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Dedicated to G. H. Hardy on the centenary of his 1914 article proving
the infinitude of the zeros of ζ(s) on the critical line.

Abstract. In this paper we consider a series of bounded vertical shifts of the Riemann ξ-
function. Interestingly, although such functions have essential singularities, infinitely many
of their zeros lie on the critical line. We also generalize some integral identities associated
with the theta transformation formula and some formulae of G. H. Hardy and W. L. Ferrar
in the context of a pair of functions reciprocal in Fourier cosine transform.

1. Introduction

The study of the zeros and the ‘a-points’ of the Riemann zeta-function is of special interest.
It is more difficult to locate the zeros or the ‘a-points’ than to study the value distributions
of ζ(s).

The behavior of ζ(s) on every vertical line σ = Re(s) > 1
2

has been studied by Bohr and

his collaborators. Let us take the half-plane σ > 1
2
, and remove all the points which have

the same imaginary part as, and smaller real part than, one of the possible zeros (or the
pole) of ζ(s) in this region. We denote the remaining part of this perforated half-plane by
G. Specifically, Bohr and Jessen [3, 4] discovered that for σ > 1

2
, the limit

lim
T→∞

1

T
µ{τ ∈ [0, T ] : σ + iτ ∈ G, log ζ(σ + iτ) ∈ R}

exists. Here µ is the Lebesgue measure and R is any fixed rectangle whose sides are parallel
to the axes. Later Voronin [28] provided a generalization of Bohr’s denseness result.

For any fixed and distinct numbers s1, s2, . . . , sn with 1
2
< Re(sk) < 1, the set

{(ζ(s1 + it), . . . , ζ(sn + it)) : t ∈ R} is dense in Cn. Moreover, for any s with
1
2
< Re(s) < 1, the set {(ζ(s+ it), . . . , ζ(n)(s+ it)) : t ∈ R} is dense in Cn.

Even more striking is Voronin’s [29] universality theorem.

Let 0 < r < 1
4

and g(s) be a non-zero analytic function on |s| ≤ r. Then for
any ε > 0, there exists a positive real number τ such that

max
|s|≤r

∣∣∣∣ζ(s+
3

4
+ iτ

)
− g(s)

∣∣∣∣ < ε.

Moreover,

lim inf
T→∞

1

T
µ

{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣ζ(s+
3

4
+ iτ

)
− g(s)

∣∣∣∣ < ε

}
> 0.
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Concerning Voronin’s theorem, Bagchi [2] gave an equivalent condition for the Riemann
hypothesis for ζ(s). He proved in his doctoral thesis that

The Riemann hypothesis is true if, and only if, for any ε > 0

lim inf
T→∞

1

T
µ

{
τ ∈ [0, T ] : max

|s|≤r

∣∣∣∣ζ(s+
3

4
+ iτ

)
− ζ(s)

∣∣∣∣ < ε

}
> 0.

These connections motivate us to study the vertical shifts s → s + iτ of ζ(s). The values
of ζ(s) on certain vertical arithmetic progressions have been studied by various authors.
Putnam [20, 21] showed that for any d > 0, the sequence d, 2d, 3d, · · · contains an infinity
of elements which are not the imaginary parts of zeros of ζ(s) on the critical line Re(s) = 1

2
.

More recently, van Frankenhuijesen [27] obtained bounds for the length of any hypothetical
arithmetic progression. Good [8] found asymptotic formulae for the discrete second and
fourth moments of ζ(s) on arbitrary arithmetic progressions to the right of the critical line.
Steuding and Wegert [24] succeeded in obtaining an asymptotic formula for the discrete first
moment of ζ(s) on arbitrary arithmetic progressions in the critical strip. Li and Radziwi l l [18]
established, among many other things, results on the distribution of values of ζ(1

2
+ i(al+b))

as l ranges over the integers in some dyadic interval [T, 2T ].
Set

η(s) := π−s/2Γ

(
s

2

)
ζ(s) and ρ(t) := η

(
1

2
+ it

)
.

It is well-known that η(s) is a meromorphic function with poles at s = 0 and 1, and that
ρ(t) is a real-valued function. Hardy [10] proved that ρ(t) has infinitely many real zeros. In
other words, the Riemann zeta-function has infinitely many zeros on the critical line.

Let {cj} be a sequence of real numbers such that

∞∑
j=1

|cj| <∞.

Let {λj} be a bounded sequence of real numbers. Define

F (s) :=
∞∑
j=1

cjη(s+ iλj).(1.1)

Note that F (s) has poles at −iλj and 1−iλj for all j. Using Stirling’s formula for the gamma
function (see (2.5) below) and the boundedness of the sequence {λj}, one can show that there
exists a bounded set D ⊂ C such that F (s) is analytic on C \ D. In particular, D can be
taken as the union of two bounded vertical intervals containing the points 0 and 1. If {λj} is
an infinite sequence, then F (s) has essential singularities inside the set D. Independently of
whether F (s) has essential singularities or not, it can be seen that F (1

2
+ it) is a well-defined,

real-valued function for t ∈ R. A natural question arises - what can we say about the zeros
of F (s)?

Without loss of generality, we can take cj 6= 0 and the λj’s to be distinct for all j. Indeed,
the terms corresponding to cj’s being zero have no contribution to F (s). Furthermore, since
the right-hand side of (1.1) is absolutely convergent, the terms for which λi = λj can be
grouped together and we can denote the new coefficient by cj. We have the following result.



ZEROS OF COMBINATIONS OF THE RIEMANN ξ-FUNCTION ON BOUNDED VERTICAL SHIFTS 3

Theorem 1.1. Let {cj} be a sequence of non-zero real numbers so that
∑∞

j=1 |cj| < ∞.

Let {λj} be a bounded sequence of distinct real numbers that attains its bounds. Then the
function F (s) =

∑∞
j=1 cjη(s+ iλj) has infinitely many zeros on the critical line Re(s) = 1

2
.

Let

ξ(s) :=
1

2
s(s− 1)π−

s
2 Γ

(
s

2

)
ζ(s) and Ξ(t) := ξ

(
1

2
+ it

)
.

One of the essential ingredients in the proof of Theorem 1.1 is the integral identity
w ∞
0

Ξ(t)

t2 + 1
4

cos(νt)dt =
π

2
(e

ν
2 − 2e−

ν
2 ϑ̂3(e

−2ν)),(1.2)

which was used by Hardy as well to prove that the Riemann zeta-function has infinitely
many zeros on the critical line (see [10], and §2.16 of [26]). Here

ϑ̂3(x) :=
∞∑
n=1

exp(−xπn2).(1.3)

Note that for Re(x) > 0, the functional equation

2ϑ̂3(x) + 1 = x−
1
2 (2ϑ̂3(x

−1) + 1)(1.4)

holds.
Identities such as (1.2) have many applications. For example, using Fourier’s integral

theorem, we can invert identities like (1.2) to obtain new expressions for the Riemann Ξ-
function, and hence for the Riemann zeta-function. For example, if we replace ν by −ν in
(1.2) and use Fourier’s integral theorem, we have

Ξ(t) = (t2 + 1
4
)
w ∞
0

(e−
u
2 − e

u
2 ϑ̂3(e

2u)) cos(xu) du,

which is well-known [26, p. 254, Equation (10.1.1)]. New integral identities of the type (1.2),
having the function Ξ(t) under the integral sign, were studied by Ramanujan [23, Equations
(12), (16)] (see also[12, p. 37]) and later by Koshliakov [15, Equations (18), (25) and (38)],
[14, p. 404–405]. For recent work in this direction, see the survey article due to one of the
authors [6]. At this juncture, it is important to note the following quote by Hardy [12]:

... The unsolved problems concerning the zeros of ζ(s) or of Ξ(t) are among
the most obscure and difficult in the whole range of Pure Mathematics. Any
new formulae involving ζ(s) and Ξ(t) are of very great interest, because of the
possibility that they may throw new light on some outstanding questions...

Another goal of this paper is to generalize identity (1.2) and other allied identities by re-
placing the term cos(xt) in (1.2) by a more general class of functions that will be discussed
shortly. These allied identities are similar in nature to (1.2) in that they involve integrals of
the form w ∞

0
f
(
t
2

)
Ξ
(
t
2

)
cos(1

2
t logα) dt,

where f(t) is of the form f(t) = g(it)g(−it) with g analytic in t. Two well-known examples
of such identities are those due to Ferrar [7] and Hardy [11, Equation (2)]. In this paper,
these two identities are derived as special cases of more general results given below (see
Corollaries 1.3 and 1.4 of Theorems 1.3 and 1.4 respectively).
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Let φ(x) and ψ(x) be two functions integrable on R. The functions φ and ψ are said to
be reciprocal in Fourier cosine transform if

√
π

2
φ(x) =

w ∞
0
ψ(u) cos(2ux)du and

√
π

2
ψ(x) =

w ∞
0
φ(u) cos(2ux)du.(1.5)

We define Z1(s) and Z2(s) in terms of the Mellin transforms of φ and ψ by

Γ

(
s

2

)
Z1(s) :=

w ∞
0
xs−1φ(x)dx, Γ

(
s

2

)
Z2(s) :=

w ∞
0
xs−1ψ(x)dx,(1.6)

each valid in a specific vertical strip in the complex s-plane. Throughout this paper, by
r
(c)

we mean
r c+i∞
c−i∞ . Note that in case of a non-empty intersection of the two corresponding

vertical strips, the Mellin inversion theorem gives

φ(x) =
1

2πi

w

(c)
Γ

(
s

2

)
Z1(s)x

−sds, ψ(x) =
1

2πi

w

(c)
Γ

(
s

2

)
Z2(s)x

−sds,(1.7)

where Re(s) = c lies in the intersection. Moreover, let us define

Θ(x) := φ(x) + ψ(x) and Z(s) := Z1(s) + Z2(s)(1.8)

so that

Γ

(
s

2

)
Z(s) =

w ∞
0
xs−1Θ(x)dx(1.9)

for values of s in the intersection of the two strips.

Define a class K of functions as follows (see also [16]):

Definition 1.1. Let 0 < ω ≤ π and λ < 1
2
. If f(z) is such that

i) f(z) is analytic with z = reiθ, regular in the angle defined by r > 0, |θ| < ω,
ii) f(z) satisfies the bounds

(1.10) f(z) =

{
O(|z|−λ−ε) if |z| is small,

O(|z|−β−ε) if |z| is large,

for every ε > 0 and β > λ, and uniformly in any angle θ < ω,

then we say that f belongs to the class K and write f(z) ∈ K(ω, λ, β).

Our next results are as follows.

Theorem 1.2. Let β > 1 and φ, ψ ∈ K(ω, 0, β) and suppose that Θ and Z are defined as in
(1.8). Then we have

w ∞
0

Ξ(t)

t2 + 1
4

Z

(
1

2
+ it

)
dt =

π

2
Z(1)− π

2

∞∑
n=1

Θ(π1/2n).(1.11)

Corollary 1.1. Identity (1.2) is a special case of Theorem 1.2 with φ(x) = ψ(x) = exp(−e2νx2)
for −π

4
< Im(ν) < π

4
.

The following result, which was obtained by one of the authors in [5] to study a general-
ization of the identity (1.2), is also a special case of Theorem 1.2.
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Corollary 1.2. Let h ∈ C be fixed and x such that −π
4
< x < π

4
. If we set

$(h, x) :=
∞∑
n=1

exp(−πxn2) cos(π1/2hn),(1.12)

and

∇(h, t, e−2x) := exit1F1

(
1

4
+

1

2
it;

1

2
;−
(
hex

2

)2)
+ e−xit1F1

(
1

4
− 1

2
it;

1

2
;−
(
hex

2

)2)
,

where 1F1 is the confluent hypergeometric function, then

w ∞
0

Ξ(t)

t2 + 1
4

∇(h, t, e−2x)dt = π(ex/2e−h
2/(4e−2x) − 2e−x/2$(h, e−2x)).(1.13)

Our next result generalizes a formula due to Hardy [11, Equation (2)].

Theorem 1.3. Let β > 1 and φ, ψ ∈ K(ω, 0, β) and suppose that Θ and Z are defined as in
(1.8). Then we have

w ∞
0

Ξ( t
2
)

(1 + t2)

Z(1+it
2

)

cosh 1
2
πt
dt =

−1

4

{ ∞∑
n=1

( w ∞
0

Θ(x)

x+ n
√
π
dx− Z(1)

n

)
+ Z ′(1) +

(γ − log 4π)

2
Z(1)

}
.

(1.14)

Corollary 1.3. Let ψ(x) denote the logarithmic derivative of the gamma function Γ(x). For
a > 0,

2
w ∞
0

Ξ( t
2
)

1 + t2
cos(1

2
t log a)

cosh 1
2
πt

dt =
√
a

w ∞
0
e−πa

2x2(ψ(x+ 1)− log x) dx.(1.15)

Ferrar’s formula [7] is generalized in this paper to the following.

Theorem 1.4. Let β > 1 and φ, ψ ∈ K(ω, 0, β) and suppose that Θ and Z are defined as in
(1.8). Then we have

4
w ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ( t

2
)

1 + t2
Z

(
1

2
+ it

)
dt

= −π3/2

{
2Z ′(1) + (γ − log 16π)Z(1) + 2

∞∑
n=1

( w ∞
0

Θ(x)√
x2 + πn2

dx− Z(1)

n

)}
.(1.16)

Corollary 1.4. Let Kν(z) denote the modified Bessel function of order ν. For a > 0,

−1√
π

w ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ( t

2
)

1 + t2
cos

(
1

2
t log a

)
dt

=
√
α

w ∞
0
e−

a2t2

4π

( ∞∑
n=1

K0(nt)−
π

2t

)
dt.(1.17)

This corollary is proved here using the following lemma, which is interesting in its own
right, since it gives an example of a function self-reciprocal in Fourier cosine transform that
seems to have been unnoticed before.
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Lemma 1.5. For y > 0, we have

(1.18)
w ∞
0

( ∞∑
n=1

K0(2πnx)− 1

4x

)
cos(2πyx) dx =

1

2

( ∞∑
n=1

K0(2πny)− 1

4y

)
.

It is interesting to note here that Watson [30, p. 303] proved that for Re(ν) > 0, the
function

1

2
Γ(ν) + 2

∞∑
n=1

(
nx

√
π

2

)ν
Kν(nx

√
2π)

is self-reciprocal in the generalized Hankel transform of order 2ν − 1
2
.

This paper is organized as follows. In Section 2, we give many preliminary results all of
which are subsequently used in the sequel. Section 3 is devoted to proving Theorem 1.1. We
prove Theorem 1.2 and Corollaries 1.1 and 1.2 in Section 4. In Section 5, we prove Theorem
1.3 and Corollary 1.3. Finally in Section 6, we prove Theorem 1.4 and Corollary 1.4. We
conclude the paper with a proof of Lemma 1.5.

2. Preliminaries

The following lemmas are instrumental in the proofs of our theorems.

Lemma 2.1. For −π
4
< α < π

4
,

(2.1)
w ∞
−∞

eαtρ(t) dt = −4π cos
α

2
+ 2πe

αi
2

∞∑
n=−∞

e−n
2πe2αi .

For details see Landau [17, section 3] or Remark 4.1 below.

Lemma 2.2. Let h : C→ C be analytic at α = π
4
. As α→ π

4
, we have

(2.2)
dm

dαm

(
h(α)

∞∑
n=−∞

e−n
2πe2αi

)
→ 0.

The above result can be adapted from Landau [17, section 3] and Titchmarsh [26, p. 257].
For the sake of completeness, we supply the proof here.

Proof. Let ϑ̂3(δ) be defined as in (1.3). Then ϑ̂3 is analytic for −π
2
< arg δ < π

2
. Note that

ϑ̂3(i+ δ) =
∞∑
n=1

e−n
2π(i+δ) =

∞∑
n=1

(−1)ne−n
2πδ.

Next we have

ϑ̂3(4δ) =
∞∑
n=1

e−4δn
2π =

∞∑
n=1

e−(2n)
2πδ =

∑
m∈2N

e−m
2πδ,

as well as

ϑ̂3(δ) =
∑
m∈2N

e−m
2πδ +

∑
m∈2N+1

e−m
2πδ.

Therefore,

2ϑ̂3(4δ)− ϑ̂3(δ) =
∑
m∈2N

e−m
2πδ −

∑
m∈2N+1

e−m
2πδ =

∑
m∈N

(−1)me−m
2πδ = ϑ̂3(i+ δ).
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Using (1.4), we have

ϑ̂3(i+ δ) =
1√
δ
ϑ̂3

(
1

4δ

)
+

1

2
√
δ
− 1− 1√

δ
ϑ̂3

(
1

δ

)
− 1

2

1√
δ

+
1

2

=
1√
δ
ϑ̂3

(
1

4δ

)
− 1√

δ
ϑ̂3

(
1

δ

)
− 1

2
.

Since exp(−1/x) tends to zero as x → 0 faster than any power x−k going to infinity (for

k > 0), we see that as δ → 0+, the function 1
2

+ ϑ̂3(i + δ) and all of its derivatives tend to
zero. Since h(α) is analytic at π/4 and

∞∑
n=−∞

e−n
2πe2αi = 1 + 2ϑ̂3(e

2αi),

if α→ 1
4
π−, i.e., e2iα → i along any path in the wedge |arg(e2iα − i)| < 1

2
π,

lim
α→1

4
π−

dm

dαm
[h(α)(1 + 2ϑ̂3(e

2iα))] = 0.

This proves the lemma. �

The following result is due to Kronecker (see Hardy and Wright [13]).

Lemma 2.3. Let (nθ) denote the fractional part of nθ. If θ is irrational, then the set of
points (nθ) is dense in the interval (0, 1).

Remark 2.1. If θ is rational, then the set of points (nθ) is periodic in the interval (0, 1).

Two functions φ(x) and ψ(x) are said to be reciprocal in the Hankel transformation of
order ν if

(2.3) φ(x) = 2
w ∞
0

(ux)
1
2Jν(2ux)ψ(u) du and ψ(x) = 2

w ∞
0

(ux)
1
2Jν(2ux)φ(u) du,

where Jν(x) is the Bessel function of the first kind of order ν defined by [1, p. 200, Equation
(4.5.2)]

Jν(x) =
∞∑
n=0

(−1)n(x/2)ν+2n

n!Γ(ν + n+ 1)
.

We now give below a result due to Kühn and two of the present authors [16, Lemma 2.2].

Lemma 2.4. Let φ and ψ be reciprocal functions under the Hankel transformation of order
ν defined in (2.3). Let φ, ψ ∈ K(ω, λ, β). Then there exist two regular functions Φ and Ψ
such that

φ(x) =
1

2πi

w c+i∞

c−i∞
Γ

(
s

2
+
ν

2
+

1

4

)
Φ(s)x−s ds,

ψ(x) =
1

2πi

w c+i∞

c−i∞
Γ

(
s

2
+
ν

2
+

1

4

)
Ψ(s)x−s ds

for c > 0. Moreover Φ and Ψ satisfy the following:

(1) Φ(s) = Ψ(1− s) for all λ < Re(s) < β,
(2) Ψ(s) = O(e(

π
4
−ω+ε)|t|) for every positive ε and uniformly for λ < Re(s) < β.
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Lemma 2.5. Let φ, ψ ∈ K(ω, α) and Z be defined by (1.8). Then we have

Z(1− s) = Z(s).

Proof. We know φ and ψ are cosine reciprocal which is a special case of functions reciprocal
in the Hankel transform when ν = −1/2. Then by Lemma 2.4 we have

Z2(s) = Z1(1− s) and Z1(s) = Z2(1− s),

where Z1 and Z2 are defined by (1.6). Finally, note that

Z(s) = Z1(s) + Z2(s) = Z1(1− s) + Z2(1− s) = Z(1− s),(2.4)

as claimed. �

We will also use Stirling’s formula for Γ(s), s = σ+ it, in a vertical strip c ≤ σ ≤ d given by

(2.5) |Γ(σ + it)| = (2π)
1
2 |t|σ−

1
2 e−

1
2
π|t|
(

1 +O

(
1

|t|

))
as |t| → ∞.

3. Zeros of F (s): Proof of Theorem 1.1

Let λj be any real number. Replacing t by t+ λj in Lemma 2.1 we find

w ∞
−∞

eαtρ(t+ λj) dt = e−αλj
(
− 4π cos

α

2
+ 2πe

αi
2

∞∑
n=−∞

e−n
2πe2αi

)
(3.1)

= −2π

(
e
αi
2
−αλj + e−

αi
2
−αλj − e

αi
2
−αλj

∞∑
n=−∞

e−n
2πe2αi

)
.

Differentiating both sides of (3.1) 2m times with respect to α we get

w ∞
−∞

t2meαtρ(t+ λj) dt = −2π

((
i

2
− λj

)2m

e
αi
2
−αλj +

(
i

2
+ λj

)2m

e−
αi
2
−αλj(3.2)

− ∂2m

∂α2m

(
e
αi
2
−αλj

∞∑
n=−∞

e−n
2πe2αi

))
.

Let i
2
− λj = rje

iθj . Without loss of generality, one may take 0 < θj <
π
2
. From (3.2) we

have
w ∞
−∞

t2meαtρ(t+ λj) dt = −2πe−αλj
(
r2mj ei(

α
2
+2mθj) + r2mj ei(

−α
2

+2πm−2mθj)
)

(3.3)

+ 2π
∂2m

∂α2m

(
e
αi
2
−αλj

∞∑
n=−∞

e−n
2πe2αi

)
= −4πe−αλjr2mj cos

(
α

2
+ 2mθj

)
+ 2π

∂2m

∂α2m

(
e
αi
2
−αλj

∞∑
n=−∞

e−n
2πe2αi

)
.
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Multiplying both sides of (3.3) by cj and summing over j, we obtain

w ∞
−∞

t2meαtF

(
1

2
+ it

)
dt = −4π

∞∑
j=1

cje
−αλjr2mj cos

(
α

2
+ 2mθj

)
(3.4)

+ 2π
∞∑
j=1

∂2m

∂α2m

(
cje

αi
2
−αλj

∞∑
n=−∞

e−n
2πe2αi

)

=: −4π
∞∑
j=1

hj(α) + 2π
∞∑
j=1

h̃j(α).

By Stirling’s formula (2.5), we have

ρ(t)� |t|Ae−
π
4
|t|

as t→∞, where A is a positive number. Since {λj} is a bounded sequence, we find that
∞∑
j=1

cjρ(t+ λj)� |t|Ae−
π
4
|t|
∞∑
j=1

|cj| � |t|Ae−
π
4
|t|(3.5)

as t → ∞. Hence (3.5) justifies the interchange of summation and integration on the left-
hand side of (3.4) for −π

4
< α < π

4
. Also for the same bounded sequence {λj}, and for any

given bounded interval I0 with α ∈ I0, we have
∞∑
j=1

||hj(α)||∞ ≤
∞∑
j=1

|cj|max
α,j
{r2mj e−αλj} � 1(3.6)

uniformly for α ∈ I0.
Let m be a fixed non-negative integer. Let ε > 0 be any number such that −π

4
+ ε ≤ α ≤

π
4
− ε. For any 0 ≤ l ≤ m, we observe that

∞∑
n=−∞

n2le−n
2π cos(2α) �ε 1,(3.7)

and for any bounded sequence {λj},
∂l

∂αl
e
αi
2
−αλj �ε,m 1.(3.8)

Using Leibniz’s rule, (3.7) and (3.8), we have |h̃j(α)| �ε,m |cj|. Hence
∞∑
j=1

||h̃j(α)||∞ �ε,m 1(3.9)

for −π
4

+ ε ≤ α ≤ π
4
− ε. Let

h(α) :=
∞∑
j=1

cje
−αλj .

Note that h(α) is an entire function. From (3.9), we find that
∞∑
j=1

∂2m

∂α2m

(
cje

αi
2
−αλj

∞∑
n=−∞

e−n
2πe2αi

)
=

∂2m

∂α2m

(
h(α)e

αi
2

∞∑
n=−∞

e−n
2πe2αi

)
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for −π
4
< α < π

4
. Therefore by Lemma 2.2, we deduce that

lim
α→π

4
−

∞∑
j=1

∂2m

∂α2m

(
cje

αi
2
−αλj

∞∑
n=−∞

e−n
2πe2αi

)
= 0.(3.10)

Letting α→ π
4
− on both sides of (3.4), and using (3.6) and (3.10) we get

lim
α→π

4
−

w ∞
−∞

t2meαtF

(
1

2
+ it

)
dt = −4π

∞∑
j=1

cje
−πλj

4 r2mj cos

(
π

8
+ 2mθj

)
.(3.11)

By hypothesis, there exists a positive integer M such that

|λM | = max
j
{|λj|} and λM 6= λj for M 6= j.

Then the right-hand side of (3.11) can be written as

−4πcMr
2m
M e−

πλM
4 cos

(
π

8
+ 2mθM

)
(1 + E(X) +H(X)),(3.12)

where

E(X) :=
∑
j 6=M
j≤X

cj
cM

e−
π
4
(λj−λM )

(
rj
rM

)2m cos(π
8

+ 2mθj)

cos(π
8

+ 2mθM)
,(3.13)

as well as

H(X) :=
∑
j 6=M
j>X

cj
cM

e−
π
4
(λj−λM )

(
rj
rM

)2m cos(π
8

+ 2mθj)

cos(π
8

+ 2mθM)
.(3.14)

Next we claim that there exists a sequence such that for each value m in it, the inequality
|cos(π

8
+ 2mθM)| ≥ 1

3
holds. Let i

2
− λM = rMe

iθM for 0 < θM < π
2
. Then

rM > rj for M 6= j.(3.15)

Now we divide the proof of the claim into two cases. First consider the case when θM
π

is
irrational. Then by Lemma 2.3, we find two subsequences {pn} and {qn} such that(

pnθM
π

)
→ 1

24
and

(
qnθM
π

)
→ 1

2

for n → ∞, where, as before, (x) denotes the fractional part of x. One can see that for
n→∞,

cos

(
π

8
+ 2pnθM

)
→ 1√

2
and cos

(
π

8
+ 2qnθM

)
→ − cos

(
π

8

)
< −1

3
.(3.16)

In the second case, we consider θM
π

:= p
q

to be rational. Since 0 < p
q
< 1

2
, there exists an

integer n0 such that 1
4
≤ n0b q2pc

p
q
< 1

2
. Now define pn := nq and qn := nq+n0b q2pc. Therefore

for all n,

cos

(
π

8
+ pnθM

)
= cos

(
π

8

)
and − cos

(
π

8

)
< cos

(
π

8
+ qnθM

)
≤ cos

(
5π

8

)
.(3.17)
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The above constructions show that if m runs through the sequence {pn} ∪ {qn}, then for
large m, we have ∣∣∣∣ cos

(
π

8
+ 2mθM

)∣∣∣∣ ≥ 1

3
.(3.18)

Let m be any large integer from the sequence {pn} ∪ {qn}. From (3.14), (3.15) and (3.18)
we have

H(X) ≤ 3

|cM |
∑
j 6=M
j>X

|cj| <
1

1914
,(3.19)

for a large X. Let

cX = max
j≤X

{
|rj|
|rM |

}
.

Since X is finite, by (3.15) we find that cX < 1. Similarly for large m ∈ {pn} ∪ {qn}, using
(3.13) and (3.18) we have

E(X) ≤ 3
c2mX
|cM |

∑
j 6=M
j≤X

|cj|,(3.20)

which tends to 0 as m → ∞ through the sequence {pn} ∪ {qn}. Also by construction
cos(π

8
+ mθM) changes sign infinitely often for infinitely many values of m ∈ {pn} ∪ {qn}.

Hence from (3.12), (3.19), and (3.20), we see that the right-hand side of (3.11) changes sign
infinitely often for infinitely many values of m ∈ {pn} ∪ {qn}.

Let us now suppose that F (s) has only finitely many zeros on the line σ = 1
2
, and hence

that F (1
2

+ it) never changes sign for |t| > T for some large T . In other words, we can say

that F (1
2

+ it) > 0 for |t| > T , or that F (1
2

+ it) < 0 for |t| > T , or that F (1
2

+ it) takes

opposite signs in t > T and t < T . First of all, let us consider that F (1
2

+ it) > 0 for |t| > T .
Next, let us define the quantity L by the equation

L := lim
α→π

4
−

w

|t|≥T
F

(
1

2
+ it

)
t2meαt dt.(3.21)

Since the integrand in the above integral is positive, one sees that for any T ′ > T ,

lim
α→π

4

w

T≤|t|≤T ′
F

(
1

2
+ it

)
t2meαt dt ≤ lim

α→π
4

w

|t|>T
F

(
1

2
+ it

)
t2meαt dt = L.(3.22)

In particular,

w

T≤|t|≤T ′
F

(
1

2
+ it

)
t2me

π
4
t dt ≤ L.(3.23)

Hence
w ∞
−∞

F

(
1

2
+ it

)
t2me

π
4
t dt(3.24)

is convergent.
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Thus, for every m ∈ N we have

w ∞
−∞

F

(
1

2
+ it

)
t2me

π
4
t dt = −4π

∞∑
j=1

cje
−πλj

4 r2mj cos

(
π

8
+ 2mθj

)
.(3.25)

This is impossible since the right-hand side switches sign infinitely often. We can find an
integer m ∈ {pn} ∪ {qn} such that

w

|t|≥T
F

(
1

2
+ it

)
t2me

π
4
t dt < −

w T

−T
F

(
1

2
+ it

)
t2me

π
4
t dt(3.26)

< T 2m
w T

−T

∣∣∣∣F(1

2
+ it

)
e
π
4
t

∣∣∣∣ dt
≤ T 2mR.

It is seen that R is independent of m.
Finally, by the hypothesis on F (1

2
+ it), we see that there exists ε = ε(T ) > 0 such that

F (1
2

+ it) ≥ ε for all 2T < t < 2T + 1. Hence

w

|t|≥T
F

(
1

2
+ it

)
t2me

π
4
t dt >

w 2T+1

2T
εt2me

π
4
t dt(3.27)

>
w 2T+1

2T
εt2m dt

= ε

(
(2T + 1)2m+1

2m+ 1
− (2T )2m+1

2m+ 1

)
> ε(2T )2m.

Combining these two results, we have

ε(2T )2m 6
w

|t|≥T
F

(
1

2
+ it

)
t2me

π
4
t dt < −

w T

−T
F

(
1

2
+ it

)
t2me

π
4
t dt < T 2mR,(3.28)

for infinitely values of m ∈ {pn} ∪ {qn}. This is equivalent to

22m <
R

ε

holding for infinitely many values of m ∈ {pn} ∪ {qn}. However this is impossible since m
can be taken to be arbitrarly large.

Now, if F (1
2

+ it) < 0 for |t| > T , we multiply both sides of (3.11) by −1 and carry out

similar arguments for −F (1
2

+ it). Lastly, if F (1
2

+ it) takes opposite signs in t > T and
t < −T then we differentiate (3.1) 2m+ 1 times with respect to α, instead of 2m times. In
this case, (3.11) and (3.15) can be proved similarly. If θM

π
is irrational, then we construct

the sequences {pn} and {qn} such that(
pnθM
π

)
→ 1

24
− θM

2π
and

(
qnθM
π

)
→ 1

2
− θM

2π
.

If θM
π

is rational, then we construct the sequences {pn} and {qn} by

pn := nq − 1

2
and qn := nq + n0

⌊
q

2p

⌋
− 1

2
.



ZEROS OF COMBINATIONS OF THE RIEMANN ξ-FUNCTION ON BOUNDED VERTICAL SHIFTS 13

For the above {pn} ∪ {qn} one can check easily that (3.16), (3.17) and (3.18) hold when we
replace 2m by 2m + 1. Likewise, one can use similar arguments to prove (3.28) for 2m + 1
and arrive at a contradiction. Hence we have proved the theorem.

4. The theta transformation formula and proof of Theorem 1.2

Let φ, ψ ∈ K(ω, α) for ω > 0. Suppose that Θ and Z are defined as in (1.8). Let us
consider the following integral

H(Θ) :=
w ∞
0
f(t)Ξ(t)Z

(
1

2
+ it

)
dt,(4.1)

where

(4.2) f(t) = g(it)g(−it)
with g an analytic function of t. By Stirling’s formula (2.5), we have

Ξ(t)� tAe−
π
4
t

for a positive constant A. By Lemma 2.4 and ν = −1/2 we have

Z(σ + it)� e(
π
4
−ω+ε)t

for every ε > 0. Therefore the integral in (4.1) will be convergent as long as f(t) � tB for
some positive constant B. From Lemma 2.5, we observe Z(1

2
+ it) is an even function of t.

Since Ξ(t) is an even function, (4.1) can be written as

H(Θ) =
1

2

w ∞
−∞

g(it)g(−it)Ξ(t)Z

(
1

2
+ it

)
dt(4.3)

=
1

2i

w

( 1
2
)
g

(
s− 1

2

)
g

(
1

2
− s
)
ξ(s)Z(s)ds

by the change it = s− 1
2
. Now let

g(s) =
1

s+ 1
2

, so that g

(
s− 1

2

)
g

(
1

2
− s
)

=
1

(1− s)s
.

This simplifies the expression for H in (4.3) to

H(Θ) = − 1

4i

w

(
1
2
)
π−s/2Γ

(
s

2

)
ζ(s)Z(s)ds.

The next step is to move the path of integration from the critical line Re(s) = 1
2

past the
region of absolute convergence of ζ(s) at s = 1 + ε with ε > 0. In doing so, we pick up a
contribution of a possible simple pole at s = 1 so that

H(Θ) = − 1

4i

w

(1+ε)
π−s/2Γ

(
s

2

)
ζ(s)Z(s)ds+ 2πi

1

4i
res
s=1

π−s/2Γ

(
s

2

)
ζ(s)Z(s)

= −π
2

∞∑
n=1

1

2πi

w

(1+ε)
Γ

(
s

2

)
(π1/2n)

−s
Z(s)ds+

π

2
Z(1)

= −π
2

∞∑
n=1

Θ(π1/2n) +
π

2
Z(1).
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By Stirling’s formula (2.5) and Lemma 2.4 with ν = −1/2 we see that

Γ

(
s

2

)
Z(s)� e(−ω+ε)t(4.4)

for any ε > 0. This is enough to justify the vanishing of the integrals along the horizontal
segments of the rectangular contour as t→∞. We have thus shown that

w ∞
0

Ξ(t)

t2 + 1
4

Z

(
1

2
+ it

)
dt =

π

2
Z(1)− π

2

∞∑
n=1

Θ(π1/2n).

We now give a special case of the above identity arising from a specific choice of the cosine
reciprocal functions φ(x) and ψ(x).

4.1. Proof of Corollary 1.2. Let θ, h ∈ C be fixed parameters with −π
2
< arg θ < π

2
. If

we set

φh(x, θ) = exp(−θx2) cos(hx),

then its cosine reciprocal is then given by

ψh(x, θ) =
2√
π

w ∞
0

exp(−θu2) cos(hu) cos(2ux)du = θ−1/2e−h
2/(4θ) exp

(
−x

2

θ

)
cosh

(
hx

θ

)
.

It is clear that φ, ψ ∈ K(ω, α). The sum is given by

Θ(x) = Θh(x, θ) = φh(x, θ) + ψh(x, θ)

= exp(−θx2) cos(hx) + θ−1/2e−h
2/(4θ) exp

(
−x

2

θ

)
cosh

(
hx

θ

)
.

Then

Z1(s) =
1

Γ( s
2
)

w ∞
0
xs−1φh(x, θ)dx =

1

2
θ−s/21F1

(
s

2
;
1

2
;−h

2

4θ

)
and

Z2(s) =
1

Γ( s
2
)

w ∞
0
xs−1ψh(x, θ)dx =

1

2
θ(s−1)/21F1

(
1− s

2
;
1

2
;−h

2

4θ

)
,

so that

Z(s) = Zh(s, θ) = Z1(s) + Z2(s)

=
1

2
θ−s/21F1

(
s

2
;
1

2
;−h

2

4θ

)
+

1

2
θ(s−1)/21F1

(
1− s

2
;
1

2
;−h

2

4θ

)
.

Let us look at the infinite sum

∆(h, θ) =
∞∑
n=1

Θh(π
1/2n, θ)

=
∞∑
n=1

exp(−πθn2) cos(π1/2hn) + θ−1/2e−h
2/(4θ)

∞∑
n=1

exp

(
−πn

2

θ

)
cosh

(
π1/2hn

θ

)
.

Define the first infinite sum in the last line by

$(h, θ) :=
∞∑
n=1

exp(−πθn2) cos(π1/2hn).
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The functional equation of $ is given by [31, p. 124, Exercise 18]

2$(h, θ) + 1 = θ−1/2 exp

(
−h

2

4θ

)
(2$(ihθ−1, θ−1) + 1).

Going back to ∆, we have

∆(h, θ) = $(h, θ) + θ−1/2e−h
2/(4θ)$(ihθ−1, θ−1)(4.5)

= 2$(h, θ) +
1

2
− 1

2
θ−1/2e−h

2/(4θ).

We also note that

Z(1) = Zh(1, θ) =
1

2
+

1

2
θ−1/2e−h

2/(4θ)(4.6)

and

Z

(
1

2
+ it

)
= Zh

(
1

2
+ it, θ

)
(4.7)

=
1

2

(
θ−

1
4
− it

2 1F1

(
1

4
+
it

2
;
1

2
;−h

2

4θ

)
+ θ−

1
4
+ it

2 1F1

(
1

4
− it

2
;
1

2
;−h

2

4θ

))
=

1

2
θ−

1
4∇(h, t, θ).

Replacing (4.5),(4.6) and (4.7) in (1.11), and then letting θ = e−2x, we obtain (1.13). This
proves Corollary 1.2.

4.2. Proof of Corollary 1.1. Just let h = 0 in Corollary 1.2.

Remark 4.1. If we substitute ν = iα, with α ∈ R, in (1.2), write cos(iαt) = 1
2
(e−αt + eαt)

to simplify the integral on the left, and use (1.4), one obtains Lemma 2.1.

Remark 4.2. The choice (φ(x), ψ(x)) =
(
e−θx, 2√

π
θ

θ2+4x2

)
,−π

2
< arg θ < π

2
, in (1.11) yields

(4.8)
w ∞
0

Ξ(t)

t2 + 1
4

Z

(
1

2
+ it, θ

)
dt = −π

(
1

e
√
πθ − 1

− 1√
πθ

)
,

which is a rephrasing of the well-known identity [26, p. 23, Equation (2.7.1)], namely,

(4.9)
w ∞
0
xs−1

(
1

ex − 1
− 1

x

)
dx = Γ(s)ζ(s), (0 < Re(s) < 1).

Equation (4.8) can be obtained from (4.9) using the functional equation for ζ(s).

5. Generalization of Hardy’s formula: Proof of Theorem 1.3

Let g(s) = 1
4
√
2π

Γ(1
4

+ s
2
)Γ(−1

4
+ s

2
) in (4.2) so that

f(t) =
1

32π2
Γ

(
1

4
+
it

2

)
Γ

(
−1

4
+
it

2

)
Γ

(
1

4
− it

2

)
Γ

(
−1

4
− it

2

)
=

1

(1 + 4t2) coshπt

and

(5.1) g

(
s− 1

2

)
g

(
1

2
− s
)

=
1

4π
Γ(−s)Γ(s− 1).
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From (4.1) and (4.3), we have

H(Θ) =
1

8πi

w

( 1
2
)
Γ(−s)Γ(s− 1)

s(s− 1)

2
π−

s
2 Γ

(
s

2

)
ζ(s)Z(s) ds(5.2)

=
−1

16i

w

( 1
2
)

ζ(s)

sin πs
Γ

(
s

2

)
Z(s)π−

s
2 ds.

Shifting the line of integration to Re s = 1 + δ where 0 < δ < 1, and considering the
contribution of the pole of order 2 at s = 1, we have

H(Θ) =
w ∞
0

Ξ(t)

(1 + 4t2)

Z(1
2

+ it)

cosh πt
dt =

1

2

w ∞
0

Ξ( t
2
)

(1 + t2)

Z(1+it
2

)

cosh 1
2
πt
dt

(5.3)

=
−1

16i

{ ∞∑
n=1

w

(1+δ)

Z(s)

sin πs
Γ

(
s

2

)
(
√
πn)−s ds− 2πi

(
− Z ′(1)

π
− (γ − log 4π)

2π
Z(1)

)}
.

Note that

| sin(π(σ + it))| ≥ eπ|t|

2

(
1− e−2π|t|

)
>
eπ|t|

4

for large t. Then from (4.4), we find that the integrals along the horizontal segments of the
rectangular contour go to 0 as t → ∞. It is well-known [19, p. 91, Equation (3.3.10)] that
for 0 < Re s < 1,

(5.4)
1

2πi

w

(c)

x−s

sin πs
ds =

1

π(1 + x)
.

Also, from [19, p. 83, Equation (3.1.13)], we have

(5.5)
1

2πi

w

(c)
F (s)G(s)w−s ds =

w ∞
0
f(x)g

(
w

x

)
dx

x
,

where F (s) and G(s) are Mellin transforms of f(x) and g(x) respectively. Hence, shifting
the line of integration to Re s = c, 0 < c < 1, using (1.9) and the fact that φ, ψ ∈ K(ω, 0, β),
we find that

w ∞
0

Ξ( t
2
)

(1 + t2)

Z(1+it
2

)

cosh 1
2
πt
dt =

−1

4

{ ∞∑
n=1

( w ∞
0

Θ(x)

x+ n
√
π
dx− Z(1)

n

)
+ Z ′(1) +

(γ − log 4π)

2
Z(1)

}
,

(5.6)

which completes the proof of Theorem 1.3.
We now prove Hardy’s formula as a special case of the above theorem.

Proof of Corollary 1.3. Let φ(x) = e−a
2x2 in the first equation in (1.5). It is easy to see

that ψ(x) = 1
a
e−x

2/a2 , and that φ(x) and ψ(x) are reciprocal in the Fourier cosine transform.
This gives

Θ(x) = e−a
2x2 +

1

a
e−x

2/a2 .

Also one can check that

Z(1) =
1

2

(
1 +

1

a

)
, Z ′(1) =

log a

2

(
1− 1

a

)
, Z

(
1 + it

2

)
=

1√
a

cos

(
1

2
t log a

)
.(5.7)
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Now

w ∞
0

Θ(x)

x+ n
√
π
dx− Z(1)

n
=

( w ∞
0

e−a
2x2

x+ n
√
π
dx− 1

2na

)
+

1

a

( w ∞
0

e−x
2/a2

x+ n
√
π
dx− a

2n

)(5.8)

= −
w ∞
0
e−πa

2x2
(

1

n
− 1

x+ n

)
dx− 1

a

w ∞
0
e−πx

2/a2
(

1

n
− 1

x+ n

)
dx,

using the fact that
r∞
0
e−x

2
dx =

√
π
2

. Hence,

∞∑
n=1

( w ∞
0

Θ(x)

x+ n
√
π
dx− Z(1)

n

)
(5.9)

= −
w ∞
0
e−πa

2x2(ψ(1 + x) + γ) dx− 1

a

w ∞
0
e−πx

2/a2(ψ(1 + x) + γ) dx,

by the interchange of the order of summation and integration, which is valid because of
absolute convergence, and since [25, p. 54, Equation (3.10)]

(5.10) ψ(x) :=
Γ′(x)

Γ(x)
= −γ −

∞∑
m=0

(
1

m+ x
− 1

m+ 1

)
.

Now we use the integral evaluation

(5.11)
w ∞
0
e−πa

2x2(γ + log x) dx =
γ − log(4πa2)

4a

in (5.9) to write

∞∑
n=1

( w ∞
0

Θ(x)

x+ n
√
π
dx− Z(1)

n

)
(5.12)

= −γ − log(4πa2)

4a
− (γ − log(4π/a2))

4

−
w ∞
0
e−πa

2x2(ψ(1 + x)− log x) dx− 1

a

w ∞
0
e−πx

2/a2(ψ(1 + x)− log x) dx.

Next we show that

(5.13)
w ∞
0
e−πx

2/a2(ψ(1 + x)− log x) dx = a
w ∞
0
e−πa

2x2(ψ(1 + x)− log x) dx.

To that end, note that

(5.14) e−πx
2/a2 = 2a

w ∞
0
e−πa

2y2 cos(2πyx) dy.

Hence,

w ∞
0
e−πx

2/a2(ψ(1 + x)− log x) dx = 2a
w ∞
0

w ∞
0
e−πa

2y2 cos(2πyx)(ψ(1 + x)− log x) dy dx

(5.15)

= 2a
w ∞
0
e−πa

2y2 dy
w ∞
0

(ψ(1 + x)− log x) cos(2πyx) dx,
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where the interchange of the order of integration can again be justified. From page 220 in
Ramanujan’s Lost Notebook [22], we see that the function ψ(1 + x)− log x is reciprocal (up
to a constant) in the Fourier-cosine transform, namely,

(5.16)
w ∞
0

(ψ(1 + x)− log x) cos(2πyx) dx =
1

2
(ψ(1 + y)− log y).

This property was later rediscovered by Guinand [9] in 1947.
Substituting (5.16) in (5.15), we obtain (5.13). Now substitute (5.13) in (5.12) to obtain

∞∑
n=1

( w ∞
0

Θ(x)

x+ n
√
π
dx− Z(1)

n

)
(5.17)

= −γ − log(4πa2)

4a
− (γ − log(4π/a2))

4
− 2

w ∞
0
e−πa

2x2(ψ(1 + x)− log x) dx.

Finally from (5.6), (5.7) and (5.17), we obtain Hardy’s formula (1.15). �

Remark 5.1. Theorem 1.3 in [5] can also be obtained as a special case of Theorem 1.3 of
this paper combining the methods in the proofs of Corollaries 1.2 and 1.3.

6. Generalization of Ferrar’s formula: Proof of Theorem 1.4

Let g(s) =
√
2

1
2
−sΓ(1

4
+ s

2
) in (4.2) so that

f

(
t

2

)
= g

(
it

2

)
g

(
−it
2

)
=

8

1 + t2
Γ

(
1 + it

4

)
Γ

(
1− it

4

)
.

Thus from (4.1) and (4.3),

H(Θ) = 4
w ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ(t/2)

1 + t2
Z

(
1 + it

2

)
dt(6.1)

=
1

2i

w

( 1
2
)

2

(1− s)s
Γ

(
s

2

)
Γ

(
1− s

2

)
ξ(s)Z(s) ds

= − 1

2i

w

( 1
2
)
Γ2

(
s

2

)
Γ

(
1− s

2

)
ζ(s)Z(s)π−s/2 ds.

We now apply the residue theorem after shifting the line of integration to Re s = 1+δ where
0 < δ < 2 and considering the contribution of the pole of order 2 at s = 1. Using (2.5) for
the gamma functions Γ(s/2) and Γ(1− s/2) and (4.4), it is seen that the integrals along the
horizontal segments go to zero as t→∞. This gives

H(Θ) = − 1

2i

{ ∞∑
n=1

w

(1+δ)
Γ2

(
s

2

)
Γ

(
1− s

2

)
Z(s)(

√
πn)−s ds(6.2)

− 2πi lim
s→1

d

ds

(
(s− 1)2Γ2

(
s

2

)
Γ

(
1− s

2

)
ζ(s)Z(s)π−s/2

)}
= − 1

2i

{
− 2πi

(
− 2
√
πZ ′(1)−

√
π(γ − log 16π)Z(1)

)
+
√
π

∞∑
n=1

( w

(c)
B

(
s

2
,
1− s

2

)
Γ

(
s

2

)
Z(s)(

√
πn)−s ds
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+
2πi√
π

lim
s→1

(s− 1)Γ

(
1− s

2

)
Γ2

(
s

2

)
Z(s)(

√
πn)−s

)}
,

where B(s, z − s) is the Euler beta integral given by

(6.3) B(s, z − s) =
w ∞
0

xs−1

(1 + x)z
dx =

Γ(s)Γ(z − s)
Γ(z)

, 0 < Re s < Re z.

From (6.3), we have for 0 < c = Re s < 1,

(6.4)
1

2πi

w

(c)
B

(
s

2
,
1− s

2

)
x−s ds =

2√
1 + x2

.

Along with (1.9), (5.5), and the fact that φ, ψ ∈ K(ω, 0, β), this gives

H(Θ) = 4
w ∞
0

Γ

(
1 + it

4

)
Γ

(
1− it

4

)
Ξ(t/2)

1 + t2
Z

(
1

2
+ it

)
dt(6.5)

= −π3/2

{
2Z ′(1) + (γ − log 16π)Z(1) + 2

∞∑
n=1

( w ∞
0

Θ(x)√
x2 + πn2

dx− Z(1)

n

)}
.

Now we prove Ferrar’s formula as a special case of the above theorem.

Proof of Corollary 1.4. As in the proof of Corollary 1.3, we consider the pair of reciprocal
functions (φ(x), ψ(x)) = (e−a

2x2 , 1
a
e−x

2/a2). From (5.7), we have

w ∞
0

Θ(x)√
x2 + πn2

dx− Z(1)

n
=

( w ∞
0

e−a
2x2

√
x2 + πn2

dx− 1

2na

)
+

1

a

( w ∞
0

e−x
2/a2

√
x2 + πn2

dx− a

2n

)(6.6)

=
w ∞
0
e−

a2t2

4π

(
1√

t2 + 4π2n2
− 1

2πn

)
dt+

1

a

w ∞
0
e−

t2

4πa2

(
1√

t2 + 4π2n2
− 1

2πn

)
dt

so that

∞∑
n=1

( w ∞
0

Θ(x)√
x2 + πn2

dx− Z(1)

n

)(6.7)

=
w ∞
0
e−

a2t2

4π

∞∑
n=1

(
1√

t2 + 4π2n2
− 1

2πn

)
dt+

1

a

w ∞
0
e−

t2

4πa2

∞∑
n=1

(
1√

t2 + 4π2n2
− 1

2πn

)
dt

=: J(a) +
1

a
J

(
1

a

)
,

say. Here the interchange of the order of summation and integration is justified by absolute
convergence. From [30, Equation 6], we have, for Re t > 0,

(6.8) 2
∞∑
n=1

K0(nt) = π

{
1

t
+ 2

∞∑
n=1

(
1√

t2 + 4π2n2
− 1

2nπ

)}
+ γ + log

(
t

2

)
− log 2π.

Hence,

J(a) =
w ∞
0
e−

a2t2

4π

(
1

2π

(
− γ + log 4π − log t+ 2

∞∑
n=1

K0(nt)

)
− 1

2t

)
dt

(6.9)
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=
(−γ + log 4π)

2π

π

a
− 1

2π

(
− π

2a
(γ − log π + 2 log a)

)
+

1

π

w ∞
0
e−

a2t2

4π

( ∞∑
n=1

K0(nt)−
π

2t

)
dt

= − γ

4a
+

log(4
√
πa)

2a
+

1

π

w ∞
0
e−

a2t2

4π

( ∞∑
n=1

K0(nt)−
π

2t

)
dt.

Thus

J

(
1

a

)
= −γa

4
+
a log(4

√
π
a

)

2
+

1

π

w ∞
0
e−

t2

4πa2

( ∞∑
n=1

K0(nt)−
π

2t

)
dt.(6.10)

Next we prove that

w ∞
0
e−

t2

4πa2

( ∞∑
n=1

K0(nt)−
π

2t

)
dt = a

w ∞
0
e−

a2t2

4π

( ∞∑
n=1

K0(nt)−
π

2t

)
dt.(6.11)

Using (5.14), we have

w ∞
0
e−

t2

4πa2

( ∞∑
n=1

K0(nt)−
π

2t

)
dt =

w ∞
0

(
2a

w ∞
0
e−πa

2y2 cos(yt) dy

)( ∞∑
n=1

K0(nt)−
π

2t

)
dt

(6.12)

= 2a
w ∞
0
e−πa

2y2 dy
w ∞
0

( ∞∑
n=1

K0(nt)−
π

2t

)
cos(yt) dt.

Now letting x = t/(2π) in Lemma 1.5 below, using the resulting identity in the above
equation and then again employing a change of variable y = t/(2π), we obtain (6.11). Thus
from (6.7), (6.9), (6.10) and (6.11), we deduce that

∞∑
n=1

( w ∞
0

Θ(x)√
x2 + πn2

dx− Z(1)

n

)
(6.13)

= − γ

4a
+

log(4
√
πa)

2a
− γ

4
+

log(4
√
π
a

)

2
+

2

π

w ∞
0
e−

a2t2

4π

( ∞∑
n=1

K0(nt)−
π

2t

)
dt.

Finally, from (5.7), (6.5) and (6.13), we obtain Ferrar’s formula (1.17). �

We conclude this paper with the proof of Lemma 1.5.

Proof of Lemma 1.5. We first show that the Mellin transform of
∑∞

n=1K0(2πnx)− 1
4x

for
0 < c = Re s < 1 is given by

(6.14)
w ∞
0
xs−1

( ∞∑
n=1

K0(2πnx)− 1

4x

)
dx =

1

4
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
ζ(1− s).

Observe that from (6.8), we have

(6.15)
∞∑
n=1

K0(2πnx)− 1

4x
=
γ

2
+

1

2
log

(
x

2

)
+

1

2

∞∑
n=1

(
1√

x2 + n2
− 1

n

)
.

From (6.4), for 0 < c = Re s < 1, we have

(6.16)
1

2πi

w

(c)

1

2
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
x−s ds =

1√
1 + x2

.
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Shifting the line of integration to c′ = Re s > 1, we get

1

2πi

w

(c′)

1

2
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
x−s ds =

1√
1 + x2

+ lim
s→1

(s− 1)

2
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
x−s(6.17)

=
1√

1 + x2
− 1

x
.

Thus
∞∑
n=1

(
1√

1 + (n
x
)2
− 1

n/x

)
=
∞∑
n=1

1

2πi

w

(c′)

1

2
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)(
n

x

)−s
ds(6.18)

=
1

2πi

w

(c′)

1

2
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
ζ(s)xs ds.

Shifting the line of integration back to 0 < c = Re s < 1, we get

∞∑
n=1

(
1√

1 + (n
x
)2
− 1

n/x

)
=

1

2πi

w

(c)

1

2
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
ζ(s)xs ds

(6.19)

+ lim
s→1

d

ds

(
(s− 1)2

2
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
ζ(s)xs

)
=

1

2πi

w

(c)

1

2
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
ζ(s)xs ds− x

(
γ + log

(
x

2

))
,

so that

γ

2
+

1

2
log

(
x

2

)
+

1

2

∞∑
n=1

(
1√

x2 + n2
− 1

n

)
=

1

2πi

w

(c)

1

4
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
ζ(s)xs−1 ds.

(6.20)

Now replace s by 1 − s in the above equation and then use (6.15) to complete the proof of
(6.14). Now note that for 0 < c = Re s < 1,

(6.21)
w ∞
0
xs−1 cos(2πyx) dx = (2πy)−s cos

(
πs

2

)
Γ(s).

Now the Parseval formula [19, p. 83] in the theory of Mellin transforms says that if F (s) and
G(s) are Mellin transforms of f(x) and g(x) respectively, and if the line Re s = c lies in the
common strip of analyticity of F (1− s) and G(s), then

(6.22)
w ∞
0
f(x)g(x) dx =

1

2πi

w

(c)
F (1− s)G(s) ds.

Now let f(x) =
∑∞

n=1K0(2πnx)− 1
4x

, g(x) = cos(2πyx). Then from (6.14), (6.21) and (6.22),
for 0 < c = Re s < 1, we have

w ∞
0

( ∞∑
n=1

K0(2πnx)− 1

4x

)
cos(2πyx) dx(6.23)

=
1

2πi

w

(c)

1

4
√
π

Γ

(
s

2

)
Γ

(
1− s

2

)
ζ(s)(2πy)−s cos

(
πs

2

)
Γ(s) ds.
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Using the functional equation for ζ(s) in the form ζ(1− s) = (2π)−sΓ(s)ζ(s) cos(1
2
πs) in the

above equation and employing (6.14), we finally obtain (1.18). This completes the proof of
the Lemma. �

Remark 6.1. Theorem 1.4 in [5] can also be obtained as a special case of Theorem 1.4 of
this paper combining the methods in the proofs of corollaries 1.2 and 1.4.
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