 are positive numbers such that a8 = 1, then for Re z < —1,
Va a2tz ir (f) ¢(z) —a2mal —= C(—2) — 4i o_.(n)n*?K: (2nma)
2 2 — 2
= VB (857 () ¢(2) - BT (0 ) ¢(-2) - 4fjo_ (n)n*/2K 5 (27 )
2 2 — ? 2

I N AT A cos (1tlog ar) " (3.25)
T Jo 2 2 B+ (z+1)2)2+ (2 —1)?)

4. MODULAR RELATIONS INVOLVING THE HURWITZ ZETA FUNCTION

In this section, we first give a proof of Theorem 1.5 and then the proofs of Theorem
1.6 and Theorem 1.7 respectively.

Proof of Theorem 1.5. Let

1 z—1 it z—1 it
= r — | T - = 4.1
S TeN ) ( 1 +2) ( 1 2)’ (4.1)
1 z—1 s L .
so that ¢(z,s) = prp— 1)F 1 + 5): Then by an application of (2.8) with

the above f and ¢, we observe that

/OOF poldit (2oLt o (thiz) o (t—iz Cos(%tlogoz)dt
0 4 4 2 2 (z4+1)2 4t

1, -
1 ERECC | (z—2 s) 1 z s 2z z
= : r + = Z—F(———)f(s——>§<s+—>ysd8
4i\/y 1 joo (5 + 8) 4 2 (%2 — s) 4 2 2 2

1, -

1 gt z ) s z—2 z s sz s
e [T D () ) GGG

16@\/5/;1-00 <8 2> <S+ 2 ) (2+ 4 ) 4 2 2 4 5 T

x¢(s- g) ¢(s+ g) G) s (4.2)

using (1.1) in the penultimate line.
To evaluate the integral in the last step in (4.2), we want to use the series represen-
tation for ¢ (s + %), namely,

C(s—l—%) :iﬁ (4.3)

valid for Re (S + %) > 1,1.e., Re s > Re (2;*") But since —1 < Re z < 1, we have 0 <

Re (s + %) < 1. Thus we move the line of integration from Re s = % to Re s = % In
this process, we encounter a pole of order 1 at s = 22 (due to (s — %)) and a pole of

order 1 at s = 252 (due to I'(£ + 272)). Note that the pole of ¢ (s + %) at s = 25 is

z

4

)
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cancelled by the zero of (s + %2) at s = 252, since

i, (s+z—;2)c<s+§> ~1. (4.4)

—z

Let T' > 0 denote a real number. Then by residue theorem and using the notation in
(1.21), we know that

o HiT z z—2 s z—2 z S8 s  z s z
D)) G- Dr G- Dr G
/;_Z.T (S 2) (5+ 2 > <2+ 1 > 1 2) 071 0Tg

_ /giT+/g+iT+/2+iT ( Z) i 2\ (s, 22 F(Z s>
i T T [T 22007 2 2" 4 172

e (R# + R%> . (4.5)

We evaluate the first residue above by using the functional equation of the Gamma
function

[(z+1) =z2I(2), (4.6)
Legendre’s duplication formula
L(s)T <s + 1) = VT I'(2s), (4.7)
9 9251
and the facts that ['(3) = /7 and
SE% (S—Z;_Q)C<s—g):1. (4.8)

Thus,

no i () (o ) (g
GGl (7))
~r (@) Ger () () ()

= 22y AT (2 4+ 1)C(2 + 1). (4.9)
For the second limit, we use the functional equation for the Riemann zeta function in

the asymmetric form [12, p. 13, eqn. (2.1.1)],
((s) =2°7°7'T(1 — s)¢(1 — s) sin (37s) , (4.10)

2
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and the reflection formula for the Gamma function
T

L(s)I'(1—s) = prop— (4.11)

Then we have

. 2—z s z-—2 z S
R%Z:‘*sﬂ%z(s‘ 2 )F(f y “)F(ra)
2
4

S z S
P(--- 1>F<—
X 5 4+ 2+

() () o ()

4 /m T (2)C(2) sin (%w(l - z)) matyte

COS (%71’2)

ol

= BTy TE0(2)((2). (4.12)

It can be easily seen, by the use of Stirling’s formula (3.2), that as T — oo, the

integrals along the horizontal segments [ — ¢T3 — iT] and [3 + iT, 1 + iT] tend to
Zero, i.e.,
3+iT
2 z z—2 s z—=2 z s sz sz
i [ ) (5 (5 )G DG DG
o0 Jipr \7 72 <S+ 2 ) (2+ 1 ) 172/ \e71) a7
2 2\ (T °
-z ) (= ds = 0. 4.1
xg<s 2)g(s+2>(y) s=0 (4.13)

It remains to evaluate

2

A = B R I G TN CR R



14 ATUL DIXIT

We first simplify the integrand using first (4.7) and (4.11). Thus,
N O IO L R L R L L
s V20T T 2 4 4 2) \9a7 1) a7,
2 AL AN
“(S‘ﬁ)C(”i)(;) s
_4/3“"’% S P P (A P
it 2 4 2 4 2 2 4 2 4
z z
< ¢(s=3)¢(s+3)
§

2+100I‘ 3—|— C(S_g) <m)—s
% Z 2/ 2¢sin (m (2 —£)) \ ds, (4.15)

—1i00 4

where we have interchanged the order of summation and integration because of absolute
convergence. Using (4.10) for ¢(1 — z), we find that

L= ()0 =) G- G-+ )
(=253 (2) o

E
2

Ans i 1 /2”‘"3 272 N (1—s+ 2)C(1—s+

z
2

Z .
m2 J3_;o 2% sin (7r (

m=1
X (m>_s ds
;/ (e (e ) (e ) () e

- (4.16)

Now from [6, p. 203, formula 5.84], we see that for 0 < ¢ = Re s < Re v — 1 and Re
a >0,

1 c+i00
a*T'(s)'(v —s)((v —s,a)x"*ds = ['(v)( (v, + ax). (4.17)

2mi c—100

Let v=2+4+1,a=1,a=1and x = m/y. Then noting that ((s,1) = ((s), for 0 < c =
Re s < Re z,

1 ct+ioco

. D(s)D(24+1—8)C(2+1—s) (T> ds = T(2+1)¢ (z Y114 %) . (4.18)

2mi Cc—100 Yy
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Next, replacing s by s + 2, we see that for — Re (g) < Re s < Re (%),

[ e el ()

= ori (%)gf‘(z+1)§ (z—l—l,l—f—%). (4.19)

Hence in order to use (4.19) to simplify the integral in the last expression in (4.16),
we shift the line of integration from Re s = ¢ — Re ( ) to Re s = 3 . In doing that, we

encounter a pole of order 1 at s = 3 (due to ¢ (1 — s+ )) and a pole of order 1 at

s=14% (dueto I’ (1 -5+ %)) Thus by another application of the residue theorem,
we see that

/f%ioof‘<s+g>F<1—3+§>C<1—s+g> (%)_s ds

2 —100

[ e (e 5)e (- ) (B) e

z
3 100

_I_Qm(shig(S—§>F<s+§>l“(1—s+§>(<1—s+g) (%)_s

2

i (e (e s ) ()
Lty Tre e ()
+2mi (— (%)_;r(z) +% (%>_1_gr(1 —|—z)> . (4.20)

Now we make use of the simple fact that
((s,a+1)=C((s,a) —a"?, (4.21)

which is easily seen first for Re s > 1, and then for all s by analytic continuation. Then
from (4.19), (4.20) and (4.21), we deduce that

/g+ioof‘(s+%)F(l—s+%>§<1—s+%> (%)S ds

_ori ( ) 2+1) (g (z +1, %) - (m/;)zﬂ s (m/ly)m _ <m/j)—z)
— o (%) T(z+1) (g (z +1, %) - (m/ly)m + (miyz) )
= ori <%) P+ e <z, %) , (4.22)



16 ATUL DIXIT

where ¢(z, ) is defined in (1.15). Thus from (4.16) and (4.22), we see that
L )G G9r G- 63)
x<<s—§><<s+g>< )

y
= —2mi2d Ty il (2 4+ 1) ( ) (4.23)

From (4.2), (4.5), (4.9), (4.12), (4 13) and ( , we observe that

4.23)
/oor eoldit\ (z-1—it t—l—zz t—iz cos(tlogoc)dt
0 4 4 (z+1)2 4t

1 1—2 z

= —— —2mi2%” Z7T2y 2Fz+1 Lp(z,—)—Qm( 22 g (2 4+ 1) (2 + 1
Tl mZ - (4 1=+ )
-2 ) )

—z z+1 > z+1 ]_

— o' Ty S (2 4 1) ( o (z, T) _Y C(Qz 1) yg(z)> . (4.24)
Yy z
m=1

Now let n = floga in (4.24) so that y = a. Since af = 1, (4.24) becomes

8(4m)*z

T [ (z—1+it p—1—dt\ _ (t+iz _ [(t—iz) cos (3tloga)
—— | I'(=—— T = B dt
L'z+1) J, 4 4 2 2 (z+1)2+¢t2

_ g (szmﬂ) 3 C;;Zf) ) Cé?) |

(4.25)

Finally, switching the roles of a by ( in (4.25) and then combining the result with
(4.25), we arrive at (1.16), since with a5 = 1, the left-hand side of (4.25) is invariant
under the map a — 3. This completes the proof. Il

Remark. Ramanujan’s transformation formula (1.6) can be easily obtained by letting
z — 01in (1.16) and then using Lebesgue’s dominated convergence theorem. For details,
see [3].
Proof of Theorem 1.6. Since the right-hand side of (1.17) is exactly the same as that
n (1.16), the proof as well as many of the calculations in Theorem 1.6 are similar, in
fact simpler, than that of Theorem 1.5, and so we will be brief.
We use (4.2) again. Since Re z > 1, we see that Re (s+ %) > 1 and thus we can

directly use (4.3). Hence,
t+iz\ _ [t —1iz) cos (%t log a) it
2 )7\ 2 (z+1)2+¢2

/“F(z—l—i-it)r(z—l—it)
; 4 4

[1]
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1, -

1 =1 g0 z z—2 s z—2 z s s
S T D e GG
161\@;7712 $ i (S 2) <S+ 2 ) (2+ 1 ) 12/

sz 2\ [(mm ¢
P e (o= 2) () s ¥
X 2+4 (s 5 ) s (4.26)

where we have interchanged the order of summation and integration because of absolute
convergence. Then, using the exact same method as in (4.15)-(4.16) to simplify the
integrand in the last step in (4.26), we see that

[ (50 e G- G-3)
(G e(o-2) () w

l-l—ioo —S
s [T (is D)o (1-s+ D) (B) s )
%—ioo Y

Next, we want to use (4.19) to simplify the inner integral on the right-hand side of
(4.26). Thus we need to shift the line of integration from Re s = c—Re (%) to the line
Re s = % But unlike in the previous case —1 < Re z < 1, here we do not encounter
any poles of the integrand on the left-hand side of (4.19) in the shifting process. Thus
for ¢ = Re s,

[§+i°°1“(s+§>F<1—3+§>C<1_8+§> (%)sds
~Re(3) vioe z z 2\ (m) °
[ (e ) e (- 5) (2)

= i <%> : (2 + 1)¢ <z Y114 %) . (4.28)

Then from (4.26), (4.27) and (4.28), we find that
/OOF z—141dt r z—1—1t = t+ 1z = t—iz Cos(%tloga)dt
0 4 4 2 2 (z+1)2 4t

1 1 = 270 (' 3 m
_ _23—2 _ - 1—‘ 1 1’]_ —
162\/@( T2 Zrm(y) (z+ )C<z+ —I—y>)

m=1

o0

1 z—2 z+1
- §(4w)*%y*%r(z+1)2g (z+1,1+%). (4.29)

m=1
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Now letting n = %loga in (4.29) so that y = «, we observe that

é_2>(47r)("2‘°”/ooF e—ltit) | (z—1—it\ _ (t+iz) _ (t—iz) cos(stloga)
L(z+1) J 4 4 U2 /7 2 (z+1)2+ 12
(2+1) > m
—a 5 1,1 —>. 4.30
o mzlg<z+ + - (4.30)

Now replacing « by 3 in (4.30) and then combining the result with (4.30), we arrive
at (1.17) since the left-hand side of (4.30) is invariant under the map o — (. This
completes the proof. O

Proof of Theorem 1.7. The proof of (1.19) is along the lines similar to those in the
proof of (1.16), and so we will be brief.

We want to evaluate the integral in the last step in (4.2) by making use of (4.3),
valid for Re (3 + %) > 1, i.e., Re s > Re (252). But since —3 < Re z < —1, we have
—1 < Re (s + %) < 0. While shifting the line of integration from Re s = % to Re s = g,
we encounter poles of order 1 at s = 2;2, 5 = Zg4 and s = —3. Let T" > 0 denote
a real number. We apply residue theorem by considering the rectangle with segments
(4 =T, 3 —4T), [3 —iT,5 +4T), [2 + 4T, 5 +iT] and [} + iT, 4 — ¢T]. The residues
at the above poles can be calculated similarly as before and so the calculations are
suppressed here. Thus using the notation in (1.21), we find that

Roe = 2875127y 3T ()¢ (2), (4.31)
1 —ZzZ 4
Rews = 521_Z7r17y2+5F(z +2)¢(z+2), (4.32)
and
R_.=—dr sy C(f) . (4.33)
S1n (57'['2’)

AsT — oo, the integrals along the horizontal segments [3 —iT', 2 —iT and [2+iT, 1 +iT
tend to zero. Next, doing the exact same calculations as in (4.15) and (4.16), we have

L0632 G C-0rG-DrGd)

3 —100

5, -
7200 1 3 +ioco —S$
A Ve R (R L (R TR T (R N (i I
m2 Js_; 2 2 2 Y

(4.34)

In order to use (4.19) to simplify the integral in the last expression in (4.34), we shift

the line of integration from Re s = ¢ — Re (%) to Re s = g and then from another
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application of the residue theorem, we see after simplification that

ﬁgfiml“<s+g>F(l—s+§>(<1—s+g> <%)5 ds

= 2mi (T) (2 +1)¢ (z—i— 1,1+ T)
y y

+ i (— (%) )+ % (%) o T(1+2) — % (%) o T(2+2)+ o>

= 2 (%);F(Z +1) (g (Z 1, %) C(m/y) e N (m/y)"%F  (z+ 1)(m/y)—2—§)

— om (%) : T(z+ 1)A (z %) , (4.35)

where we used (4.21) in the penultimate step and (1.18) in the last step. Finally from
(4.2), (4.31), (4.32), (4.33), (4.34) and (4.35), we find after simplification that

e B
_ ew (Z \ (Z _) - yciz ( b (z+1>y21+22<(z+2>>‘ (436)

Now letting n = %loga in (4.36) so that y = a, we observe that since a5 = 1,

%/ﬁmr (Z - iﬂ-t) . (Z— Z—z’t) - (tzzz) = (t—;z) C(ZS—Eélt)io—gi-iz "
=5 (i A(z,nB) — Cﬂ@ IR Ch B G G 2>> : (4.37)

N

ol

9 1237+2

Finally, switching the roles of a by 3 in (4.37) and then combining the result with
(4.37), we arrive at (1.19), since with a5 = 1, the left-hand side of (4.37) is invariant
under the map o — 3. This completes the proof.

g
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