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Abstract. A Ramanujan-type formula involving the squares of odd zeta values is obtained.

The crucial part in obtaining such a result is to conceive the correct analogue of the Eisenstein

series involved in Ramanujan’s formula for ζ(2m + 1). The formula for ζ2(2m + 1) is then

generalized in two different directions, one, by considering the generalized divisor function

σz(n), and the other, by studying a more general analogue of the aforementioned Eisenstein

series, consisting of one more parameter N . A number of important special cases are derived

from the first generalization. For example, we obtain a series representation for ζ(1 +

ω)ζ(−1 − ω), where ω is a non-trivial zero of ζ(z). We also evaluate a series involving the

modified Bessel function of the second kind in the form of a rational linear combination of

ζ(4k − 1) and ζ(4k + 1) for k ∈ N.

1. Introduction

The Riemann zeta function ζ(s) is one of the most important special functions of Mathe-

matics. While the critical strip 0 < Re(s) < 1 is undoubtedly the most important region in

the complex plane on account of the unsolved problem regarding the location of non-trivial

zeros of ζ(s), namely, the Riemann Hypothesis, the right-half plane Re(s) > 1 also has its

own share of interesting unsolved problems to contribute to. For example, while it is known

that all even zeta values ζ(2m), m ∈ N, are transcendental, thanks to Euler’s formula

ζ(2m) = (−1)m+1 (2π)2mB2m

2(2m)!
(1.1)

and the facts that π is transcendental and the Bernoulli numbers Bm are rational, the arith-

metic nature of the corresponding odd zeta values ζ(2m+ 1) is far from being known. So far

the only explicit result in this direction is that of Apéry [1], [2] which says ζ(3) is irrational.

Though Rivoal [31], and Ball and Rivoal [5] have shown that there are infinitely many odd

zeta values that are irrational, one is unable to explicitly say which out of these (except ζ(3))

is irrational. For any pair of positive integers a and b, Haynes and Zudilin [20, Theorem 1]

have shown that either there are infinitely many m ∈ N for which ζ(am+ b) is irrational, or

the sequence {qm}∞m=1 of common denominators of the rational elements of the set {ζ(a +

b), ζ(2a + b), · · · , ζ(am + b)} grows super-exponentially, i.e., q
1/m
m → ∞ as m → ∞. A

2010 Mathematics Subject Classification. Primary 11M06; Secondary 11J81.

Keywords and phrases. Odd zeta values, modified Bessel function, Dedekind eta function, Ramanujan’s

formula, irrationality.

1



2 ATUL DIXIT AND RAJAT GUPTA

beautiful result of Zudilin [40] states that at least one of the numbers ζ(5), ζ(7), ζ(9) and

ζ(11) is irrational. A very recent result due to Rivoal and Zudilin [32] states that at least

two of the numbers ζ(5), ζ(7), · · · , ζ(69) are irrational.

One of the most important formulas for odd zeta values is that of Ramanujan [29, p. 173,

Ch. 14, Entry 21(i)], namely, for α, β > 0 with αβ = π2 and m ∈ Z,m 6= 0,

α−m

{
1

2
ζ(2m+ 1) +

∞∑
n=1

n−2m−1

e2αn − 1

}
= (−β)−m

{
1

2
ζ(2m+ 1) +

∞∑
n=1

n−2m−1

e2βn − 1

}

− 22m
m+1∑
j=0

(−1)jB2jB2m+2−2j

(2j)!(2m+ 2− 2j)!
αm+1−jβj . (1.2)

This formula has number of applications. For example, as shown in [17], it encodes funda-

mental transformation properties of Eisenstein series on the full modular group and their

Eichler integrals. See [8] for more details. Identity (1.2) and its special cases, namely, for

α, β > 0 with αβ = π2,

αm
∞∑
n=1

n2m−1

e2αn − 1
− (−β)m

∞∑
n=1

n2m−1

e2βn − 1
= (αm − (−β)m)

B2m

4m
(m > 1), (1.3)

α
∞∑
n=1

n

e2nα − 1
+ β

∞∑
n=1

n

e2nβ − 1
=
α+ β

24
− 1

4
, (1.4)

∞∑
n=1

1

n(e2nα − 1)
−
∞∑
n=1

1

n(e2nβ − 1)
=
β − α

12
+

1

4
log

(
α

β

)
, (1.5)

are known to have applications in theoretical computer science [21] in the analysis of special

data structures and algorithms.

The first published proof of (1.2) is due to Malurkar [27] although he was not aware that this

formula can be found in Ramanujan’s Notebooks. Grosswald too rediscovered this formula

and studied it more generally in [15], [16]. Berndt [6, Theorem 2.2] derived a general formula

from which both Euler’s formula (1.1) and Ramanujan’s formula (1.2) follow as special cases,

thus showing that Euler’s and Ramanujan’s formulas are natural companions of each other.

For an up-to-date history and developments related to Ramanujan’s formulas (1.2)-(1.5), we

refer the reader to [8]. Very recently O’Sullivan [36, Theorem 1.3] has found non-holomorphic

analogues of the formulas of Ramanujan, Grosswald and Berndt containing Eichler integrals

of holomorphic Eisenstein series.

One more special case of Ramanujan’s formula, other than (1.3)-(1.5), can be obtained by

letting α = β = π and m to be odd, thereby resulting in a formula of Lerch [26], namely,

ζ(2m+ 1) + 2
∞∑
n=1

1

n2m+1(e2πn − 1)
= π2m+122m

m+1∑
j=0

(−1)j+1B2jB2m+2−2j

(2j)!(2m+ 2− 2j)!
. (1.6)

This implies [17] that when m is odd, at least one of ζ(2m + 1) and
∑∞

n=1
1

n2m+1(e2πn−1)
is

transcendental.



A RAMANUJAN-TYPE FORMULA FOR ζ2(2m+ 1) AND ITS GENERALIZATIONS 3

Suppose we now ask ourselves if formulas analogous to (1.1) and (1.2) could be obtained

for squares of the zeta values? One reason why one may want to look at this is to obtain

more information on the arithmetic nature of ζ(2m+1); indeed, for a certain k ∈ N, ζ(2k+1)

would be irrational if ζ2(2k + 1) turns out to be so.

It is easy to see that the formula for ζ2(2m) is trivially obtained by squaring both sides

of (1.1). However, if one squares both sides of (1.2), the resulting formula for ζ2(2m+ 1) is

very cumbersome with no hopes of further simplification or of any use. It is important to

mention here a famous quote of G. H. Hardy [18, p. 85]: ‘Beauty is the first test: there is no

permanent place in the world for ugly mathematics’.

The question that remains then is, does there exist a formula for ζ2(2m+ 1) which almost

matches (1.2) in terms of elegance? Not only do we affirmatively answer this question in this

paper, but we also generalize our result in two different directions. In order to derive such

a result, however, it is important to understand the work of Koshliakov in [24], and also in

[23], which builds the foundation of our work.

Note that Ramanujan’s formula for ζ(2m+ 1) involves the Lambert series

∞∑
n=1

a(n)e−2πnx

1− e−2πnx
=

∞∑
n=1

a(n)

e2πnx − 1

with a(n) = n−2m−1. For m < 0, this Lambert series is essentially the Eisenstein series of

weight −2m (except for the constant term), whereas for m ≥ 0, it can be regarded as a

“negative weight Eisenstein series”. In his first Notebook, Ramanujan has few other results

involving the negative weight Eisenstein series. The reader is referred to an interesting article

of Duke [12] in this regard.

The function 1/(e2πx − 1) has simple poles at x = 0,±in, n ∈ N, and hence the partial

fraction decomposition

1

e2πx − 1
= −1

2
+

1

2πx
+
x

π

∞∑
n=1

1

x2 + n2
, (1.7)

so that the pole at x = ±in has residue 1
2π .

Koshliakov [24] studied a function which has simple pole at x = ±in at each n ∈ N,

analogous to 1/(e2πx−1), but with residue 1
2πd(n), where d(n) denotes the number of divisors

of n. This function is given by

Ω(x) := 2

∞∑
j=1

d(j)
(
K0

(
4πε
√
jx
)

+K0

(
4πε
√
jx
))

. (1.8)

Here Kz(x) := π
2

(I−z(x)−Iz(x))
sin zπ is the modified Bessel function of the second kind of order z

[39, p. 78] with Iz(x) being that of the first kind [39, p. 77]. Also, here, and throughout the

paper, ε = exp( iπ4 ) so that ε = exp(− iπ
4 ). It satisfies a relation [22, Equation 5], [24, Equation
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7] analogous to (1.7), namely,

Ω(x) = −γ − 1

2
log x− 1

4πx
+
x

π

∞∑
j=1

d(j)

x2 + j2
,

where γ denotes Euler’s constant. The above formula implies, in particular, that Ω(x) is

real for x > 0. The function Ω(x) plays an instrumental role in Koshliakov’s extremely

clever proof in [22] of the Voronöı summation formula for d(n) and satisfies many beautiful

properties, for example, for c =Re(s) > 1 [24, Equation (11)],

Ω(x) =
1

2πi

∫
(c)

ζ2(1− s)x−s

2 cos
(

1
2πs
) ds,

where here, and throughout the paper,
∫

(c) denotes the line integral
∫ c+i∞
c−i∞ .

In the same paper [24, Equations (27), (29)], Koshliakov gave two beautiful closed-form

evaluations of infinite series involving the function Ω(x), namely, for m > 0,

∞∑
n=1

n4m+1d(n)Ω(n) =
B2

4m+2

(4m+ 2)2

{
log(2π)−

4m+1∑
k=1

1

k
− ζ ′(4m+ 2)

ζ(4m+ 2)

}
, (1.9)

and1

∞∑
n=1

nd(n)Ω(n) =
1

144

{
log(2π)− 1− 6

π2
ζ ′(2)

}
− 1

32π
. (1.10)

Observing the analogy between 1/(e2πx− 1) and Ω(x), one can deduce that the first of these

results is analogous to the one by Glaisher [13], namely,

∞∑
n=1

n4m+1

e2πn − 1
=

B4m+2

2(4m+ 2)
(m > 0). (1.11)

The latter can actually be obtained by replacing m by −2m − 1, and letting α = β = π in

Ramanujan’s formula (1.2). Also, (1.10) is analogous to Schlömilch’s formula [33]

∞∑
n=1

n

e2πn − 1
=

1

24
− 1

8π
,

which follows from (1.4) by letting α = β = π. In [23], Koshliakov studied a more general

series than Ω(x) and analogous results.

1In [23, Equation (48)], Koshliakov incorrectly evaluated this series as

∞∑
n=1

nd(n)Ω(n) =
1

4

{
log(2π)− 9

8
− 6

π2
ζ′(2)

}
.
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2. New results

Note that the series in (1.9) can be constructed from (1.11) by replacing 1 and 1
e2πn−1

in

the latter by d(n) and Ω(n) respectively. This analogy and the aforementioned discussion

suggests that a full-fledged Ramanujan-type formula for ζ2(2m + 1) is not inconceivable.

Indeed, we derive this formula in the theorem below.

Theorem 2.1. For ρ > 0, define Ωρ(n) be defined by

Ωρ(x) := 2

∞∑
j=1

d(j)
(
K0(4ρε

√
jx) +K0(4ρε

√
jx)
)
.

Let m be a non-zero integer. For any α, β > 0 satisfying αβ = π2,

(α2)−m

{
ζ2(2m+ 1)

(
γ + log

(α
π

)
− ζ ′(2m+ 1)

ζ(2m+ 1)

)
+
∞∑
n=1

d(n)Ωα(n)

n2m+1

}

= (−β2)−m

{
ζ2(2m+ 1)

(
γ + log

(
β

π

)
− ζ ′(2m+ 1)

ζ(2m+ 1)

)
+
∞∑
n=1

d(n)Ωβ(n)

n2m+1

}

− π24m
m+1∑
j=0

(−1)jB2
2jB

2
2m+2−2j

((2j)!)2((2m+ 2− 2j)!)2
(α2)j(β2)m+1−j . (2.1)

Remark 1. Note that while the infinite series in (1.2) can be rephrased as

∞∑
n=1

n−2m−1

e2αn − 1
=

∞∑
n,j=1

n−2m−1e−2jnα =
∞∑
k=1

σ−(2m+1)(k)e−2kα,

where σw(n) :=
∑

d|n d
w, the corresponding double series

∑∞
n=1

d(n)Ωα(n)
n2m+1 in (2.1) can also be

represented in the form of a single series:

∞∑
n=1

d(n)Ωα(n)

n2m+1
= 2

∞∑
n,j=1

n−2m−1d(n)d(j)
(
K0(4αε

√
jn) +K0(4αε

√
jn)
)

= 2
∞∑
k=1

bm(k)
(
K0(4αε

√
k) +K0(4αε

√
k)
)
,

where bm(k) :=
∑

n|k n
−2m−1d(n)d(k/n). Note that for m ≥ 0 and any δ > 0,

bm(k) ≤
∑
n|k

d(n)d(k/n) << k
δ
2d(k) << kδ, (2.2)

using repeatedly the fact [19, p. 343, Theorem 315] that d(n) = O
(
nδ
)

for any δ > 0. Similarly

for m < 0,

bm(k) ≤ k−2m−1
∑
n|k

d(n)d(k/n) << k−2m−1+δ.
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Thus, for δ > 0, Re(α) > 0, m ∈ Z and τ = max{−2m− 1, 0},∣∣∣∣∣
∞∑
n=1

d(n)Ωα(n)

n2m+1

∣∣∣∣∣ <<
∞∑
k=1

kτ+δ
(∣∣∣K0(4αε

√
k)
∣∣∣+
∣∣∣K0(4αε

√
k)
∣∣∣)

<<

∞∑
k=1

kτ+δ− 1
4 exp

(
−2α
√

2k
)
,

where in the last step we used the asymptotic formula [14, p. 920, 8.451.6]

Kz(w) ∼
√

π

2w
e−w

as w →∞. Moreover, using (4.4) below with z = 0 and ` > max{−2m, 1},m ∈ Z, and using

(3.1) and the fact that ζ(s) = O(1) for Re(s) > 1, it can be seen that |Ωρ(x)| <<ρ x−`, which

implies that the series
∑∞

n=1
d(n)Ωα(n)
n2m+1 converges absolutely for every integer m.

Let α = β = π and m odd in Theorem 2.1, and note from (1.8) that Ωπ(n) = Ω(n). This

gives an analogue of Lerch’s formula (1.6):

ζ2(2m+ 1)

(
γ − ζ ′(2m+ 1)

ζ(2m+ 1)

)
+
∞∑
n=1

d(n)Ω(n)

n2m+1
= π4m+324m−1

m+1∑
j=0

(−1)j+1B2
2jB

2
2m+2−2j

((2j)!)2((2m+ 2− 2j)!)2
.

(2.3)

Actually we will derive two different generalizations of Theorem 2.1 and then derive Theorem

2.1 as their corollary.

The first generalization is concerned with the more general function Ωρ(x, z) defined by

Ωρ(x, z) := 2
∞∑
j=1

σ−z(j)j
z
2

(
eπiz/4Kz

(
4ρε
√
jx
)

+ e−πiz/4Kz

(
4ρε
√
jx
))

, (2.4)

so that Ωρ(x, 0) = Ωρ(x). The special case Ωπ(x, z), which we will denote by Ω(x, z), was

introduced in [11, Equation (6.5)] and was instrumental in obtaining a simple proof of the

Voronöı summation formula associated with σz(n) for analytic functions [7, Section 6].

Our first generalization of Theorem 2.1 is given in the following theorem.

Theorem 2.2. Let m be a non-zero integer. Let α, β > 0 and αβ = π2. Let B := {0,±2m}∪
{2`+ 1}∞`=−∞. Then for z ∈ C\B,

(α2)−m

{
1

2
ζ(2m+ 1)

(α
π

)z
ζ(2m+ 1− z)ζ(1 + z) +

(α
π

)−z ζ(2m+ 1 + z)ζ(1− z)

cos
(
πz
2

)


+
∞∑
n=1

σ−z(n)nz/2Ωα(n, z)

n2m+1

}

= (−β2)−m

{
1

2
ζ(2m+ 1)

(β
π

)−z
ζ(2m+ 1 + z)ζ(1− z) +

(β
π

)z ζ(2m+ 1− z)ζ(1 + z)

cos
(
πz
2

)

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+

∞∑
n=1

σz(n)n−z/2Ωβ(n,−z)
n2m+1

}

+ (−1)mπ22m
m+1∑
j=0

(−1)jB2jB2m+2−2j ζ(2m+ 2− 2j − z)ζ(2j + z)

(2j)!(2m+ 2− 2j)!

(α
β

)−1−m+2j+z/2
.

(2.5)

Remark 2. The absolute convergence of the infinite series occurring in the above theorem

can be proved in the same way as explained in Remark 1.

Remark 3. Note that in Theorem 2.2, we cannot take z to be an odd integer, say, 2` +

1,−∞ < ` < ∞. However, the limiting case z → 2` + 1 for integer values of `, seen

relative to m occurring in the above theorem, has been considered in Corollaries 4.4, 4.5 and

4.6, with one omitted case discussed in Remark 7. Similarly, the limiting cases z → 0 and

z → ±2m,m 6= 0 are dealt with in Theorem 2.1 and Corollary 4.3 respectively.

It is easy to see that the above transformation is invariant if we simultaneously replace α by

β and z by −z.
There are numerous corollaries that follow from the above theorem. These are given in

the Section 4. However, we highlight a few of them here. We begin by defining two auxiliary

functions

Λ±(x, z) := 2
(
e
iπz
4 ± e−

iπz
4

) ∞∑
j=1

σ−z(j)j
z
2

(
Kz

(
4πε
√
jx
)
±Kz

(
4πε
√
jx
))

. (2.6)

Since K−z(w) = Kz(w), it is easy to see that

Λ±(x, z) = Ω(x, z)± Ω(x,−z).

A result that we infer from Theorem 2.2 is now given.

Theorem 2.3. For z 6= 0,±2, 2`+ 1, where −∞ < ` <∞,
∞∑
n=1

σ−z(n)n1+ z
2 Λ+(n, z) =

1

24

(
1 + sec

(
πz
2

))
(ζ(−1− z)ζ(1 + z) + ζ(−1 + z)ζ(1− z))

− 1

4π
ζ(−z)ζ(z). (2.7)

Remark 4. Let z be a real number. On account of the Schwarz reflection principle, we have

all of the zeta values on the right-hand side of the above equation to be real quantities. Hence,

in this case, the series
∑∞

n=1 σ−z(n)n1+ z
2 Λ+(n, z) is real.

The above theorem gives an interesting result when we specialize z to be a zero of the

Riemann zeta function.

Corollary 2.4. (i) Let ω denote a non-trivial zero of ζ(z). Then

∞∑
n=1

σ−ω(n)n1+ω
2 Λ+(n, ω) =

1

24

(
1 + sec

(
πω
2

))
ζ(−1− ω)ζ(1 + ω).
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(ii) For k ∈ N,

∞∑
n=1

σ4k(n)n1−2kΛ+(n,−4k) = − 1

12

(
B4k

4k
ζ(4k − 1) +

B4k+2

4k + 2
ζ(4k + 1)

)
.

A special case of Part (ii) of Corollary 2.4, in turn, gives the following important corollary:

Corollary 2.5. We have,

∞∑
n=1

σ4(n)

n
Λ+(n,−4) =

1

12

(
1

120
ζ(3)− 1

252
ζ(5)

)
. (2.8)

Thus, at least one of the quantities ζ(5) and
∑∞

n=1
σ4(n)
n Λ+(n,−4) is irrational.

It is widely believed [38, Conjecture 27] that for any n ∈ N, and any non-zero polynomial

P ∈ Q[x0, x1, · · · , xn], P (π, ζ(3), ζ(5), · · · , ζ(2n + 1)) 6= 0, that is, π and all odd zeta values

are algebraically independent over Q. In particular, if proven true, it would imply that ζ(3)

and ζ(5) are algebraically independent over Q. In light of this, it is highly probable that the

series in (2.8) is transcendental, and hence irrational. However, the conjecture on algebraic

independence of the odd zeta values has not yet been proved even in the case of finitely many

odd zeta values, or, even just ζ(3) and ζ(5). Hence it would be phenomenal if the series in

(2.8) turns out to be rational, for then it would prove that ζ(5) is irrational. However, it

seems unlikely that the series would be rational.

As will be shown in Section 4, the limiting case z → ±1 of Theorem 2.3 given below

links four important constants, namely, π, Euler’s constant γ, ζ(3) and the Glaisher-Kinkelin

constant A defined by [35, p. 39, Equation (2)]:

log(A) = lim
n→∞

{
n∑
k=1

k log(k)−
(
n2

2
+
n

2
+

1

12

)
log(n) +

n2

4

}
. (2.9)

Corollary 2.6. Let σ(n) :=
∑

d|n d. Then

∞∑
n=1

σ(n)
√
n Λ+(n, 1) =

6 + 6γ + 3π − 72 log(A)− ζ(3)

288π
. (2.10)

Another generalization of (2.10), different from Theorem 2.3, is given in Corollary 4.6 of

Section 4. Next, we give analogues of (1.3)-(1.5).

Theorem 2.7. For a natural number m > 1, α > 0, β > 0 and αβ = π2,

(α2)m
∞∑
n=1

n2m−1d(n)Ωα(n)− (−β2)m
∞∑
n=1

n2m−1d(n)Ωβ(n)

= −B
2
2m

4m2

{
(α2)m

(
log
( α

2π2

)
+

2m−1∑
k=1

1

k
+
ζ ′(2m)

ζ(2m)

)
− (−β2)m

(
log

(
β

2π2

)
+

2m−1∑
k=1

1

k
+
ζ ′(2m)

ζ(2m)

)}
.

(2.11)
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Letting α = β = π, replacing m by 2m+ 1 in (2.11) gives Koshliakov’s identity (1.9).

Also, the m = −1 case of Theorem 2.1 gives an analogue of (1.4):

Theorem 2.8. Let A be defined in (2.9). For α, β > 0, αβ = π2 we have,

α2
∞∑
n=1

nd(n)Ωα(n) + β2
∞∑
n=1

nd(n)Ωβ(n)

= − π

16
− 1

144

{
α2
(
γ + log

(α
π

)
+ 1− 12 log(A)

)
+ β2

(
γ + log

(
β

π

)
+ 1− 12 log(A)

)}
.

The Stieltjes constants γn are defined by

γn = lim
j→∞

{ j∑
k=1

(log k)n

k
− (log j)n+1

n+ 1

}
. (2.12)

The Dedekind eta function η(w), defined by η(w) := e2πiw/24
∏∞
n=1(1 − e2πinw), Im(w) >

0, satisfies a transformation formula [3, p. 52, Theorem 3.4] under the general modular

transformation V (w) = (aw + b)/(cw + d), a, b, c, d ∈ Z, ad − bc = 1. Let αβ = π2. When

V (w) = −1/w, this transformation can be recast into

α1/4e−α/12
∞∏
n=1

(1− e−2αn) = β1/4e−β/12
∞∏
n=1

(1− e−2βn),

which is equivalent to (1.5). An analogue of (1.5) is now given.

Theorem 2.9. For α, β > 0 such that αβ = π2,

∞∑
n=1

d(n)Ωα(n)

n
−
∞∑
n=1

d(n)Ωβ(n)

n

=
1

144
π(α2 − β2) +

1

48
log

(
α

β

){
48γ2 + 96γ1 − 3π2 − 4 log2

(
α

β

)}
. (2.13)

Remark 5. The generalization of the above result with an extra variable z is given in Corol-

lary 4.7.

Recently the first author and Maji [10, Theorem 1.2] generalized Ramanujan’s formula

(1.2) to obtain the following relation between any two odd zeta values of the form ζ(2m+ 1)

and ζ(2Nm + 1), where N is an odd positive integer, m ∈ Z\{0}, and where α, β > 0 with

αβN = πN+1:

α−
2Nm
N+1

(
1

2
ζ(2Nm+ 1) +

∞∑
n=1

n−2Nm−1

exp ((2n)Nα)− 1

)

=
(
−β

2N
N+1

)−m 22m(N−1)

N

(
1

2
ζ(2m+ 1) + (−1)

N+3
2

N−1
2∑

j=
−(N−1)

2

(−1)j
∞∑
n=1

n−2m−1

exp
(

(2n)
1
N βe

iπj
N

)
− 1

)
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+ (−1)m+N+3
2 22Nm

bN+1
2N

+mc∑
j=0

(−1)jB2jBN+1+2N(m−j)

(2j)!(N + 1 + 2N(m− j))!
α

2j
N+1βN+

2N2(m−j)
N+1 . (2.14)

On page 332 of his Lost Notebook [30], Ramanujan embarked on obtaining some result

on a more general form of the Lambert series occurring in the above equation, namely,∑∞
n=1 n

N−2h/(exp (nNx)− 1), however he does not give any result. See [10] for details.

Our next generalization of Theorem 2.1 gives an analogue of (2.14) by relating ζ2(2m+ 1)

with ζ2(2Nm+ 1) .

Theorem 2.10. Let N be an odd positive integer. Let α, β > 0 with αβN = πN+1. Then

(
α

4N
N+1

)−m{
ζ2(2Nm+ 1)

(
γ + log

(α
π

)
−N ζ ′(2Nm+ 1)

ζ(2Nm+ 1)

)
+

∞∑
n=1

d(n)

n2Nm+1
Ωα

(
nN
)}

=
1

N

(
−β

4N
N+1

)−m{
ζ2(2m+ 1)

(
γ +

1

N
log

(
β

π

)
− 1

N

ζ ′(2m+ 1)

ζ(2m+ 1)

)

+ (−1)
N+3

2

N−1
2∑

j=− (N−1)
2

(−1)j
∞∑
n=1

d(n)

n2m+1
Ωβ

(
e−

ijπ
N n1/N

)}

− π22N−2+4Nm

bN+1
2N

+mc∑
j=0

(−1)j24j(1−N)B2
2jB

2
N+1+2N(m−j)

(2j)!2(N + 1 + 2N(m− j))!2
α

4j
N+1β2N+

4N2(m−j)
N+1 .

As can be readily seen, letting N = 1 in the above theorem gives Theorem 2.1. A counter-

part of the above theorem for even N , which is an analogue of Wigert’s formula [10, Theorem

1.4], is given at the end of Section 5.

This paper is organized as follows. In Section 3, we collect the preliminary results often

used in the proofs. Section 4 commences with a lemma used the proof of the main theorem

following it, that is, Theorem 2.2. The proof of Theorem 2.2 is then followed by several of

its corollaries, namely, Theorem 2.1, the limiting case z → 2m discussed in Corollary 4.3, the

limiting case z → 2`+1 discussed in Corollaries 4.4, 4.5 and 4.6. A yet another special case of

Theorem 2.2, namely, Theorem 2.3, is then proved, followed by the proofs of Corollaries 2.4

and 2.5. Corollary 2.6 is then obtained from Corollary 4.6. An analogue of the transformation

formula for the logarithm of the Dedekind eta function, that is, of (1.5), which involves an

extra variable z, is then derived in Corollary 4.7 with its special case Corollary 4.8 stated next.

This is followed by the proofs of Theorems 2.9, 2.7 and 2.8 in that order. Section 5 is devoted

to the second generalization of Theorem 2.1 consisting of the extra parameter N . This is

achieved by first deriving a general result, Theorem 5.1, and then proving Theorem 2.10 as

its special case. The analogue of the latter theorem for N even is then given in Theorem 5.2.

The paper ends with some concluding remarks and directions for further research.
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3. Nuts and bolts

Here we collect well-known results that are frequently used in the sequel. Stirling’s formula

for the Gamma function on a vertical strip states that for a ≤ σ ≤ b and |t| ≥ 1,

|Γ(σ + it)| = (2π)
1
2 |t|σ−

1
2 e−

1
2π|t|

(
1 +O

(
1

|t|

))
. (3.1)

The functional equation of the Riemann zeta function is given by [37, p. 13, Equation (2.1.1)]

ζ(s) = 2sπs−1Γ(1− s)ζ(1− s) sin
(πs

2

)
. (3.2)

For Re(s) > max{1, 1+Re(b)}, we have [37, p. 8, Equation (1.3.1)]

∞∑
n=1

σb(n)

ns
= ζ(s)ζ(s− b). (3.3)

In 1885, Stieltjes found the Laurent series expansion of ζ(s) around s = 1, which is given by

[25, Theorem 3.2.1]

ζ(s) =
1

s− 1
+ γ +

∞∑
n=1

(−1)nγn
n!

(s− 1)n,

where γn is defined in (2.12). Hence, as s→ 1,

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) +O

(
|s− 1|2

)
. (3.4)

We will use the elementary fact σz(n)n−z/2 = σ−z(n)nz/2 without mention in the sequel.

4. The first generalization of Theorem 2.1 with an additional variable z

Here we first prove Theorem 2.2 and then obtain several interesting corollaries from it,

including Theorem 2.1. We begin with a lemma.

Lemma 4.1. Let Ωρ(x, z) be defined as in (2.4). Then for c =Re(s) > 1±Re
(
z
2

)
,

Ωρ(x, z) =
1

2πi

∫
(c)

ζ
(
1− s+ z

2

)
ζ
(
1− s− z

2

)
2 cos

(
π
2 (s+ z

2)
) (

ρ2

π2
x

)−s
ds.

Proof. For Re(s) > ±Re(z) and Re(a) > 0, we know that [28, p. 115, Formula 11.1]∫ ∞
0

ts−1Kz(at) dt = 2s−2a−sΓ

(
s− z

2

)
Γ

(
s+ z

2

)
. (4.1)

Now employ the change of variable t =
√
x and then replace s by 2s so that for c =Re(s) >

±Re
(
z
2

)
and Re(a) > 0,∫ ∞

0
xs−1Kz(a

√
x) dx = 22s−1a−2sΓ

(
s+

z

2

)
Γ
(
s− z

2

)
. (4.2)
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Replace a by 4ρε
√
j and then by 4ρε

√
j in (4.2) and add the resulting two equations so that∫ ∞

0
xs−1(eπiz/4Kz(4ρε

√
jx) + e−πiz/4Kz(4ρε̄

√
jx)) dx

=
1

(2ρ
√
j)2s

Γ
(
s+

z

2

)
Γ
(
s− z

2

)
cos
(π

2

(
s− z

2

))
. (4.3)

Employing the above identity in terms of its equivalent inverse Mellin transform representa-

tion in the definition of Ωρ(x, z), we deduce that

Ωρ(x, z) =
2

2πi

∞∑
j=1

σ−z(j)j
z
2

∫
(c)

1

(2ρ
√
j)2s

Γ
(
s+

z

2

)
Γ
(
s− z

2

)
cos
(π

2

(
s− z

2

))
x−s ds

=
2

2πi

∫
(c)

1

(2ρ)2s
Γ
(
s+

z

2

)
Γ
(
s− z

2

)
cos
(π

2

(
s− z

2

)) ∞∑
j=1

σ−z(j)

js−
z
2

x−s ds,

where the interchange of the order of summation and integration can be justified by means of

absolute convergence which in turn follows from (3.1). Using (3.3) with s replaced by s− z
2

and b by −z in the above equation, we see that for c =Re(s) > 1±Re
(
z
2

)
,

Ωρ(x, z) =
2

2πi

∫
(c)
ζ
(
s− z

2

)
ζ
(
s+

z

2

)
Γ
(
s+

z

2

)
Γ
(
s− z

2

)
cos
(π

2

(
s− z

2

)) (
4ρ2x

)−s
ds

=
1

2πi

∫
(c)

ζ
(
1− s+ z

2

)
ζ
(
1− s− z

2

)
2 cos

(
π
2

(
s+ z

2

)) (
ρ2x

π2

)−s
ds, (4.4)

where in the last step we used the functional equation (3.2) twice, once, with s replaced by

1− s+ z
2 , and then with 1− s− z

2 . �

Proof of Theorem 2.2. We first assume Re(z) ≥ 0 and let m ∈ N. We begin with the series

on the left-hand side of (2.5). Using the variant of the reflection formula for the Gamma

function, namely, Γ
(

1
2 + w

)
Γ
(

1
2 − w

)
= π

cos(πw) , w /∈ Z− 1
2 , followed by (3.1), it can be shown

that as Im(s)→∞,

1∣∣cos
(
π
2

(
s+ z

2

))∣∣ = 2 exp
(
−π

2

∣∣Im(s) + 1
2 Im(z)

∣∣)(1 +O

(
1

|Im(s)|

))
. (4.5)

This guarantees the interchange of the order of summation and integration in the second step

below and therefore using Lemma 4.1, we have

∞∑
n=1

σ−z(n)nz/2Ωα(n, z)

n2m+1
=

∞∑
n=1

σ−z(n)

n2m+1− z
2

1

2πi

∫
(c)

ζ
(
1− s+ z

2

)
ζ
(
1− s− z

2

)
2 cos

(
π
2 (s+ z

2)
) (

nα2

π2

)−s
ds

=
1

2πi

∫
(c)

( ∞∑
n=1

σ−z(n)

n2m+1+s− z
2

)
ζ
(
1− s+ z

2

)
ζ
(
1− s− z

2

)
2 cos

(
π
2 (s+ z

2)
) (

α2

π2

)−s
ds.

In order to represent the series
∑∞

n=1 σ−z(n)n−2m−1−s+ z
2 as the zeta product, we need c >

max{1 + Re(z/2),−2m ± Re(z/2)} = 1+Re(z/2) since Re(z) ≥ 0 and m > 0. Thus for
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c > 1+Re(z/2),

∞∑
n=1

σ−z(n)nz/2Ωα(n, z)

n2m+1
=

1

2πi

∫
(c)
F (s, z,m) ds, (4.6)

where

F (s, z,m) :=
G(s, z,m)

2 cos
(
π
2 (s+ z

2)
)(α2

π2

)−s
, (4.7)

with

G(s, z,m) := ζ
(

2m+ 1 + s− z/2
)
ζ
(

2m+ 1 + s+ z/2
)
ζ
(

1− s+
z

2

)
ζ
(

1− s− z

2

)
. (4.8)

Consider the contour C determined by the line segments [c−iT, c+iT ], [c+iT,−λ+iT ], [−λ+

iT,−λ − iT ], [−λ − iT,−c − iT ], where c = c′ + Re(z/2) with 1 < c′ < 3, and λ = 2m +

Re(z/2)+c′ so that −2m−3−Re(z/2) < −λ < −2m−1−Re(z/2). In general, let Ra denote

the residue of the associated integrand, in this case F (s, z,m), at s = a.

It is easy to see that the integrand F (s, z,m) has simple poles at −2m± z/2,±z/2 due to

each of the four zeta functions as well as simple poles at −2k + 1 − z/2 for 0 ≤ k ≤ m + 1.

The latter ones are due to the zeros of cos
(
π
2

(
s+ z

2

))
at −2k+ 1− z/2. Note that the zeros

corresponding to k > m+ 1 get canceled by the corresponding zeros of ζ (2m+ 1 + s+ z/2)

at s = −2j − 2m − 1 − z/2, j > 0. The residues at the above poles can be easily calculated

thus giving

R−2m+z/2 =
1

2
(−1)m (α/π)4m−z sec

(πz
2

)
ζ(1 + 2m)ζ(1 + z)ζ(1 + 2m− z),

R−2m−z/2 =
1

2
(−1)m

(α
π

)4m+z
ζ(1 + 2m)ζ(1− z)ζ(1 + 2m+ z),

Rz/2 = −1

2

(α
π

)−z
sec
(πz

2

)
ζ(1 + 2m)ζ(1− z)ζ(1 + 2m+ z),

R−z/2 = −1

2

(α
π

)z
ζ(1 + 2m)ζ(1 + z)ζ(1 + 2m− z),

R1−2k−z/2 =
1

4α
(−1)k+m(2π)2+2m

(π
α

)1−4k−z B2kB2−2k+2mζ(2k + z)ζ(2− 2k + 2m− z)
(2k)!(2− 2k + 2m)!

.

(4.9)

By Cauchy’s residue theorem,

1

2πi

[∫ c+IT

c−iT
+

∫ −λ+IT

c+iT
+

∫ −λ−IT
−λ+iT

+

∫ c−IT

−λ−iT

]
F (s, z,m) ds

= Rz/2 +R−z/2 +R−2m−z/2 +R−2m+z/2 +

m+1∑
k=0

R1−2k−z/2.

Using (3.1) again and the elementary bounds on the Riemann zeta function, it can be easily

shown that the integrals over the horizontal segments tend to zero at T → ∞. Thus from
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(4.6),

∞∑
n=1

σ−z(n)nz/2Ωα(n, z)

n2m+1
=

1

2πi

∫
(−λ)

F (s, z,m) ds+Rz/2 +R−z/2 +R−2m−z/2

+R−2m+z/2 +

m+1∑
k=0

R1−2k−z/2. (4.10)

To evaluate the integral in the above equation, employ the change of variable s = −w − 2m

and note from (4.8) that G(−2m−w, z,m) = G(w, z,m). Along with recalling the fact that

λ = 2m+Re(z/2) + c′, 1 < c′ < 3, this gives

1

2πi

∫
(−λ)

F (s, z,m) ds = (−1)m

(
α

π

)4m
1

2πi

∫
(c′+Re(z/2))

G(w, z,m)

2 cos
(
π
2 (s− z

2)
)(α2

π2

)w
dw

= (−1)m

(
α

π

)4m
1

2πi

∫
(c′+Re(z/2))

G(w,−z,m)

2 cos
(
π
2 (s− z

2)
)((π4/α2

)
π2

)−w
dw

= (−1)m

(
α

π

)4m ∞∑
n=1

σz(n)n−z/2Ωπ2

α

(n,−z)

n2m+1
, (4.11)

as can be seen from (4.6) and (4.7). Note that in the second step in the above calculation,

we have used the fact that G(w, z,m) = G(w,−z,m).

Therefore from (4.9), (4.10) and (4.11), we obtain upon simplification

∞∑
n=1

σ−z(n)nz/2Ωα(n, z)

n2m+1

+
1

2
ζ(2m+ 1)

{(α
π

)z
ζ(1 + 2m− z)ζ(1 + z) +

(α
π

)−z ζ(1 + 2m+ z)ζ(1− z)

cos
(
πz
2

) }

= (−1)m

(
α

π

)4m ∞∑
n=1

σz(n)n−z/2Ωπ2

α

(n,−z)

n2m+1

+
(−1)mα4m

2π4m
ζ(2m+ 1)

{(α
π

)z
ζ(1 + 2m+ z)ζ(1− z) +

(α
π

)−z ζ(1 + 2m− z)ζ(1 + z)

cos
(
πz
2

) }

+

m+1∑
k=0

(−1)m+k

4α
(2π)2+2m

(π
α

)1−4k−z B2kB2−2k+2m

(2k)!(2− 2k + 2m)!
ζ(2− 2k + 2m− z)ζ(2k + z).

Multiply both sides of the above equation by (α2)−m, employ the fact αβ = π2, and observe

that

(α2)−m
1

α
π2+2m

(π
α

)1−4k−z
= π

(α
β

)−1−m+2k+z/2
.

This leads to (2.5) and thus completes the proof of Theorem 2.2 for Re(z) ≥ 0 and m > 0.

For Re(z) ≤ 0 and m > 0, simply swap α and β and simultaneously replace z by −z. This
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leaves (2.5) invariant and we are back to the case just proved above. For m < 0, the result

can be proved exact along the similar lines as above. �

Corollary 4.2. Theorem 2.1 is valid.

Proof. Let z → 0 in Theorem 2.2. Using (1.1) twice and the fact that αβ = π2, it is easy to

see that as z → 0, the right-hand side of (2.5) tends to that of (2.1). Thus it suffices to show

that

lim
z→0

(α
π

)z
ζ(2m+ 1− z)ζ(1 + z) +

(α
π

)−z ζ(2m+ 1 + z)ζ(1− z)

cos
(
πz
2

)


= 2ζ(2m+ 1)

(
γ + log

(α
π

)
− ζ ′(2m+ 1)

ζ(2m+ 1)

)
. (4.12)

To that end, we use (3.4) with s replaced by 1 + z and two other well-known expansions as

z → 0:

ζ(2m+ 1± z) = ζ(2m+ 1)± zζ ′(2m+ 1) +Om(|z|),(α
π

)z
= exp

(
z log

(α
π

))
= 1 + z log

(α
π

)
+Oα

(
|z|2
)
.

Thus, as z → 0,(α
π

)z
ζ(2m+ 1− z)ζ(1 + z)

=
(

1 + z log
(α
π

)
+Oα

(
|z|2
)) (

ζ(2m+ 1)± zζ ′(2m+ 1) +Om(|z|)
)(1

z
+ γ +O(|z|)

)
=

1

z
ζ(2m+ 1) + ζ(2m+ 1)

((
γ + log

(α
π

))
− ζ ′(2m+ 1)

ζ(2m+ 1)

)
+O (|z|) . (4.13)

Now applying the functional equation (3.2) with s replaced by 1 − z in the first step below

and then using some of the above expansions as well as

Γ(z) =
1

z
− γ +O(|z|),

ζ(z) = −1

2
− z

2
log(2π) +O

(
|z|2
)
,

as z → 0, in the second step, we see that(α
π

)−z ζ(2m+ 1 + z)ζ(1− z)

cos
(
πz
2

)
= 2(2α)−zζ(z)Γ(z)ζ(2m+ 1 + z)

= 2
(
1− z log(2α) +Oα

(
|z|2
))(1

z
− γ +O(|z|)

)(
−1

2
− z

2
log(2π) +O

(
|z|2
))

×
(
ζ(2m+ 1) + zζ ′(2m+ 1) +Om(|z|)

)
= −1

z
ζ(2m+ 1) + ζ(2m+ 1)

((
γ + log

(α
π

))
− ζ ′(2m+ 1)

ζ(2m+ 1)

)
+O (|z|) . (4.14)

Adding (4.13) and (4.14) and then letting z → 0 leads to (4.12). This proves (2.1). �
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Corollary 4.3. Let α, β > 0 such that αβ = π2. Then for m ∈ N,

(α2)−m
∞∑
n=1

σ−2m(n)Ωα(n, 2m)

nm+1
− (−β2)−m

∞∑
n=1

σ−2m(n)Ωβ(n,−2m)

nm+1

=
ζ2(2m+ 1)

2π2m
log

(
α

β

)
+

1

2
(−1)m+1π2m

(
α−4m − β−4m

)
ζ(2m+ 1)ζ(4m+ 1)ζ(1− 2m)

+


1
6π

2m+324m−1 B2mB2m+2

(2m)!(2m+2)!

(
α
β −

β
α

)
, if m > 0,

0, if m ≤ −1.
(4.15)

Proof. Write (2.5) in the form

(α2)−m
∞∑
n=1

σ−z(n)nz/2Ωα(n, z)

n2m+1
− (−β2)−m

∞∑
n=1

σz(n)n−z/2Ωβ(n,−z)
n2m+1

=
1

2
ζ(2m+ 1)

{
πzζ(2m+ 1 + z)ζ(1− z)

(
(−1)mβ−z−2m − α−z−2m/ cos

(
πz
2

))
+ π−zζ(2m+ 1− z)ζ(1 + z)

(
(−1)mβz−2m/ cos

(
πz
2

)
− αz−2m

)}
+ (−1)mπ22m

m+1∑
j=0

(−1)jB2jB2m+2−2j ζ(2m+ 2− 2j − z)ζ(2j + z)

(2j)!(2m+ 2− 2j)!

(α
β

)−1−m+2j+z/2
.

(4.16)

Now let z → 2m. It is easy to see that the left-hand side of the above equation then becomes

that of (4.15). On the right-hand side, we have

lim
z→2m

πzζ(2m+ 1 + z)ζ(1− z)
(
(−1)mβ−z−2m − α−z−2m/ cos

(
πz
2

))
=

1

2
(−1)m+1π2m

(
α−4m − β−4m

)
ζ(2m+ 1)ζ(4m+ 1)ζ(1− 2m). (4.17)

Also, using (3.4) with s replaced by 2m+ 1− z, we see that as z → 2m,

ζ(2m+ 1− z) =
1

2m− z
+ γ +O (|z − 2m|) .

Hence

lim
z→2m

π−zζ(2m+ 1− z)ζ(1 + z)
(
(−1)mβz−2m/ cos

(
πz
2

)
− αz−2m

)
= π−2mζ(2m+ 1) lim

z→2m

(
1

2m− z
+ γ +O (|z − 2m|)

)(
(−1)mβz−2m/ cos

(
πz
2

)
− αz−2m

)
= π−2mζ(2m+ 1) lim

z→2m

1

2m− z
(
(−1)mβz−2m/ cos

(
πz
2

)
− αz−2m

)
=

1

2π2m
ζ2(2m+ 1) log

(
α

β

)
. (4.18)

Note that in the finite sum on the right-hand side of (4.16), only the terms corresponding to

j = 0, 1 survive when m > 0. On simplifying these two terms using (1.1), and then combining



A RAMANUJAN-TYPE FORMULA FOR ζ2(2m+ 1) AND ITS GENERALIZATIONS 17

with (4.17) and (4.18), one arrives at 1
6π

2m+324m−1 B2mB2m+2

(2m)!(2m+2)!

(
α
β −

β
α

)
. Also, for m ≤ −1,

the sum is easily seen to be zero. �

Remark 6. We note that letting α = β = π in Corollary 4.3 gives 0 = 0.

Corollary 4.4. Let m ∈ N, α, β > 0 such that αβ = π2. Then,

(α2)−m
∞∑
n=1

σ−2`−1(n)Ωα(n, 2`+ 1)

n2m−`+1/2
− (−β2)−m

∞∑
n=1

σ−2`−1(n)Ωβ(n,−2`− 1)

n2m−`+1/2

= (−1)mπ22m
m+1∑
j=0

(−1)jB2jB2m+2−2j

(2j)!(2m+ 2− 2j)!
ζ(2m− 2`− 2j + 1)ζ(2j + 2`+ 1)

(
α

β

)2j+`−m− 1
2

+ π(−1)`22mζ(2m+ 1)

(
β

π

)2`−2m+1 (2`− 2m)!B2`+2

(2`+ 2)!
ζ(2`− 2m+ 1)

− π(−1)`22mζ(2m+ 1)

(−1)m
(
α
π

)−2`−2m−1 (2`)!B2m+2`+2

(2m+2`+2)! ζ(2`+ 1), if ` ≥ max{1,m+ 1},

0, if 1 ≤ ` < −m− 1.

(4.19)

Proof. First let ` ≥ max{1,m + 1}. Let z → 2` + 1 in Theorem 2.2. Since m ≤ ` − 1, we

have ζ(2m− 2`) = 0. Hence by L’Hopital’s rule,

lim
z→2`+1

ζ(2m+ 1− z)
cos
(
πz
2

) =
2

π
(−1)`ζ ′(2m− 2`)

=
(−1)m(2`− 2m)!

π(2π)2`−2m
ζ(2`− 2m+ 1), (4.20)

where in the last step, we used the well-known formula [35, p. 167]

ζ ′(−2k) =
(−1)k(2k)!

2(2π)2k
ζ(2k + 1).

We need to use (4.20) once with m = 0 and once more with a general m. This gives (4.19)

upon simplification.

Now let 1 ≤ ` < −m− 1. Again let z → 2`+ 1 in Theorem 2.2. Then ζ(2m+ 1− z) = 0 =

ζ(1− z) and also ζ(2m+ 1 + z) = 0. Hence

lim
z→2`+1

ζ(2m+ 1 + z)ζ(1− z)
cos
(
πz
2

) = 0.

This gives (4.19) upon simplification. �

Corollary 4.5. For α, β > 0, αβ = π2, m ∈ N and m > 1,

α2m
∞∑
n=1

σ2m−1(n)nm−1/2Ωα(n, 2m− 1)− (−β2)m
∞∑
n=1

σ2m−1(n)nm−1/2Ωβ(n, 1− 2m)

= −B2m

2m

{
α(2m− 2)!ζ(2m− 1)

22m
+

(−1)m+1π22m−1B2m(4m− 2)!

(2m)!

(
β

2π

)4m−1

ζ(4m− 1)

}
.

(4.21)
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Proof. Let m ∈ Z,m < −1, and then z = −2m− 1 in Theorem 2.2. Then

ζ(2m+ 1− z) = 0 = ζ(1− z), ζ(1 + z) = ζ(−2m) and ζ(2m+ 1 + z) = ζ(0) = −1/2.

(4.22)

Also,

lim
z→−2m−1

ζ(1− z)
cos
(
πz
2

) = 22m+2π2m+1(−2m− 2)!ζ(−2m− 1), (4.23)

whereas replacing ` by −m− 1 in (4.20) gives

lim
z→−2m−1

ζ(2m+ 1− z)
cos
(
πz
2

) =
(−1)m(−4m− 2)!

π(2π)−4m−2
ζ(−4m− 1). (4.24)

Substituting (4.22), (4.23), (4.24) in Theorem 2.2 and then replacing m by −m, we find that

for m > 1,

α2m
∞∑
n=1

σ2m−1(n)nm−1/2Ωα(n, 2m− 1)− (−β2)m
∞∑
n=1

σ2m−1(n)nm−1/2Ωβ(n, 1− 2m)

= ζ(1− 2m)

(
α2−2m(2m− 2)!ζ(2m− 1) + π1−2m

(
β
2π

)4m−1
(4m− 2)!ζ(4m− 1)ζ(2m)

)
.

Now (4.21) follows by using ζ(1− 2m) = −B2m/(2m) [4, p. 266, Theorem 12.16] and Euler’s

formula (1.1). �

For example, the case α = β = π and m = 2 of the above corollary gives

∞∑
n=1

σ3(n)n3/2Λ−(n, 3) =
1

960π3

(
ζ(3) +

1

2
ζ(7)

)
,

where Λ−(x, z) is defined in (2.6).

A yet another special case of Theorem 2.2 is given.

Corollary 4.6. For α, β > 0, αβ = π2,

α2
∞∑
n=1

σ(n)
√
nΩα(n,−1) + β2

∞∑
n=1

σ(n)
√
nΩβ(n, 1)

=
πα

96
− α3

288π2
ζ(3)− β

48
log

(
α

β

)
+
β

48
γ +

β

4
ζ ′(−1). (4.25)

Proof. Let m = −1 and then let z → −1 in Theorem 2.2. Note that this requires evaluating

L := lim
z→−1

{
βz+2

24πz
ζ(−1− z)ζ(1 + z)

cos
(
πz
2

) − π

4
ζ(z)ζ(−z)

(
α

β

)z/2}
. (4.26)

As z → −1,

1

cos
(
πz
2

) =
(2/π)

z + 1
+O (|z + 1|) ,

ζ(−z) =
−1

z + 1
+ γ +O (|z + 1|) .
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Hence substituting the above Laurent series expansions in (4.26), we have

L = L1 +
γπ

48

(
α

β

)−1/2

, (4.27)

where

L1 = lim
z→−1

1

(z + 1)

{
βz+2

12πz+1
ζ(−1− z)ζ(1 + z) +

π

4
ζ(z)

(
α

β

) z
2

}

= lim
z→−1

{
βz+2

12πz+1
log

(
β

π

)
ζ(−1− z)ζ(1 + z) +

π

4
ζ ′(z)

(
α

β

) z
2

+
π

8
ζ(z)

(
α

β

) z
2

log

(
α

β

)}

=
β

48
log

(
β

π

)
+
π

4
ζ ′(−1)

√
β√
α
− π

96

√
β√
α

log

(
α

β

)
,

where in the second step we used L’Hopital’s rule.

Now substitute the above value of L1 in (4.27), and repeatedly use the fact αβ = π2 to

obtain

L = − β

48
log

(
α

β

)
+
β

48
γ +

β

4
ζ ′(−1). (4.28)

Substituting (4.28) into the identity resulting by letting z → −1 in Theorem 2.2 and simpli-

fying leads to (4.25). �

Remark 7. A further limiting case of Theorem 2.2 can be obtained by letting z → 2` + 1

with −m ≤ ` < m,m > 0, ` 6= −1. We refrain from giving this identity since it is quite

complicated.

We now prove other special cases of Theorem 2.2, some of which are stated in the intro-

duction.

Proof of Theorem 2.3. Let m = −1 and α = β = π in Theorem 2.2, use ζ(−1) = −1/12,

and simplify. This gives (2.7) upon recalling (2.6) and observing that

∞∑
n=1

σ−z(n)n1+ z
2 Ω(n, z) +

∞∑
n=1

σz(n)n1− z
2 Ω(n,−z) =

∞∑
n=1

σ−z(n)n1+ z
2 Λ+(n, z).

�

Proof of Corollary 2.4. To prove part (i), let z = ω in Theorem 2.3. Note then that not

only is ζ(ω) = 0 but also ζ(1−ω) = 0, as is the well-known fact, or, which can be easily seen

through the functional equation (3.2).

For part (ii), let z = −4k, k ∈ N in Theorem 2.3, note that ζ(−4k) = 0 and use the fact

ζ(−λ) = −Bλ+1/(λ+ 1) for λ ∈ N once with λ = 4k − 1 and then with λ = 4k + 1. �

Proof of Corollary 2.5. Let k = 1 in Part (ii) of Corollary 2.4 to get (2.8). Now if both ζ(5)

and
∑∞

n=1
σ4(n)
n Λ+(n,−4) were rational, that would imply that ζ(3) is rational too. But this

contradicts Apéry’s result that ζ(3) is irrational. Hence the proposed claim is true. �
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Proof of Corollary 2.6. Let α = β = π in Corollary 4.6 and use the relation [9, Equation

(3.18)]

ζ ′(−1) =
1

12
− log(A), (4.29)

where A is the Glaisher-Kinkelin constant. �

We next give an analogue of the transformation formula for the logarithm of the Dedekind

eta function, that is, of (1.5), which consists of an extra variable z.

Corollary 4.7. For z 6= 0,±1 and α, β > 0 with αβ = π2, we have

∞∑
n=1

σ−z(n)nz/2Ωα(n, z)

n
−
∞∑
n=1

σz(n)n−z/2Ωβ(n,−z)
n

= − π

12

(
α

β

) z
2
{
α

β
ζ(−z)ζ(2 + z)− β

α
ζ(z)ζ(2− z)

}
+

1

2

(
α

β

)− z
2

×
[
d

dz

{((
α

β

)z
− sec

(πz
2

))
ζ(1− z)ζ(1 + z)

}
+ log

(
α

β

)
sec
(πz

2

)
ζ(1− z)ζ(1 + z)

]
.

(4.30)

Proof. The proof is quite similar to that of Theorem 2.2 and hence we will be very brief.

Assume Re(z) ≥ 0. For 1+Re(z/2) < c =Re(s) < 3+Re(z/2),

∞∑
n=1

σ−z(n)nz/2Ωα(n, z)

n

=
1

2πi

∫
(c)
ζ
(

1− s+
z

2

)
ζ
(

1− s− z

2

)
ζ
(

1 + s− z

2

)
ζ
(

1 + s+
z

2

) (α2/π2)−s

2 cos
(
π
2

(
s+ z

2

)) ds.
Now shift the line of integration to Re(s) = −λ, where 1+Re(z/2) < λ =Re(s) < 3+Re(z/2)

by constructing a rectangular contour, and consider the contribution of the residues at the

simple poles of the integrand at ±1 − z/2 (due to cos
(
π
2

(
s+ z

2

))
) and at the double poles

at ±z/2 (due to ζ(1 ± s ± z/2)), which, upon simplification, turns out to be the right-hand

side of (4.30). The application of the residue theorem then leads to (4.30).

For Re(z) ≤ 0, simply swap α and β and simultaneously replace z by −z in (4.30). This

leaves (4.30) invariant, which proves the result by reducing it to the previous case Re(z) ≥
0. �

We now give a corollary of the above result when z is specialized to be a non-trivial zero of

ζ(z) or a trivial zero of the form −4k − 2, k ∈ N. We omit the proof as it is easy.

Corollary 4.8. (i) Let ω denote a non-trivial zero of ζ(z). Then

∞∑
n=1

σ−ω(n)n
ω
2
−1Λ−(n, ω) = − π

12
ζ(−ω)ζ(2 + ω)− 1

2

(
1− sec

(
πω
2

))
ζ(1 + ω)ζ ′(1− ω).
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(ii) For k ∈ N,

∞∑
n=1

σ4k+2(n)n−2k−2Λ−(n,−4k − 2) = ζ(4k + 3)ζ ′(−4k − 1)− ζ ′(4k + 3)ζ(−4k − 1).

We now prove Theorems 2.7-2.9. We begin with that of Theorem 2.9 first since it follows

from the above corollary.

Proof of Theorem 2.9. Let z → 0 in Corollary 4.7. The only thing to be shown is that the

right-hand side of (4.30) reduces, as z → 0, to that of (2.13). To that end, first note that

lim
z→0

(
− π

12

(
α

β

) z
2
{
α

β
ζ(−z)ζ(2 + z)− β

α
ζ(z)ζ(2− z)

})
= − π

12

(
α

β
− β

α

)(
−1

2

)(
π2

6

)
=

π

144

(
α2 − β2

)
, (4.31)

since αβ = π2. As z → 0,

sec
(πz

2

)
= 1 +

π2z2

8
+O

(
|z|4
)
.

This, along with (3.4), implies that as z → 0,

sec
(πz

2

)
ζ(1− z)ζ(1 + z) = − 1

z2
+

(
γ2 + 2γ1 −

π2

8

)
+O

(
|z|2
)
. (4.32)

Since (
α

β

)z
= 1 + z log

(
α

β

)
+
z2

2!
log2

(
α

β

)
+
z3

3!
log3

(
α

β

)
+O

(
|z|4
)
,

we have(
α

β

)z
ζ(1− z)ζ(1 + z) = − 1

z2
− log(α/β)

z
+

(
γ2 + 2γ1 −

1

2
log2

(
α

β

))
+ log

(
α

β

)(
γ2 + 2γ1 −

1

6
log2

(
α

β

))
z +O

(
|z|2
)

(4.33)

as z → 0. Hence from (4.32) and (4.33),

d

dz

{((
α

β

)z
− sec

(πz
2

))
ζ(1− z)ζ(1 + z)

}
=

log(α/β)

z2
+ log

(
α

β

)(
γ2 + 2γ1 −

1

6
log2

(
α

β

))
+O(|z|), (4.34)

as z → 0. Therefore (4.32) and (4.34) imply

lim
z→0

1

2

(
α

β

)− z
2
[
d

dz

{((
α

β

)z
− sec

(πz
2

))
ζ(1− z)ζ(1 + z)

}
+ log

(
α

β

)
sec
(πz

2

)
ζ(1− z)ζ(1 + z)

]
=

1

48
log

(
α

β

){
48γ2 + 96γ1 − 3π2 − 4 log2

(
α

β

)}
,

which, when combined with (4.31), results in the right side of (2.13). �



22 ATUL DIXIT AND RAJAT GUPTA

Proof of Theorem 2.7. In Theorem 2.1, replace m by −m, where the new m is greater than

1. This renders the finite sum on the right to be zero. Then one uses ζ(1−2m) = −B2m/(2m)

and the result

ζ ′(1− 2m)

ζ(1− 2m)
= log(2π)− Γ′(2m)

Γ(2m)
− ζ ′(2m)

ζ(2m)

= log(2π) + γ −
2m−2∑
n=0

1

n+ 1
− ζ ′(2m)

ζ(2m)
,

which easily follows from the functional equation (3.2) and the well-known relation [14, p. 903,

Formula 8.362.1]

Γ′(w)

Γ(w)
= −γ −

∞∑
n=0

(
1

w + n
− 1

n+ 1

)
. (4.35)

�

Proof of Theorem 2.8. Let m = −1 in Theorem 2.1 and use (4.29). �

As remarked in Section 2, Koshliakov’s first identity (1.9) is an easy consequence of our

Theorem 2.7. We end this section with a proof of his second identity, namely, (1.10). To see

this, let m = −1 in (2.3) so as to get

1

144

(
γ + 12ζ ′(−1)

)
+

∞∑
n=1

nd(n)Ω(n) = − 1

32
. (4.36)

Next, differentiate both sides of (3.2) with respect to s, then set s = −1 and use Γ′(2) = 1−γ
with the last equality resulting from (4.35). This gives

ζ ′(−1) =
1

12
(1− γ − log(2π)) +

1

2π2
ζ ′(2).

Substituting the above equation in (4.36) gives (1.10).

Remark 8. Note that we could have also let z → 0 in Theorem 2.3 so as to obtain (1.10).

5. The second generalization of Theorem 2.1 with an additional parameter N

We prove Theorem 2.10 as a consequence of a more general theorem. The latter, given

below, is an analogue of [10, Theorem 1.1].

Theorem 5.1. Let N ∈ N and h ∈ Z such that h 6= N+1
2 . Let α, β > 0 such that αβN =

πN+1. Then
∞∑
n=1

nN−2hd(n)Ωα(nN ) = P (α) + S(α), (5.1)

where

P (α) := ζ2(2h−N)

{
−
(
γ + log

(α
π

))
+N

ζ ′(2h−N)

ζ(2h−N)

}
+
(π
α

) 2(N−2h+1)
N

× 1

N2
ζ2

(
2h− 1

N

)
csc

(
π(2h− 1)

2N

){
π

4
cot

(
(2h− 1)π

2N

)
+Nγ − log

(α
π

)
−
ζ ′
(

2h−1
N

)
ζ
(

2h−1
N

) }
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+

b h
N
c∑

k=0

(−1)k+1π1−4kα4k−2ζ2(2k)ζ2(2h− 2Nk), (5.2)

and

S(α) :=
(−1)h+1

N

(
π

α

) 2(N−2h+1)
N

N−1
2∑

j=− (N−1)
2

e
ij(2h−1)π

N

∞∑
n=1

n
1−2h
N d(n)Ωβ

(
e−

πij
N n

1
N

)
(5.3)

for N odd, and

S(α) :=
(−1)h+1

N

(
π

α

) 2(N−2h+1)
N

N
2
−1∑

j=−N
2

e
i(2j+1)(2h−1)π

2N

∞∑
n=1

n
1−2h
N d(n)Ωβ

(
e−

πi(2j+1)
2N n

1
N

)
(5.4)

for N even.

Proof. We prove the result only in the case h > N
2 , h 6=

N+1
2 . The case h ≤ N/2 can be

proved in a similar way.

Letting z = 0 in Lemma 4.1, replacing ρ and x by α and nN respectively, and using the

resulting expression in the first step below, we see that for c =Re(s) > max
{

1, N−2h+1
N

}
= 1,

∞∑
n=1

nN−2hd(n)Ωα(nN ) =
∞∑
n=1

1

2πi

∫
(c)

d(n)

nNs−N+2h

ζ2(1− s)
2 cos

(
πs
2

) (α
π

)−2s
ds

=
1

2πi

∫
(c)

ζ2(1− s)ζ2(Ns−N + 2h)

2 cos(πs2 )

(α
π

)−2s
ds,

where in the last step we interchanged the order of summation and convergence which is

justified by the absolute convergence since c > 1. We now evaluate this integral by shifting

the line of integration.

Consider the contour determined by the line segments [c−iT, c+iT ], [c+iT,−λ+iT ], [−λ+

iT,−λ− iT ] and [−λ− iT, c− iT ], where λ > 2h
N −1. The integrand has double order poles at

0 and N−2h+1
N due to ζ2(1− s) and ζ2(Ns−N + 2h) respectively. Also, it has simple poles at

1 and at negative odd integers (due to cos
(
πs
2

)
). However, the poles −(2` − 1) for ` > b hN c

get canceled by the trivial zeros of ζ2(Ns − N + 2h) at negative even integers. To observe

this, note that the trivial zeros of ζ(Ns−N +2h) are at N−2h−2`
N , where ` ∈ N. A pole of the

form −(2j − 1) would cancel with a zero of the form N−2h−2`
N only when ` = Nj − h, which

implies j > h/N . Thus, only the simple poles at −1,−3, · · · ,−(2b hN c − 1) contribute to the

integral. The residues at the poles 0, N−2h+1
N , 1, and at −(2j − 1), where 1 ≤ j ≤

⌊
h
N

⌋
, are

given by

R0 = ζ2(2h−N)

{
−
(
γ + log(απ )

)
+N

ζ ′(2h−N)

ζ(2h−N)

}
,

R1 = − π

4α2
ζ2(2h),
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RN−2h+1
N

=
(α
π

)− 2(N−2h+1)
N ζ2

(
2h−1
N

)
N2 sin

(
π(2h−1)

2N

) {π
4 cot

(
(2h−1)π

2N

)
+Nγ − log

(
α
π

)
−
ζ ′
(

2h−1
N

)
ζ
(

2h−1
N

) } ,
R−(2j−1) = (−1)j+1π1−4jα4j−2ζ2(2j)ζ2(2h− 2Nj). (5.5)

By Cauchy’s residue theorem,

1

2πi

[∫ c+iT

c−iT
+

∫ −λ+iT

c+iT
+

∫ −λ−iT
−λ+iT

+

∫ c−iT

−λ−iT

]
ζ2(1− s)ζ2(Ns−N + 2h)

2 cos(πs2 )

(α
π

)−2s
ds

= R0 +R1 +R 1+N−2h
N

+

b h
N
c∑

j=1

R−(2j−1).

From (4.5) and the elementary bounds on the Riemann zeta function, it can be seen that as

T →∞, the integrals along the horizontal line segments go to zero.

1

2πi

∫
(c)

ζ2(1− s)ζ2(Ns−N + 2h)

2 cos(πs2 )

(α
π

)−2s
ds = R0 +R1 +R 1+N−2h

N
+

b h
N
c∑

j=1

R−(2j−1) + Jα(N,h),

(5.6)

where

Jα(N,h) :=
1

2πi

∫
(−λ)

ζ2(1− s)ζ2(Ns−N + 2h)

2 cos(πs2 )

(α
π

)−2s
ds. (5.7)

Replace s by 1− s in (5.7), use the functional equation (3.2) and simplify to obtain

Jα(N,h) =
24h−1π4h

2πiα2

∫
(1+λ)

ζ2(s)ζ2(1 +Ns− 2h)Γ2(1 +Ns− 2h) sin2(Nπs2 )

22Nsπ2s(N+1)α−2s sin(πs2 )
ds.

Employ the change of variable s1 = 1 +Ns− 2h so that

Jα(N,h) =
2

2πiN

(
π

α

) 2(N+1−2h)
N

∫
(c1)

(
(2π)2π

2
N

α
2
N

)−s1

× ζ2

(
s1 + 2h− 1

N

)
ζ2(s1)Γ2(s1)

sin2
(
π(s1+2h−1)

2

)
sin
(
π(s1+2h−1)

2N

) ds1. (5.8)

Now

sin(Nz)

sin(z)
=

N−1∑
j=−(N−1)

′′
eijz, (5.9)

where ′′ implies summation over j = −(N − 1),−(N − 3), · · · , N − 3, N − 1. Observe that we

can write

ζ2(s1)ζ2

(
s1 + 2h− 1

N

)
=

∞∑
m,n=1

m−
(2h−1)
N d(m)d(n)

(
nm

1
N

)−s1
, (5.10)
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for, λ > 2h
N − 1 implies c1 =Re(s1) = 1 +N(1 + λ)− 2h > 1, and c1+2h−1

N = Re
(
s1+2h−1

N

)
=

1+λ > 2h
N > 1 since h > N/2. Hence substituting (5.9) and (5.10) in (5.8), and interchanging

the order of integration and the double sum, we have upon simplification,

Jα(N,h) =
2(−1)h+1

2πiN

(
π

α

) 2(N−2h+1)
N

N−1∑
j=−(N−1)

′′
e
ij(2h−1)π

2N

∞∑
m,n=1

d(m)d(n)

m
2h−1
N

∫
(c1)

Γ2(s1) cos
(
πs1
2

)
(2π)2s1(nXm,N,j)s1

ds1,

(5.11)

where

Xm,N,j :=
(π
α

) 2
N
e−

ijπ
2Nm

1
N . (5.12)

Now from (4.1) we have, for d =Re(s) > 0 and Re(a) > 0,

1

2πi

∫
(d)

2s−2a−sΓ2
(s

2

)
x−s ds = K0(ax).

By the principle of analytic continuation, both sides of the above equation are valid for

Re(x) > 0. Hence, for d > 0, the identity derived from (4.3) by replacing ρ by π, namely,

K0

(
4πε
√
nx
)

+K0

(
4πε̄
√
nx
)

=
1

2πi

∫
(d)

Γ2(s) cos
(
πs
2

)
(2π)2s(nx)s

ds, (5.13)

is valid for −π
2 < arg(x) < π

2 . Now from (5.12),

−π
2
< −(N − 1)π

2N
≤ arg(Xm,N,j) = − jπ

2N
≤ (N − 1)π

2N
<
π

2
.

Therefore invoking (5.13) with x replaced by Xm,N,j , substituting the resultant in (5.11) and

noting (1.8), we deduce that

Jα(N,h) =
(−1)h+1

N

(
π

α

) 2(N−2h+1)
N

N−1∑
j=−(N−1)

′′
e
ij(2h−1)π

2N

∞∑
m=1

d(m)Ω (Xm,N,j)

m
2h−1
N

=
(−1)h+1

N

(
π

α

) 2(N−2h+1)
N

N−1∑
j=−(N−1)

′′
e
ij(2h−1)π

2N

∞∑
m=1

d(m)

m
2h−1
N

Ωβ

(
e−

ijπ
2Nm

1
N

)
, (5.14)

where the last step follows from the fact Ω (Xm,N,j) = Ωβ

(
e−

ijπ
2Nm

1
N

)
, since αβN = πN+1.

Substituting (5.5) and (5.14) in (5.6) and distinguishing two cases according to the parity of

N , we finally arrive at (5.1), with P (α) defined in (5.2) and S(α) defined in (5.3) and (5.4).

This completes the proof of Theorem 5.1 for h > N/2. �

Remark 9. The result in the case when h = N+1
2 can also be obtained by arguing in the

similar way as in the proof of Theorem 5.1, however, the residual terms are very complicated,

which is why we refrain from explicitly giving it here.

Proof of Theorem 2.10. Let h = N+1
2 + Nm, m ∈ Z\{0}, in Theorem 5.1. Multiply both

sides of the resulting identity by α−
4Nm
N+1 . Substituting π by α

1
N+1β

N
N+1 , we see that

α−
4Nm
N+1

(π
α

)−4m
= β−

4Nm
N+1 ,
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and

bN+1
2N

+mc∑
k=0

(−1)k+1π1−4kα4k−2ζ2(2k)ζ2(N + 1 + 2N(m− k))

= −π22N−2+4Nm

bN+1
2N

+mc∑
k=0

(−1)k24k(1−N)B2
2kB

2
N+1+2N(m−k)

(2k)!2(N + 1 + 2N(m− k))!2
α

4k
N+1β2N+

4N2(m−k)
N+1 ,

where we have also employed (1.1) twice. �

Now we state the counterpart of Theorem 2.10 for N even.

Theorem 5.2. Let N be an even positive integer. Let α, β > 0 with αβN = πN+1. Then

α−( 4Nm−2
N+1 )

{
ζ2(2Nm)

(
γ + log

(α
π

)
−N ζ ′(2Nm)

ζ(2Nm)

)
+

∞∑
n=1

d(n)

n2Nm
Ωα

(
nN
)}

=
1

N
β−( 4Nm−2

N+1 )
{

(−1)m

cos
(
π

2N

)ζ2
(
2m+ 1− 1

N

)(
γ +

1

N
log

(
β

π

)
− 1

N

ζ ′
(
2m+ 1− 1

N

)
ζ
(
2m+ 1− 1

N

)
+

π

4N
tan

( π

2N

))
+ (−1)

N
2

N
2
−1∑

j=−N
2

e−
i(2j+1)π

N

∞∑
n=1

d(n)

n2m+1− 1
N

Ωβ

(
e−

i(2j+1)π
2N n1/N

)}

− π22N+4Nm−4
m∑
j=0

(−1)j24j(1−N)B2
2jB

2
N+2N(m−j)

(2j)!2(N + 2N(m− j))!2
α

4j
N+1β2N+

4N2(m−j)−2N
N+1 .

Proof. Let h = N
2 + Nm in Theorem 5.1, multiply both sides of the resulting identity by

α−
(4Nm−2)
N+1 , and simplify as in the proof of Theorem 2.10. �

6. Concluding remarks

The series in Theorems 2.1 and 2.2 involving Ωα(n) and Ωα(n, z) respectively are analogues

of the Eisenstein series on SL2(Z) as the latter occur in Ramanujan’s formula for ζ(2m+ 1),

namely, (1.2), whereas Theorems 2.1 and 2.2 are analogues of (1.2) for ζ2(2m + 1). This

suggests that these series involving Ωα(n) and Ωα(n, z) may have ramifications in the theory

of modular forms. This will be explored in a future publication.

Ramanujan’s formula (1.2) can be obtained by equating the coefficients of wn, n ≥ 1, on

both sides of

π

2
cot(
√
wα)coth(

√
wβ) =

1

2w
+

1

2
log

(
β

α

)
+
∞∑
m=1

{
mαcoth(mα)

w +m2α
+
mβcoth(mβ)

w −m2β

}
, (6.1)

which is how Ramanujan arrived at his result except that in his version of the above identity

in [30, p. 318, Formula (21)], he missed 1
2 log

(
β
α

)
. Sitaramachandrarao [34] was the first to

obtain the correct partial fraction decomposition, that is, (6.1). See [8] for more details. This

raises a question: is it possible to derive Theorem 2.1 or any of its generalizations, namely,
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Theorems 2.2 and 2.10, using Ramanujan’s method of decomposing a certian function into

its partial fractions?

Another question that one may ask is, do there exist Ramanujan-type formulas for ζk(2m+

1), k ≥ 3? This would first require finding the right analogues of the functions 1/(e2πx − 1)

and Ω(x) that would help us to find, in turn, the right analogues of the Eisenstein series in

(1.2) and of the series in (2.1) respectively. However, the formulas for higher k may become

unwieldy.

It would be interesting to see if our results, especially Theorems 2.1, 2.7, 2.8 and 2.9,

are applicable in the analysis of some special data structures and algorithms in theoretical

computer science in a similar way as Kirschenhofer and Prodinger utilized (1.2) and its special

cases (1.3)-(1.5) in [21].

It would be worthwhile to see if Theorem 2.3, Corollary 2.4(i) and Corollary 4.8(i) have

some implications in analytic number theory, especially in the study of the non-trivial zeros of

the Riemann zeta function. Similarly, it would be interesting to see applications of Corollary

2.4(ii) in transcendental number theory, especially in light of (2.8) and its consequence that

at least one of the numbers ζ(5) and
∑∞

n=1
σ4(n)
n Λ+(n,−4) is irrational.
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