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Abstract. A sequence of coefficients that appeared in the evaluation of a

rational integral has been shown to be unimodal. An alternative proof is
presented.

1. Introduction

The polynomial

(1.1) Pm(a) =
m
∑

ℓ=0

dℓ(m)aℓ

with

(1.2) dℓ(m) = 2−2m
m
∑

k=ℓ

2k
(

2m− 2k

m− k

)(

m+ k

m

)(

k

ℓ

)

made its appearance in [1] in the evaluation of the quartic integral

(1.3)

∫

∞

0

dx

(x4 + 2ax2 + 1)m+1
=

π

2m+3/2(a+ 1)m+1/2
Pm(a).

Properties of the sequence of numbers {dℓ(m)} are discussed in [9]. Among them
is the fact that this is a unimodal sequence. Recall that a sequence of real numbers
{x0, x1, · · · , xm} is called unimodal if there exists an index 0 ≤ j ≤ m such that
x0 ≤ x1 ≤ · · · ≤ xj and xj ≥ xj+1 ≥ · · ·xm. The sequence is called logconcave if
x2
j ≥ xj−1xj+1 for 1 ≤ j ≤ m− 1. It is easy to see that if a sequence is logconcave

then it is unimodal [13].
The sequence {dℓ(m)} was shown to be unimodal in [2] by an elementary argu-

ment and it was conjectured there to be logconcave. This conjecture was established
by M. Kauers and P. Paule [8] using four recurrence relations found using a com-
puter algebra approach. W. Y. Chen and E. X. W. Xia [6] introduced the notion
of ratio-monotonicity for a sequence {xm}:

(1.4)
x0

xm−1

≤ x1

xm−2

≤ · · · ≤ xi

xm−1−i
≤ · · · ≤

x⌊m
2 ⌋−1

x
m−⌊m

2 ⌋
≤ 1.

The results in [6] show that {dℓ(m)} is a ratio-monotone sequence and, as can
be easily checked, this implies the logconcavity of {dℓ(m)}. The logconcavity of
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2 T. AMDEBERHAN ET AL

{dℓ(m)} also follows from the minimum conjecture stated in [10]: let bℓ(m) =
22mdℓ(m). The function

(m+ ℓ)(m+ 1− ℓ)b2ℓ−1(m) + ℓ(ℓ+ 1)b2ℓ(m)− ℓ(2m+ 1)bℓ−1(m),

defined for 1 ≤ ℓ ≤ m, attains its minimum at ℓ = m with value 22mm(m+1)
(

2m
m

)2
.

This has been proven in [7], providing an alternative proof of the logconcavity of
{dℓ(m)}.

Further study of the sequence {dℓ(m)} are defined in terms of the operator

(1.5) L ({xk}) =
{

x2
k − xk−1xk+1

}

.

For instance, {xk} is logconcave simply means L ({xk}) is a nonnegative sequence.
The sequence is called i-logconcave if Lj ({xk}) is a nonnegative sequence for 0 ≤
j ≤ i. A sequence that is i-logconcave for every i ∈ N is called infinitely logconcave.

Conjecture 1.1. The sequence {dℓ(m)} is infinitely logconcave.

There is a strong connection between the roots of a polynomial P (x) and ordering
properties of its coefficients. For instance, if P (x) has only real negative zeros, then
P is logconcave (see [13] for details). Therefore, the expansion of (x + 1)n shows
that the binomial coefficients form a logconcave sequence. P. Brändén [3] showed
that if P (x) = a0+a1x+ · · ·+anx

n, with aj ≥ 0 has only real roots, then the same
is true for

(1.6) P1(x) = a20 + (a21 − a0a2)x+ · · ·+ (a2n−1 − an−2an)x
n.

This implies that the binomial coefficients are infinitely logconcave. This approach
fails with the sequence {dℓ(m)} since the polynomial Pm(a) has mostly non-real
zeros. On the other hand, Brändén conjectured and W. Y. C. Chen et al [5] proved

that Qm(x) =
m
∑

ℓ=0

dℓ(m)

ℓ!
xℓ and Rm(x) =

m
∑

ℓ=0

dℓ(m)

(ℓ+ 2)!
xℓ have only real zeros. These

results imply that Pm(a) in (1.1) is 3-logconcave.
The goal of this paper is to present an improved version of the original proof of

the theorem

Theorem 1.2. The sequence {dℓ(m)} is unimodal.

The proof of Theorem 1.2 given in [2] is based on the difference

(1.7) ∆dℓ(m) = dℓ+1(m)− dℓ(m).

A simple calculation shows that

(1.8) ∆dℓ(m) =
1

22m

(

m+ ℓ

m

) m
∑

k=ℓ

2k
(

2m− 2k

m− k

)(

m+ k

m+ ℓ

)

× k − 2ℓ− 1

ℓ+ 1
.

For
⌊

m
2

⌋

≤ ℓ ≤ m− 1, the inequality

(1.9) k − 2ℓ− 1 ≤ k − 2
⌊m

2

⌋

− 1 ≤ k −m ≤ 0

shows that ∆dℓ(m) < 0 since the term for k = ℓ has a strictly negative contribution.
In the range 0 ≤ ℓ <

⌊

m
2

⌋

, the difference ∆dℓ(m) > 0. This is equivalent to
(1.10)
2ℓ
∑

k=ℓ

2k(2ℓ+1−k)

(

2m− 2k

m− k

)(

m+ k

m+ ℓ

)

<
m
∑

k=2ℓ+2

2k(k−2ℓ−1)

(

2m− 2k

m− k

)(

m+ k

m+ ℓ

)

.
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Fact 1. The inequality (1.10) implies Theorem 1.2.

This required inequality is valid in an even stronger form, obtained by replacing
k − 2ℓ− 1 on the right hand side of (1.10) by 1 to produce

(1.11)

2ℓ
∑

k=ℓ

2k(2ℓ+ 1− k)

(

2m− 2k

m− k

)(

m+ k

m+ ℓ

)

<

m
∑

k=2ℓ+2

2k
(

2m− 2k

m− k

)(

m+ k

m+ ℓ

)

,

and then made even stronger by replacing the sum on the right hand side of (1.11)
by its last term. Therefore, if

(1.12)

2ℓ
∑

k=ℓ

2k(2ℓ+ 1− k)

(

2m− 2k

m− k

)(

m+ k

m+ ℓ

)

< 2m
(

2m

m+ ℓ

)

,

then ∆dℓ(m) > 0. This last inequality is now written as

(1.13) Sm,ℓ :=

2ℓ
∑

k=ℓ

(

m− ℓ

m− k

)(

m+ k

2k

)(

2m

2k

)

−1

× 2ℓ+ 1− k

2m−k
< 1.

Fact 2. The inequality (1.13) implies Theorem 1.2.

In [2], the proof of (1.13) is divided into two parts: first

Theorem 1.3. For fixed m ∈ N and 0 ≤ ℓ <
⌊

m
2

⌋

, the sum Sm,ℓ is increasing in ℓ.

and then

Theorem 1.4. The maximal sum S
m,

⌊

m−1
2

⌋ is strictly less than 1. For m even,

the maximal sum S2m,m−1 is given by

(1.14) T (m) := S2m,m−1 =

m+1
∑

r=2

(

2r

r

)(

m+ 1

r

)

(r − 1)

2r
(

4m
r

) .

a similar expression exists for m odd.

Fact 3. Theorems 1.3 and 1.4 imply Theorem 1.2.

These two results were established in [2] by some elementary estimates. These
were long and do not extend to, for instance, the proof of logconcavity of {dℓ(m)}.
The hope is that the techniques used to provide the new proof of unimodality
presented here, will also apply to other situations.

Section 2 presents a new elementary proof of Theorem 1.4 and Section 3 contains
a proof based on a hypergeometric representation of T (m). Section 4 shows that
T (m) converges to the value

(1.15) lim
m→∞

m+1
∑

r=2

(

2r

r

)(

m+ 1

r

)

(r − 1)

2r
(

4m
r

) =
2−

√
2

2
∼ 0.292893.

This limit was incorrectly conjectured in [2] to be 1− ln 2 ∼ 0.306853. The authors
have failed to produce a proof of Theorem 1.3 by the automatic techniques devel-
oped in [11]. These methods yield recurrences for the summands in (1.13), but it is
not possible to conclude from them that Sm,ℓ is increasing. The last section shows
that the sequence {T (m) : m ≥ 2} is an increasing sequence.
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2. The bound on T (m)

The result stated in Theorem 1.4 is equivalent to the bound

(2.1) T (m) :=

m+1
∑

r=2

(

2r

r

)(

m+ 1

r

)

(r − 1)

2r
(

4m
r

) < 1.

A direct proof of this result is given next. Section 3 presents a proof based on a
hypergeometric representation of T (m).

Theorem 2.1. The inequality T (m) < 1 holds.

Proof. First, it is shown by induction that for m fixed and 2 ≤ r ≤ m+ 1

(2.2) am(r) :=

(

2r

r

)(

m+ 1

r

)

≤ bm(r) :=

(

4m

r

)

.

If r = 2: bm(2)− am(2) = 5m(m− 1) ≥ 0. Now observe that

bm(r + 1)

bm(r)
−am(r + 1)

am(r)
=

4m− r

r + 1
−2(2r + 1)(m+ 1− r)

(r + 1)2
=

2(m− 1) + 3r(r − 1)

(r + 1)2
> 0.

This gives the inductive step written as

bm(r)
bm(r + 1)

bm(r)
> am(r)

am(r + 1)

am(r)
.

The inequality am(r) < bm(r) now yields

T (m) =

m+1
∑

r=2

am(r)

bm(r)

r − 1

2r
<

m+1
∑

r=2

r − 1

2r
= 1− m+ 2

2m+1
< 1.

�

3. The hypergeometric representation of T (m)

This section provides a hypergeometric representation of the sum

(3.1) T (m) =

m+1
∑

r=2

(

2r

r

)(

m+ 1

r

)

(r − 1)

2r
(

4m
r

) .

Proposition 3.1. The sum T (m) is given by

(3.2) T (m) = 1− 2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

2

)

+
m+ 1

4m
2F1

(

3
2
,−m

1− 4m

∣

∣

∣

∣

2

)

.

Proof. Since

(

m

k

)

=
(−1)k(−m)k

k!
, it follows that

(

m+1
r

)

(

4m
r

) =
(−1−m)r
(−4m)r

. This

relation and
(

1
2

)

r
= (2r)!/(22r r!) give

(3.3) T (m) =
m+1
∑

r=2

(

1
2

)

r

r!

(r − 1)2r(−1−m)r
(−4m)r

.
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Therefore

T (m) = −
m+1
∑

r=2

(

1
2

)

r
(−1−m)r2

r

(−4m)r r!
+

m+1
∑

r=2

(

1
2

)

r
(−1−m)r2

r

(r − 1)! (−4m)r

= 1 +
m+ 1

4r
−

m+1
∑

r=0

(

1
2

)

r
(−1−m)r2

r

(−4m)r r!
+

m+ 1

4m

m+1
∑

r=0

(

1
2

)

r
(−1−m)r2

r

(−4m)r (r − 1)!

4m

m+ 1

= 1−
m+1
∑

r=0

(

1
2

)

r
(−1−m)r

(−4m)r

2r

r!
+

m+ 1

4m

{

1 +

m+1
∑

r=2

(

1
2

)

r
2r

(r − 1)!

4m

m+ 1

(−1− 4m)r
(−4m)r

}

= 1− 2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

2

)

+
m+ 1

4m

m+1
∑

r=2

(

1
2

)

r
2r

(r − 1)!

4m

m+ 1

(−1−m)r
(−4m)r

= 1− 2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

2

)

+
m+ 1

4m

m
∑

r=0

(

3
2

)

r

r!

2r (−m)r
(1− 4m)r

= 1− 2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

2

)

+
m+ 1

4m
2F1

(

3
2
,−m

1− 4m

∣

∣

∣

∣

2

)

.

�

The next result provides an integral representation for T (m).

Proposition 3.2. The sum T (m) is given by

(3.4) T (m) =
3(m+ 1)

16(4m− 1)

∫ 2

0

t 2F1

(

5
2
, 1−m

2− 4m

∣

∣

∣

∣

t

)

dt.

Proof. Integrate by parts and use

(3.5)
d

dt
2F1

(

a, b

c

∣

∣

∣

∣

t

)

=
ab

c
2F1

(

a+ 1, b+ 1

c+ 1

∣

∣

∣

∣

t

)

to produce
∫ 2

0

t 2F1

(

5
2
, 1−m

2− 4m

∣

∣

∣

∣

t

)

dt =
4(4m− 1)

3m
2F1

(

3
2
,−m

1− 4m

∣

∣

∣

∣

2

)

−2(4m− 1)

3m

∫ 2

0
2F1

(

3
2
,−m

1− 4m

∣

∣

∣

∣

t

)

dt.

The last integral is evaluated using (3.5) to write

2F1

(

3
2
,−m

1− 4m

∣

∣

∣

∣

t

)

=
8m

m+ 1

d

dt
2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

t

)

and the result follows. �

The next result provides a bound for the integrand in Proposition 3.2.

Proposition 3.3. Let n ∈ N, n ≥ 2 and 0 ≤ t ≤ 2. Then
∣

∣

∣

∣

2F1

(

5
2
, 1−m

2− 4m

∣

∣

∣

∣

t

)∣

∣

∣

∣

≤ 9
√
3(3− t)−5/2.

Proof. The hypergeometric function is given by

2F1

(

5
2
, 1−m

2− 4m

∣

∣

∣

∣

t

)

=

m−1
∑

k=0

(

5

2

)

k

(1−m)k
(2− 4m)k

.
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The bound

(3.6)
(1−m)k
(2− 4m)k

≤ 1

3k

follows directly from the observation that bk(m) = 3k(1−m)k/(2− 4m)k satisfies
b0(m) = 1 and it is decreasing in k. Indeed,

(3.7)
bk+1(m)

bk(m)
=

3(1−m+ k)

2− 4m+ k
< 1.

Then (3.6) gives

2F1

(

5
2
, 1−m

2− 4m

∣

∣

∣

∣

t

)

≤
m−1
∑

k=0

(

5

2

)

k

tk

3kk!

≤
∞
∑

k=0

(

5

2

)

k

(t/3)k

k!

= 1F0

(

5
2

−

∣

∣

∣

∣

t

3

)

.

The evaluation of the final hypergeometric sum comes from the binomial theorem

(3.8) 1F0

(

a

−

∣

∣

∣

∣

z

)

= (1− z)−a, for |z| < 1.

�

The bound in Theorem 1.4 is now obtained.

Corollary 3.4. For m ∈ N, the function T (m) satisfies

(3.9) T (m) < 1.

Proof. It is easy to compute that T (1) = 1
4
. For m ≥ 2, observe that

(3.10)
3(m+ 1)

16(4m− 1)
=

3

16

(

1

4
+

5/4

4m− 1

)

≤ 9

112

and thus

(3.11) T (m) ≤ 9

112

∫ 2

0

9
√
3 t dt

(3− t)5/2
=

27

28
< 1.

�

Note 3.5. This inequality completes the proof that {dℓ(m)} is unimodal.

4. The limiting behavior of T (m)

This section is devoted to establish the limiting value of T (m).

Theorem 4.1. The function T (m) satisfies

(4.1) lim
m→∞

T (m) =
2−

√
2

2
.

The arguments will employ the classical Tannery theorem. This is stated next,
a proof appears in [4], page 136.
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Theorem 4.2. (Tannery) Assume ak := lim
m→∞

ak(m) satisfies |ak(m)| ≤ Mk with
∞
∑

k=0

Mk < ∞. Then lim
m→∞

m
∑

k=0

ak(m) =

∞
∑

k=0

ak.

Three proofs of Theorem 4.1 are presented here. In each one of them, the ar-
gument boils down to an exchange of limits. The first one is based on the integral
representation of T (m) and it uses bounded convergence theorem and Tannery’s
theorem. The second one deals directly with the hypergeometric sums and it em-
ploys Tannery’s theorem for passing to the limit in a series. A similar argument
can be employed in the third proof.

Proposition 4.3. Assume 0 ≤ t < 4 is fixed. Then

(4.2) lim
m→∞

2F1

(

5
2
, 1−m

2− 4m

∣

∣

∣

∣

t

)

= 1F0

(

5
2

−

∣

∣

∣

∣

t

4

)

=
32

(4− t)5/2
.

Proof. Start with

(4.3) 2F1

(

5
2
, 1−m

2− 4m

∣

∣

∣

∣

t

)

=

m−1
∑

k=0

(

5
2

)

k
(1−m)k

(2− 4m)k

tk

k!

and observe that

(4.4)
(1−m)k
(2− 4m)k

=

k−1
∏

j=0

m− 1− j

4m− 2− j
→ 1

4k

as m → ∞. Therefore

(4.5) lim
m→∞

2F1

(

5
2
, 1−m

2− 4m

∣

∣

∣

∣

t

)

=
∞
∑

k=0

(

5
2

)

k

k!

(

t

4

)k

= 1F0

(

5
2

−

∣

∣

∣

∣

t

4

)

.

The hypergeometric sum is now evaluated using (3.8). �

The passage to the limit in (4.5) uses the Tannery’s theorem. In this case

(4.6) ak(m) =

(

5
2

)

k
(1−m)k

(2− 4m)k

tk

k!

satisfies

lim
m→∞

ak(m) = lim
m→∞

(

5

2

)

k

tk

k!

(

1
m − 1

) (

2
m − 1

)

· · ·
(

k
m − 1

)

(

2
m − 4

) (

3
m − 1

)

· · ·
(

1+k
m − 4

)

=

(

5

2

)

k

tk

k! 4k

exists. This limit is denoted by ak.
The result now follows from the bound

(4.7) |ak(m)| ≤ Mk :=

(

5

2

)

k

tk

k! 3k
,

and the sum

(4.8)

∞
∑

k=0

Mk =

∞
∑

k=0

(

5

2

)

k

tk

k! 3k
=

(

1− t

3

)

−5/2

.
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valid for 0 ≤ t ≤ 2. Tannery’s theorem gives

(4.9) lim
m→∞

m−1
∑

k=0

ak(m) =

∞
∑

k=0

ak =

∞
∑

k=0

(

5

2

)

k

tk

k! 4k
=

(

1− t

4

)

−5/2

.

The expression in Proposition 3.2, the bound (3.6) and Proposition 3.3 give, via
the dominated convergence theorem, the value

lim
m→∞

T (m) = lim
m→∞

3(m+ 1)

16(4m− 1)

∫ 2

0
2F1

(

5
2
, 1−m

2− 4m

∣

∣

∣

∣

t

)

t dt(4.10)

=
3

64

∫ 2

0
1F0

(

5
2

−

∣

∣

∣

∣

t

4

)

dt

=
3

64

∫ 2

0

32t

(4− t)5/2
dt

=
2−

√
2

2
.

This completes the first proof.

The second proof of the limiting value of T (m) uses the hypergeometric repre-
sentation of T (m) in (3.2). It amounts to proving

(4.11) lim
m→∞

2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

2

)

− m+ 1

4m
2F1

(

3
2
,−m

1− 4m

∣

∣

∣

∣

2

)

=

√
2

2
.

The contiguous relation [12], page 28,

(4.12) 2F1

(

a+ 1, b

c

∣

∣

∣

∣

z

)

= 2F1

(

a, b

c

∣

∣

∣

∣

z

)

+
bz

c
2F1

(

a+ 1, b+ 1

c+ 1

∣

∣

∣

∣

z

)

is used with a = 1
2
, b = −1−m, c = −4m and z = 2 to obtain

2F1

(

3
2
,−1−m

−4m

∣

∣

∣

∣

2

)

= 2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

2

)

+
m+ 1

2m
2F1

(

3
2
,−m

1− 4m

∣

∣

∣

∣

2

)

and this gives
(4.13)

(m+ 1)

4m
2F1

(

3
2
,−m

1− 4m

∣

∣

∣

∣

2

)

=
1

2

(

2F1

(

3
2
,−1−m

−4m

∣

∣

∣

∣

2

)

− 2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

2

))

.

Thus if suffices to prove

(4.14) lim
m→∞

3 2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

2

)

− 2F1

(

3
2
,−1−m

−4m

∣

∣

∣

∣

2

)

=
√
2.

A direct calculation shows that

3 2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

2

)

− 2F1

(

3
2
,−1−m

−4m

∣

∣

∣

∣

2

)

=

m+1
∑

k=0

ak(m)

with

(4.15) ak(m) =

m+1
∑

k=0

[

3
(

1
2

)

k
−
(

3
2

)

k

]

(−1−m)k2
k

(−4m)k k!
.
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The question is now reduced to justifying passing to the limit in

(4.16) lim
m→∞

m+1
∑

k=0

ak(m) =

∞
∑

k=0

lim
m→∞

ak(m)

since

(4.17) lim
m→∞

ak(m) =
(

3
(

1
2

)

k
−
(

3
2

)

k

) 1

k! 2k

and
∞
∑

k=0

lim
m→∞

ak(m) =

∞
∑

k=0

(

3
(

1
2

)

k
−
(

3
2

)

k

) 1

k! 2k

= 3

∞
∑

k=0

(

1
2

)

k
2−k

k!
−

∞
∑

k=0

(

3
2

)

k
2−k

k!

= 3(1− 1/2)−1/2 − (1− 1/2)−3/2

=
√
2.

The last step is justified using Tannery’s theorem. In the present case ak(m),
given in (4.15), satisfies

(4.18) |ak(m)| ≤
(

3
(

1
2

)

k
+
(

3
2

)

k

) 2k

k!

(−1−m)k
(−4m)k

.

The proof of the inequality

(4.19)
(−1−m)k
(−4m)k

≤ 1

3k
,

is similar to the proof of (3.6). This is then used to verify that the hypothesis of
Tannery’s theorem are satisfied. The details are omitted.

A third proof is based on the analysis of a function that resembles the formula
for T (m).

Proposition 4.4. For 0 ≤ x < 1 define

(4.20) Wm(x) =

m+1
∑

r=0

(

2r

r

)(

m+ 1

r

)(

4m

r

)

−1

xr.

Then

(4.21) lim
m→∞

Wm(x) =
1√
1− x

and lim
m→∞

x
d

dx
Wm(x) =

x

2(1− x)3/2
.

Proof. Note that the sum defining Wm(x) can be extended to infinity since
(

m+1
r

)

has compact support. The proof now follows from

Wm(x) =
∞
∑

r=0

(

2r

r

)

(x

4

)r r
∏

i=1

(

1− i−2
m

1− i−1
m

)

→
∞
∑

r=0

(

2r

r

)

(x

4

)r

=
1√
1− x

,

where the passage to the uniform limit is justified by Weierstrass M-test or domi-
nated convergence theorem. The second assertion is immediate. �
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Corollary 4.5. The sum T (m) satisfies

(4.22) lim
m→∞

T (m) =
2−

√
2√

2
.

Proof. This follows from the identity

(4.23) T (m) = lim
x→1/2

1

2

d

dx
Wm(x)−Wm(x).

�

Note 4.6. The function Wm(x) can be expressed in hypergeometric form as

(4.24) Wm(x) = 2F1

(

1
2
,−1−m

−4m

∣

∣

∣

∣

4x

)

.

5. The monotonicity of T (m)

This last section describes the convergence of T (m) to its limit given in (4.1).

Theorem 5.1. The function T (m) is monotone increasing for m ≥ 2.

Proof. Let

(5.1) F (r,m) =

(

2r

r

)(

m+ 1

r

)

r − 1

2r
(

4m
r

) .

The proof is based on a recurrence involving F (r,m) that is obtained by the WZ-
technology as developed in [11]. Input the hypergeometric function F (k,m) into
WZ-package with summing range from r = 2 to r = n+1. The recurrence relations
that come as the ouput is

(5.2) a(n)T (n)− b(n)T (n+ 1) + c(n)T (n+ 2) + d(n) = 0,

where

a(n) = 7195230 + 87693273n+ 448856568n2 + 1263033897n3 + 2147597568n4

+2279791176n5 + 1502157312n6 + 586779648n7 + 121208832n8 + 9732096n9

b(n) = 9661680 + 123557904n+ 651005760n2 + 1865031680n3 + 3206772480n4

+3428727552n5 + 2272235520n6 + 894167040n7 + 187269120n8 + 15499264n9

c(n) = 3265920 + 41472576n+ 217055232n2 + 618806528n3 + 1062162432n4

+1139030016n5 + 762052608n6 + 305528832n7 + 66060288n8 + 5767168n9

d(n) = −799470− 5607945n− 14906040n2 − 16808745n3 − 2987520n4 + 9906360n5

+8025600n6 + 1858560n7.

Note that b(n) = a(n) + c(n) + d(n), then (5.2) becomes

(5.3) a(n)T (n)− (a(n) + c(n) + d(n))T (n+ 1) + c(n)T (n+ 2) + d(n) = 0,

which is written as

(5.4) a(n)(T (n)− T (n+ 1)) + d(n)(1− T (n+ 1)) = c(n)(T (n+ 1)− T (n+ 2)).

Lemma 5.2. The polynomial d(m) is nonnegative for m ≥ 2.

Proof. Simply observe that

d(x+ 2) = 814627800 + 2803521195x+ 3780146130x2 + 2680435095x3

1098008880x4 + 262332600x5 + 34045440x6 + 1858560x7

is a polynomial with positive coefficients. �
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Theorem 2.1 shows that T (m) < 1 and with this Lemma 5.2 implies

(5.5) a(n)(T (n)− T (n+ 1)) ≤ c(n)(T (n+ 1)− T (n+ 2)).

Assume T is not monotone. Define N as the smallest positive integer such that

(5.6) T (N) > T (N + 1).

Then (5.5) implies

(5.7) a(N)(T (N)− T (N + 1)) ≤ c(N)(T (N + 1)− T (N + 2))

and since a(N) > 0, c(N) > 0, it follows that T (N+1) > T (N+2). Iteration of this
argument shows that the sequence {T (n) : n ≥ N} is monotonically decreasing.

Let δN = T (N)− T (N + 1) > 0, then (5.7) yields

(5.8) T (N + 1)− T (N + 2) ≥ a(N)

c(N)
δN .

Iterating this procedure gives

(5.9) T (N + p)− T (N + p+ 1) > δN

p−1
∏

i=0

a(N + i)

c(N + i)
, for every p ∈ N.

This inequality is now impossible as p → ∞, since the left-hand side converges to
0 in view of (4.1) and

(5.10) lim
n→∞

an
cn

=
27

16

showing that the right-hand side blows up. �

6. A conjectured inequality for hypergeometric functions

The hypergeometric representation for the function T (m) and the monotonicity
of T (m) give using (4.13),

2F1

(

3
2
,−m− 2

−4m− 4

∣

∣

∣

∣

2

)

− 2F1

(

3
2
,−m− 1

−4m

∣

∣

∣

∣

2

)

>

3

[

2F1

(

1
2
,−m− 2

−4m− 4

∣

∣

∣

∣

2

)

− 2F1

(

1
2
,−m− 1

−4m

∣

∣

∣

∣

2

)]

.

This is the special case x = 1
2
of the conjecture given below.

Conjecture 6.1. The inequality

2F1

(

3
2
,−m− 2

−4m− 4

∣

∣

∣

∣

4x

)

− 2F1

(

3
2
,−m− 1

−4m

∣

∣

∣

∣

4x

)

>

3

[

2F1

(

1
2
,−m− 2

−4m− 4

∣

∣

∣

∣

4x

)

− 2F1

(

1
2
,−m− 1

−4m

∣

∣

∣

∣

4x

)]

holds for x ≥ 1
2
.
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