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1. Introduction

Pages 219–227 in the volume [15] containing Ramanujan’s lost notebook are devoted
to material “Copied from the Loose Papers.” We emphasize that these pages are not
part of the original lost notebook found by George Andrews at Trinity College Li-
brary, Cambridge in the spring of 1976. These “loose papers”, in the handwriting of
G.N. Watson, are found in the Oxford University Library, and evidently the original
pages in Ramanujan’s handwriting are no longer extant. Most of these nine pages,
which are divided into four rough, partial manuscripts, are connected with material
in Ramanujan’s published papers. However, there is much that is new in these frag-
ments, which will be completely examined in [2]. One claim in the first manuscript
on pages 219–220 is the subject of this short note and is the most interesting theo-
rem in the manuscript. This claim provides a beautiful series transformation involving
the logarithmic derivative of the gamma function and the Riemann zeta function. To
state Ramanujan’s claim, it will be convenient to use the familiar notation [6, p. 952,
formulas 8.360, 8.362, no. 1]

ψ(x) :=
Γ′(x)

Γ(x)
= −γ −

∞∑
k=0

(
1

k + x
− 1

k + 1

)
, (1.1)

where γ denotes Euler’s constant. We also need to recall the following functions asso-
ciated with Riemann’s zeta function ζ(s). Let

ξ(s) := (s− 1)π−
1
2
sΓ(1 + 1

2
s)ζ(s).

Then Riemann’s Ξ-function is defined by

Ξ(1
2
t) := ξ(1

2
+ 1

2
it).

Theorem 1.1. Define

φ(x) := ψ(x) +
1

2x
− log x. (1.2)

If α and β are positive numbers such that αβ = 1, then

√
α

{
γ − log(2πα)

2α
+
∞∑
n=1

φ(nα)

}
=
√
β

{
γ − log(2πβ)

2β
+
∞∑
n=1

φ(nβ)

}

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(

1
2
t logα

)
1 + t2

dt, (1.3)
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where γ denotes Euler’s constant and Ξ(x) denotes Riemann’s Ξ-function.

The first identity in (1.3) is beautiful in its elegant symmetry and surprising as well,
because why would subtracting the two leading terms in the asymptotic expansion of
the logarithmic derivative of the Gamma function, in order to gain convergence of the
infinite series on the left side, yield a “modular relation” for the resulting function? The
second identity in (1.3) is also surprising, for why would the first identity foreshadow
a connection with the Riemann zeta function in the second?

Although Ramanujan does not provide a proof of (1.3), he does indicate that (1.3)
“can be deduced from”∫ ∞

0

(ψ(1 + x)− log x) cos(2πnx)dx =
1

2
(ψ(1 + n)− log n) . (1.4)

This latter result was rediscovered by A.P. Guinand [8] in 1947, and he later found a
simpler proof of this result in [9]. In the footnote at the end of his paper [9], Guinand
remarks that T.A. Brown had told him that he himself had proved the self-reciprocality
of ψ(1+x)−log x some years ago, and that when he (Brown) communicated the result to
G.H. Hardy, Hardy told him that the result was also given by Ramanujan in a progress
report to the University of Madras, but was not published elsewhere. However, we
cannot find this result in any of the three Quarterly Reports that Ramanujan submitted
to the University of Madras [3], [4]. Therefore, Hardy’s memory was perhaps imperfect;
it would appear that he saw (1.4) in the aforementioned manuscript that Watson had
copied. On the other hand, the only copy of Ramanujan’s Quarterly Reports that
exists is in Watson’s handwriting! It could be that the manuscript on pages 219–220 of
[15], which is also in Watson’s handwriting, was somehow separated from the original
Quarterly Reports, and therefore that Hardy was indeed correct in his assertion!

The first equality in (1.3) was rediscovered by Guinand in [8] and appears in a
footnote on the last page of his paper [8, p. 18]. It is interesting that Guinand remarks,
“This formula also seems to have been overlooked.” Here then is one more instance in
which a mathematician thought that his or her theorem was new, but unbeknownst to
him or her, Ramanujan had beaten them to the punch! We now give Guinand’s version
of (1.3).

Theorem 1.2. For any complex z such that |arg z| < π, we have

∞∑
n=1

(
Γ
′

Γ
(nz)− log nz +

1

2nz

)
+

1

2z
(γ − log 2πz)

=
1

z

∞∑
n=1

(
Γ
′

Γ

(n
z

)
− log

n

z
+

z

2n

)
+

1

2

(
γ − log

2π

z

)
. (1.5)

Although not offering a proof of (1.5) in [8], Guinand did remark that it can be
obtained by using an appropriate form of Poisson’s summation formula, namely the
form given in Theorem 1 in [7]. Later Guinand gave another proof of Theorem 1.2
in [9], while also giving extensions of (1.5) involving derivatives of the ψ-function. He
also established a finite version of (1.5) in [10]. However, Guinand apparently did not
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discover the connection of his work with Ramanujan’s integral involving Riemann’s
Ξ-function.

In this paper we first provide a proof of both identities in Theorem 1.1. In Section
4, we construct a second proof of (1.5) along the lines suggested by Guinand in [8]. We
can also provide another proof of (1.3) employing both (1.4) and∫ ∞

0

(
1

e2πx − 1
− 1

2πx

)
e−2πnxdx =

1

2π
(log n− ψ(1 + n)) , (1.6)

which can be derived from an integral evaluation in [6, p. 377, formula 3.427, no. 7].
However, this proof is similar but slightly more complicated than the first proof that
we provide below.

Although the Riemann zeta function appears at various instances throughout Ra-
manujan’s notebooks [13] and lost notebook [15], he only wrote one paper in which the
zeta function plays the leading role [12], [14, pp. 72–77]. In fact, a result proved by
Ramanujan in [12], namely equation (3.7) in Section 3 below, is a key to proving (1.3).
About the integral involving Riemann’s Ξ-function in this result, Hardy [11] comments
that “the properties of this integral resemble those of one which Mr. Littlewood and I
have used, in a paper to be published shortly in the Acta Mathematica, to prove that∫ T

−T

∣∣∣∣ζ (1

2
+ ti

)∣∣∣∣2 dt ∼ 2

π
T log T.” (1.7)

It is also interesting that on a page in the original lost notebook [15, p. 195], Ra-
manujan defines

φ(x) := ψ(x) +
1

2x
− γ − log x (1.8)

and then concludes that (1.3) is valid. However, with the definition (1.8) of φ(x),
the series in (1.3) do not converge. For a more complete discussion of Ramanujan’s
incorrect claim, see [2].

2. Preliminary Results

We first collect several well-known theorems that we use in our proof. First, from
[5, p. 191], for t 6= 0,

∞∑
n=1

1

t2 + 4n2π2
=

1

2t

(
1

et − 1
− 1

t
+

1

2

)
. (2.1)

Second, from [16, p. 251], we find that, for Re z > 0,

φ(z) = −2

∫ ∞
0

tdt

(t2 + z2)(e2πt − 1)
. (2.2)

Third, we require Binet’s integral for log Γ(z), i.e., for Re z > 0 [16, p. 249], [6, p. 377,
formula 3.427, no. 4],

log Γ(z) =

(
z − 1

2

)
log z − z +

1

2
log(2π) +

∫ ∞
0

(
1

2
− 1

t
+

1

et − 1

)
e−zt

t
dt. (2.3)
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Fourth, from [6, p. 377, formula 3.427, no. 2], we find that∫ ∞
0

(
1

1− e−x
− 1

x

)
e−xdx = γ, (2.4)

where γ denotes Euler’s constant. Fifth, by Frullani’s integral [6, p. 378, formula 3.434,
no. 2], ∫ ∞

0

e−µx − e−νx

x
dx = log

ν

µ
, µ, ν > 0. (2.5)

3. First Proof of Theorem 1.1

Proof. Our first goal is to establish an integral representation for the far left side of
(1.3). Replacing z by nα in (2.2) and summing on n, 1 ≤ n <∞, we find, by absolute
convergence, that

∞∑
n=1

φ(nα) = −2
∞∑
n=1

∫ ∞
0

tdt

(t2 + n2α2)(e2πt − 1)

=
−2

α2

∫ ∞
0

t

(e2πt − 1)

∞∑
n=1

1

(t/α)2 + n2
. (3.1)

Invoking (2.1) in (3.1), we see that

∞∑
n=1

φ(nα) = −2π

α

∫ ∞
0

1

(e2πt − 1)

(
1

e2πt/α − 1
− α

2πt
+

1

2

)
dt. (3.2)

Next, setting x = 2πt in (2.4), we readily find that

γ =

∫ ∞
0

(
2π

e2πt − 1
− e−2πt

t

)
dt. (3.3)

By Frullani’s integral (2.5),∫ ∞
0

e−t/α − e−2πt

t
dt = log

(
2π

1/α

)
= log(2πα). (3.4)

Combining (3.3) and (3.4), we arrive at

γ − log (2πα) =

∫ ∞
0

(
2π

e2πt − 1
− e−t/α

t

)
dt. (3.5)
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Hence, from (3.2) and (3.5), we deduce that

√
α

(
γ − log(2πα)

2α
+
∞∑
n=1

φ(nα)

)
(3.6)

=
1

2
√
α

∫ ∞
0

(
2π

e2πt − 1
− e−t/α

t

)
dt

− 2π√
α

∫ ∞
0

1

(e2πt − 1)

(
1

e2πt/α − 1
− α

2πt
+

1

2

)
dt

=

∫ ∞
0

( √
α

t(e2πt − 1)
− 2π√

α(e2πt/α − 1)(e2πt − 1)
− e−t/α

2t
√
α

)
dt.

Now from [12, p. 260, eqn. (22)] or [14, p. 77], for n real,∫ ∞
0

Γ

(
−1 + it

4

)
Γ

(
−1− it

4

)(
Ξ

(
1

2
t

))2
cosnt

1 + t2
dt

=

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cosnt

1 + t2
dt

= π3/2

∫ ∞
0

(
1

exen − 1
− 1

xen

)(
1

exe−n − 1
− 1

xe−n

)
dx. (3.7)

Letting n = 1
2

logα and x = 2πt/
√
α in (3.7), we deduce that

− 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos(1
2
t logα)

1 + t2
dt (3.8)

= − 2π√
α

∫ ∞
0

(
1

e2πt − 1
− 1

2πt

)(
1

e2πt/α − 1
− α

2πt

)
dt

=

∫ ∞
0

(
−2π/

√
α

(e2πt/α − 1)(e2πt − 1)
+

√
α

t(e2πt − 1)
+

1

t
√
α(e2πt/α − 1)

−
√
α

2πt2

)
dt.

Hence, combining (3.6) and (3.8), in order to prove that the far left side of (1.3)
equals the far right side of (1.3), we see that it suffices to show that∫ ∞

0

(
1

t
√
α(e2πt/α − 1)

−
√
α

2πt2
+
e−t/α

2t
√
α

)
dt

=
1√
α

∫ ∞
0

(
1

u(eu − 1)
− 1

u2
+
e−u/(2π)

2u

)
du = 0, (3.9)

where we made the change of variable u = 2πt/α. In fact, more generally, we show
that ∫ ∞

0

(
1

u(eu − 1)
− 1

u2
+
e−ua

2u

)
du = −1

2
log(2πa), (3.10)

so that if we set a = 1/(2π) in (3.10), we deduce (3.9).
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Consider the integral, for t > 0,

F (a, t) : =

∫ ∞
0

{(
1

eu − 1
− 1

u
+

1

2

)
e−tu

u
+
e−ua − e−tu

2u

}
du

= log Γ(t)−
(
t− 1

2

)
log t+ t− 1

2
log(2π) +

1

2
log

t

a
, (3.11)

where we applied (2.3) and (2.5). Upon the integration of (1.1), it is easily gleaned
that, as t→ 0,

log Γ(t) ∼ − log t− γt,
where γ denotes Euler’s constant. Using this in (3.11), we find, upon simplification,
that, as t→ 0,

F (a, t) ∼ −γt− t log t+ t− 1

2
log(2π)− 1

2
log a.

Hence,

lim
t→0

F (a, t) = −1

2
log(2πa). (3.12)

Letting t approach 0 in (3.11), taking the limit under the integral sign on the right-
hand side using Lebesgue’s dominated convergence theorem, and employing (3.12),
we immediately deduce (3.10). As previously discussed, this is sufficient to prove the
equality of the first and third expressions in (1.3), namely,

√
α

{
γ − log(2πα)

2α
+
∞∑
n=1

φ(nα)

}
= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(

1
2
t logα

)
1 + t2

dt.

(3.13)
Lastly, using (3.13) with α replaced by β and employing the relation αβ = 1, we

conclude that√
β

{
γ − log(2πβ)

2β
+
∞∑
n=1

φ(nβ)

}

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(

1
2
t log β

)
1 + t2

dt

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(

1
2
t log(1/α)

)
1 + t2

dt

= − 1

π3/2

∫ ∞
0

∣∣∣∣Ξ(1

2
t

)
Γ

(
−1 + it

4

)∣∣∣∣2 cos
(

1
2
t logα

)
1 + t2

dt.

Hence, the equality of the second and third expressions in (1.3) has been demonstrated,
and so the proof is complete. �

4. Second Proof of (1.3)

In this section we give our second proof of the first identity in (1.3) using Guinand’s
generalization of Poisson’s summation formula in [7]. We emphasize that this route
does not take us to the integral involving Riemann’s Ξ-function in the second identity
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of (1.3). First, we reproduce the needed version of the Poisson summation formula
from Theorem 1 in [7].

Theorem 4.1. If f(x) is an integral, tends to zero at infinity, and xf
′
(x) belongs to

Lp(0,∞), (1 < p ≤ 2), then

lim
N→∞

(
N∑
n=1

f(n)−
∫ N

0

f(t)dt

)
= lim

N→∞

(
N∑
n=1

g(n)−
∫ N

0

g(t)dt

)
, (4.1)

where

g(x) = 2

∫ →∞
0

f(t) cos(2πxt)dt. (4.2)

Next, we state a lemma1 that will subsequently be used in our proof of (1.3).

Lemma 4.2. ∫ ∞
0

(
ψ(t+ 1)− 1

2(t+ 1)
− log t

)
dt =

1

2
log 2π. (4.3)

Proof. Let I denote the integral on the left-hand side. Then,

I =

∫ ∞
0

d

dt

(
ln
etΓ(t+ 1)

tt
√
t+ 1

)
dt

= lim
t→∞

ln
etΓ(t+ 1)

tt
√
t+ 1

− lim
t→0

ln
etΓ(t+ 1)

tt
√
t+ 1

= ln lim
t→∞

etΓ(t+ 1)

tt
√
t+ 1

− ln
(

lim
t→0

etΓ(t+ 1)
)
− lim

t→0
t ln t− lim

t→0

1

2
ln(t+ 1)

= ln lim
t→∞

etΓ(t+ 1)

tt
√
t+ 1

. (4.4)

Next, Stirling’s formula [6, p. 945, formula 8.327] tells us that,

Γ(z) ∼ zz−1/2e−z
√

2π, (4.5)

as |z| → ∞ and | arg z| ≤ π − δ, where 0 < δ < π. Hence, employing (4.5), we find
that

etΓ(t+ 1)

tt
√
t+ 1

∼
(

1 +
1

t

)t √
2π

e
, (4.6)

so that

lim
t→∞

etΓ(t+ 1)

tt
√
t+ 1

=
√

2π. (4.7)

Thus from (4.4) and (4.7), we conclude that

I =
1

2
ln 2π. (4.8)

�

1The authors are indebted to M. L. Glasser for the proof of this lemma. The authors’ original proof
of this lemma was substantially longer than Glasser’s given here.



8 B. C. BERNDT AND A. DIXIT

Now we are ready to give our second proof of (1.3). We first prove it for real z > 0.
Let

f(x) = ψ(xz + 1)− log xz. (4.9)

We show that f(x) satisfies the hypotheses of Theorem 4.1. From (1.4), it is true that
f(x) is an integral. Next, we need two formulas for ψ(x).

First, from [1, p. 259, formula 6.3.18] for | arg z| < π, as z →∞,

ψ(z) ∼ log z − 1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · · . (4.10)

Second, we use the fact from [16, p. 250] that

ψ
′
(z) =

∞∑
n=0

1

(z + n)2
. (4.11)

From (4.10), we have

f(x) ∼ 1

2xz
− 1

12x2z2
+

1

120x4z4
− 1

252x6z6
+ · · · , (4.12)

so that

lim
x→∞

f(x) = 0. (4.13)

Next, we show that xf
′
(x) belongs to Lp(0,∞) for some p such that 1 < p ≤ 2.

Using (4.10), we find that

xf
′
(x) = xzψ

′
(xz)− 1

xz
− 1 ∼ − 1

2xz
, (4.14)

so that |xf ′(x)|p ∼ 1
2pzpxp . Now p > 1 implies that xf

′
(x) is locally integrable near ∞.

Also, using (4.11), we have

lim
x→0

xf
′
(x) = lim

x→0

(
xz

∞∑
n=0

1

(xz + n)2
− 1

xz
− 1

)

= lim
x→0

(
xz

∞∑
n=1

1

(xz + n)2
− 1

)
= −1. (4.15)

This proves that xf
′
(x) is locally integrable near 0. Hence it is true that xf

′
(x) belongs

to Lp(0,∞) for some p such that 1 < p ≤ 2.
Now from (4.2) and (4.9), we find that

g(x) = 2

∫ ∞
0

(ψ(tz + 1)− log tz) cos (2πxt) dt.

Employing a change of variable y = tz and using (1.4), we find that

g(x) =
2

z

∫ ∞
0

(ψ(y + 1)− log y) cos (2πxy/z) dy

=
1

z

(
ψ
(x
z

+ 1
)
− log

(x
z

))
. (4.16)
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Substituting the expressions for f(x) and g(x) from (4.9) and (4.16), respectively, in
(4.1), we find that

lim
N→∞

(
N∑
n=1

(ψ(nz + 1)− log nz)−
∫ N

0

(ψ(tz + 1)− log tz)dt

)

=
1

z

[
lim
N→∞

(
N∑
n=1

(
ψ
(n
z

+ 1
)
− log

n

z

)
−
∫ N

0

(
ψ

(
t

z
+ 1

)
− log

t

z

)
dt

)]
. (4.17)

Thus,

lim
N→∞

(
N∑
n=1

(
Γ
′

Γ
(nz) +

1

2nz
− log nz

)
+

N∑
n=1

1

2nz
−
∫ N

0

(ψ(tz + 1)− log tz)dt

)

=
1

z

[
lim
N→∞

(
N∑
n=1

(
Γ
′

Γ

(n
z

)
+

z

2n
− log

n

z

)
+

N∑
n=1

z

2n
−
∫ N

0

(
ψ

(
t

z
+ 1

)
− log

t

z

)
dt

)]
.

(4.18)

Now if we can show that

lim
N→∞

(
N∑
n=1

1

2nz
−
∫ N

0

(ψ(tz + 1)− log tz)dt

)
=
γ − log 2πz

2z
, (4.19)

then replacing z by 1/z in (4.19) will give us

lim
N→∞

(
N∑
n=1

z

2n
−
∫ N

0

(
ψ

(
t

z
+ 1

)
− log

t

z

)
dt

)
=
z(γ − log(2π/z))

2
. (4.20)

Then substituting (4.19) and (4.20) in (4.18) will complete the proof of the theorem.
So our goal now is to prove (4.19).

lim
N→∞

(
N∑
n=1

1

2nz
−
∫ N

0

(ψ(tz + 1)− log tz)dt

)

= lim
N→∞

(
1

2z

(
N∑
n=1

1

n
− logN

)
+

logN

2z
−
∫ N

0

(ψ(tz + 1)− log tz)dt

)

=
γ

2z
+ lim

N→∞

(
− log z

2z
+

logNz

2z
−
∫ N

0

(ψ(tz + 1)− log tz)dt

)
=

γ

2z
− log z

2z
+ lim

N→∞

(
log(Nz + 1)

2z
− 1

z

∫ Nz

0

(ψ(t+ 1)− log t)dt− 1

2z
log

(
1 +

1

Nz

))
=

γ

2z
− log z

2z
+

1

z
lim
N→∞

(
log(Nz + 1)

2
−
∫ Nz

0

(ψ(t+ 1)− log t)dt

)
=

γ

2z
− log z

2z
+

1

z
lim
N→∞

(
1

2

∫ Nz

0

1

t+ 1
dt−

∫ Nz

0

(ψ(t+ 1)− log t)dt

)
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=
γ

2z
− log z

2z
− 1

z
lim
N→∞

∫ Nz

0

(
ψ(t+ 1)− 1

2(t+ 1)
− log t

)
dt

=
γ

2z
− log z

2z
− 1

z

∫ ∞
0

(
ψ(t+ 1)− 1

2(t+ 1)
− log t

)
dt

=
γ

2z
− log z

2z
− log 2π

2z

=
γ − log 2πz

2z
, (4.21)

where in the antepenultimate line, we have made use of Lemma 4.2. This completes
the proof of (4.19) and hence the proof of Theorem 1.2 for real z > 0. But both sides
of (1.5) are analytic for | arg z| < π. Hence by analytic continuation, the theorem is
true for all complex z such that | arg z| < π.
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